Question Booklet for Combined Entrance Examination, 2014

Full Marks : 100

Question Booklet SET : B

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE ASKED TO DO SO

Read the following INSTRUCTIONS carefully :

1. Use black ball pen only.
2. Fill in the particulars on the Side 1 and Side 2 of the OMR Answer Sheet as per Instructions on the Side 1 of the OMR Answer Sheet, failing of which the OMR Answer Sheet shall not be evaluated.
3. The SET of this Question Booklet is B. Write this SET at the specific space provided on the Side 1 and Side 2 of the OMR Answer Sheet.
4. There are 100 (one hundred) questions in this Question Booklet, each carrying 1 (one) mark.
5. Each question or incomplete statement is followed by 4 (four) suggestive answers- $[A],[B],[C]$ and $[D]$ of which only one is correct. Mark the correct answer by darkening the appropriate circle in the OMR Answer Sheet.
6. Marking of more than one answer against any question will be treated as incorrect response and no mark shall be awarded.
7. Any change in answer made or erased by using solid or liquid eraser in the OMR Answer Sheet will not be accepted. Therefore, do not change or erase once the answer is marked.
8. No part of the Question Booklet or the OMR Answer Sheet shall be detached or defaced under any circumstances.
9. Use of mobile phone, calculator, log table, compass, scale and any electronic gadget is strictly prohibited in the Examination Hall.
10. The OMR Answer Sheet must be returned to the Invigilator before leaving the Examination Hall.
11. Adoption of unfair means in any form or violation of instruction as mentioned in Point Nos. 9 and 10 shall result in expulsion from the entire examination.
12. Temporary absence during the examination hours is not allowed. However, a candidate can leave the Examination Hall temporarily one hour after commencement of examination by submitting the Question Booklet and OMR Answer Sheet to the Invigilator(s) on duty.
13. The candidate must ensure that the OMR Answer Sheet is signed by the Invigilator.
14. After opening the Question Booklet, check the total number of printed pages and report to the Invigilator in case of any discrepancy.
15. In case of any discrepancy or confusion in the medium/version, the English version will be treated as the authentic version.
16. A particle moves down an inclined plane and at the foot of the plane, it moves over a circular path as shown in the figure. The ratio of the heights h_{1} and h_{2} is কণা এটাই এত্লীয় তল এখনেবে বাগবি আহি তন্গখনব প্রান্তত এটা বৃত্তাকাব পথত চিত্রত দেখুরাব ধবণে গতি কবে। উচ্চতা h_{1} आ<< h_{2} ব মাজব অনুপাত इ’ব

$$
h_{1}=h_{2}
$$

[A] 5
[B] 4
[C] 3
[D] 2
2. A solid sphere of radius 1 m and mass 100 kg is placed on a support as shown in the figure. If the distance $a=\frac{1}{2} \mathrm{~m}$ and $b=\frac{1}{\sqrt{2}} \mathrm{~m}$, then the force exerted by the sphere on the edges will be ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)

100 kg ভব আক 1 m ব্যাসার্ধ্ধবিশিষ্ট এটা গোলাকাব বস্তু চিত্রত দেখুরাব ধবণে দুটা খণুব ওপবত বখা হৈছে। यদি $a=\frac{1}{2} \mathrm{~m}$ আক $b=\frac{1}{\sqrt{2}} \mathrm{~m}$ इয়, তেন্তে গোলাকাব বস্তুটোরে খণ্ড দুটাব কাষত প্রত্রোগ কবা বল হ'ব, ক্রুমে $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

[A] $100 \mathrm{~N}, 141 \mathrm{~N}$
[B] $141 \mathrm{~N}, 500 \mathrm{~N}$
[C] $500 \mathrm{~N}, 707 \mathrm{~N}$
[D] None of the above ওপবব এটাও নহয়
3. In a cricket coaching centre, a cricket ball firing gun is installed. The gun has a horizontal spring of spring constant k and it has to fire balls of mass m. If the height of the gun is h and the spring is compressed through a distance x, then the horizontal distance covered by the ball to reach the ground will be
কোন্না এটা ক্রিকেট প্রশিক্ষণ কেন্দ্রত এটা ক্রিকেট বল প্রক্ষেপণ যন্ত্র ছ্ছাপন কবা হৈছে। যন্ত্রটোব এডাল

 आগতে আনুভূমিক দিশত কিমান দূব অতিক্রম কবিব?
[A] $\quad x \sqrt{\frac{k h}{m g}}$
[B] $\frac{x k h}{m g}$
[C] $x \sqrt{\frac{2 k h}{m g}}$
[(D] $\frac{m g}{x \sqrt{k h}}$
4. As per a popular Hindi movie, the people from a small village are trying to set up their own small hydroelectric power station capable of generating a power of 90 kW . The water reservoir used for this purpose is located on a hilltop at a height of h metre from the ground and it can hold V litre of water. The water from the reservoir rushes to the ground through some pipes and rotates the blades of a turbine connected with the generator. If ρ is the density of water and the efficiency of the machine is 90%, then the rate at which the water must flow through the pipe will be এখন জনপ্রিয় হিন্দী বোনঘ্রিত গাওঁব কিছুমান ব্যক্তিব দ্বাবা নিজাকক এটা 90 kW শক্তিবিশিষ্ট ক্ষুদ্র জলবিদ্যুৎ উৎপাদনকেন্দ্র স্ছাপন কবা দেখুওরা そৈছে। ইয়াব বাবে ব্যবহাব কবা সংবক্ষিত পানীব উৎসটটো এটা টিলাব ওপবত
 পবা পানী কিছ্মুমান নলাবে দ্রুত গতিত তলটৈ গতি ক্রে আব্ ই টার্বাইনটোক জেনেবেটেসসহ ঘূবাবলৈ আব্ণ্ভ কবে। यদি ρ পানীব ঘনত্ব হয় আক্ ইষ্জিনটোব কার্যদক্ষতা 90% হয়, তেন্তে নলাটোবে প্ররাহ হ’বনগীয়া পানীব সোঁতब হাব হ’ব
[A] $\frac{10^{5}}{\rho g h}$
(B] $\frac{10^{4}}{\rho g h}$
[C] $\frac{10^{3}}{\rho g h}$
[D] None of the above ওপবব এটাও নহয়
5. A marble and a cube of equal mass are initially at rest. Now the marble rolls and cube slides down a frictionless ramp. When they arrive at the bottom, the ratio of speed of the cube with respect to the centre of mass and speed of the marble is
প্রাবম্তিক সময়ত স্থিব অর্থাত থকা এটা মার্বল ঘর্ষণবিशীন তন এখনেবে তললৈ খৃবি ঘৃবি নামি আহিছে আনহাতে সমভবব এটা ঘনক তনখনেবে পিছলি আহিছে। বস্তু দুটাই তলখনব অন্তিম প্রাম্তত উপস্থিত হোবাব সময়ত ভबকেন্দ্র সাপেক্ষে ঘনকটোব দ্রহতি আব মার্বলটোব দ্রতিি অনুপাত হ’ব
[A] 7:5
[C] $5: 3$
[B] $\sqrt{7}: \sqrt{5}$
[D] $\sqrt{5}: \sqrt{3}$
6. The length of a spring is l_{1} when the tension applied is 5 N and its length is l_{2} when the tension is 4 N . Then the length of the spring on application of a tension 9 N will be 5 N টोन প্রয়োগ কবিলে স্প্রিং এডালব দৈর্ঘ্য l_{1} इয় आनशতত 4 N টান প্রয়োগ কबিকে স্প্রিংডালब দৈর্ঘ্য l_{2} হয়। তেন্ঠে 9 N টান প্রয়োগ কবিলে স্প্রিংডালব দৈর্য্য হ'ব
(A) $l_{1}+l_{2}$
[B] $5 l_{1}+4 l_{2}$
[C] $4 l_{1}+5 l_{2}$
[D] $5 l_{1}-4 l_{2}$
7. A satellite revolves close to the earth in an orbit above the equator with a time period of 1.5 hours. If a person at any point on the equator observes the satellite just above his head, then after what time the satellite will again appear at the position, just above his head? (The satellite is moving from west to east)
কোনো কৃত্রিম উপগ্রহ এটইই বিষুর বেখাব ওপবেবে 1.5 ঘস্টা সময়ত পৃথিব্রীক এবাব পবিল্রমণ কবে। यদি কোনো এক সময়ত বিষুব অঞ্চলত থকা ব্যক্তি এজনন উপগ্রহটো ঠিক তেওঁষ মূবব ওপবত প্রত্যক্ষ কবে, তেন্তে কিমান সময়ব পাছতত তেওঁ উপগ্রহটো পুনব একেটা স্থানতে প্রত্যক্ষ কবিব? (উপগ্রহটো পশ্চিমব পবা পূব ফালটৈ গতি কবি আছহ)
[A] 1.5 hours
[B] $1 \cdot 6$ hours
[C] 22.5 hours
[D] $25 \cdot 5$ hours
8. A particle moves in the $X-Y$ plane in such a way that $x=a \sin \omega t$ and $y=b \cos \omega t$. Then the shape of the particle trajectory will be
কণা এটাই $X-Y$ সমতলত এনেদবে গতি কবে যাতে $x=a \sin \omega t$ আब $y=b \cos \omega t$, তেন্তে কণাটোব গতিপথব আকৃতি হ’ব
[A) hyperbolic
পবাবৃষ্তীয়
[B] elliptical
উপবৃశ্তীয়
[C] circular
[D] straight line সবলবৈथिক
9. Which of the following statements are correct? ত্লব কোনকেইটা ঊক্তি শুদ্ধ ?
(i) Engine oils should have low surface tension.

ইঞ্রিন অইনব পৃষ্ঠটান কম হোরা উচিত।
(ii) Waterproofing agent increases the angle of contact.

জল নিবোধক দ্রর্যসমৃহহ স্পর্শকোণব মান বৃদ্ধি কবে।
(iii) Paints should have smaller angle of contact.

পেইন্ট বা বল্ৰক দ্রব্যসমূহৃ ग্পশ্শকোণ কম হোবা উচিত।
(iv) Surface tension of a liquid decreases with increase in temperature. তबলব পৃষ্ঠটান উষ্ণতা বৃদ্ধিব লগত গ্রাস পায়।
[A] (i), (ii), (iii) and (iv)
[B] (ii), (iii) and (iv)
(i), (ii), (iii) আক্ (iv)
(ii), (iii) আব (iv)
[C] (i) and (iv)
[D] (ii) and (iii)
(i) आ<< (iv)
(ii) आ<< (iii)
10. On dropping a stone onto a well of depth 80 m , the splash is heard after 4.25 seconds. Then the velocity of sound in air is ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)
80 মিটlব গভীব নাদ এটাত শিল এটা পেলোর্রাব 4.25 ছেকেণ্ড পাছতত পানীত পবাব শব্দ শুনা যায়, তেন্তে বায়ুত শব্দব বেগ হ'ব $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
[A] $300 \mathrm{~m} / \mathrm{s}$
[B] $320 \mathrm{~m} / \mathrm{s}$
[C] $340 \mathrm{~m} / \mathrm{s}$
[D] None of the above ওপবব এটাও নহয়
11. When the tension in a metal wire is T_{1}, its length is h_{1}. When the tension is T_{2}, its length is l_{2}. The natural length of the wire will be
T_{1} টান প্রয়োগ কबিলে ধাতুब তাঁব এডালব দৈर्थ্য l_{1} इয় आनशতত T_{2} টান প্রয়োগ কबিলে তাঁबডালব দৈर्घ্য l_{2} হয়, তেন্ঠে তাঁবডালব প্রকৃত দৈর্ঘ্যব মান হ’ব
[A] $\frac{T_{2}}{T_{1}}\left(l_{1}+l_{2}\right)$
[B] $T_{1} l_{1}+T_{2} l_{2}$
[C] $\frac{l_{1} T_{2}-l_{2} T_{1}}{T_{2}-T_{1}}$
[D] $\frac{l_{1} T_{2}+l_{2} T_{1}}{T_{2}+T_{1}}$
12. Two metallic wires of same material and length are joined to their ends as shown in the figure. The upper end of A is rigidly fixed. Their radii are in the ratio of $1: 2$. If the lower end of wire B is twisted by an angle θ, then the angle of twist of wire A will be দুডাল একে পদার্থবে তৈয়াবী, সমদৈর্ঘ্যব ধাতুব তাঁব চিত্রিত দেখুরাব ধবণে এডাল আনডালব এটা মৃবত সংযোগ কबি বथा ছৈছে। তাঁব দুডালব ব্যাসার্দ্ধব অনুপাত 1:2. यদি B তাঁबডালব তলব মূবটো θ কোণেবে ঘূबাই দিয়া হয়, তেন্তে A তাঁবডাল কিমান কোণ কবি পাক খাব?

[A] $\frac{15}{16} \theta$
(B) $\frac{16}{17} \theta$
[C] $\frac{15}{17} \theta$
[D] None of the above ওপবব এটাও নহয়
13. In an experimental measurement of the period of oscillation T for different masses M placed in the scale pan on the lower end of the spring balance, the following graph was obtained. Which of the following will be the most likely reason for the graph not passing through the origin?
এখन म্প্রিং তুলাব দোলকাল T আ< তুলাখনব ভब দিয়া থালখনব ওপবত বখা বিভিন্ন ভब M ब মাজত লেখ অংকন কबাত তলত দিয়া লেখডাল পোবা গ’ল। লেখডাল মূল বিন্দুব মাজ্ঞেবে পাব তৈ নোযোরাব সন্তাব্য কাবণ হ’ব পাবে

[A] The spring did not obey Hooke's law
স্প্রিংডালে ছুকব সৃত্র মানি চলা নাই
[6) Clock used needed regulation ঘড়ীটোব পাঠ সংশোধন কবিব লগিয়া לৈ আছে

IB Amplitude of oscillation was too large দোলনব বিস্তাব অধিক
[D] Mass of the pan was not neglected ভब বখা থালখনব ডब উপেক্ষা কবা হোরা নাই
14. A water tank is in the shape of a cube with walls of 4 m . When the tank is half-filled with water, the water exerts a force F on the walls. What force does the water exert on the walls when the tank is completely filled?
 হয়, চৌাষচ্চটটোব বেবত পানীয়ে F পবিমাণব বল প্রয়োগ কবে, তেন্তে চৌবাচ্চাটো পানীবে সন্পৃর্ণভারে পূর্ণ কবি বাখিনে চৌবাচ্চাট্টাব বেবত পানীয়ে কিমান পবিমাণব বল প্রয়োগ কবিব?
[A] $F / 2$
(B$] \quad F$
flef $2 F$
[D] $4 F$
15. A vertical glass capillary tube, open at both ends, contains some water. Which of the following shapes may be taken by the water in the tube?
 সোমাই থাকে, তের্তে নলীব ভিত্ব পানীব আকৃতি তলত দিয়া কোন ধ্বণব হ'ব পাবে?
[A]

[C]

[D]

16. Five rods of same dimensions and thermal conductivities $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5} are arranged as shown in the figure. Three thermometers T_{1}, T_{2} and T_{3} are connected at the points A, B and C respectively. If the room temperature is $30^{\circ} \mathrm{C}$ and the ends A and C are maintained at different temperatures such that $T_{1}=40^{\circ} \mathrm{C}$ and $T_{3}=60^{\circ} \mathrm{C}$, then for T_{2} to remain at $30^{\circ} \mathrm{C}$, which of the following conditions is required?

 ত্লব কোনটো চর্তব প্রয্রোজন इ’ব?

[A] $k_{1}=k_{2}=k_{3}=k_{4}$
(B] $k_{1}=k_{4}$ and $k_{2}=k_{3}$
[C] $k_{1} k_{3}=k_{2} k_{4}$
[D] $\quad k_{1} k_{2}=k_{3} k_{4}$
17. A bar magnet is cut into two equal halves by a plane parallel to the magnetic axis. Of the following physical quantities, which one remains unchanged?
এডোখব দণ চুম্বকক তাব চুম্বকীয় অক্ষব সমান্তবানকৈ সমদ্বিখগ্তিত কবা そৈছে। তেন্তে তলব কেননটো তৌতিক বাশি অপবিবর্তিত そৈ থাকিব?
[A] Pole strength মেক বল
[C] Intensity of magnetization চুম্বকীকবণ প্রাব্যল্য
[B] Magnetic moment চুম্বকীয় ভ্রামক
[D] Moment of inertia জড় ড্রামক
18. A logic circuit and its truth table are given below. Identify the gate X. তলত এটা নজিক বর্তনী আবু তাব ট্রুথ টেব’ন দিয়া ছৈছে। X গেটখন চিনাক্ত কবা।

[A] NAND

- 1 B$] \mathrm{XOR}$
[C] AND
[D] NOR

19. A 9 cm high image of an object is formed on a screen by a convex lens. When the lens is displaced towards the screen, again a 4 cm high image is formed on the screen. The height of the object is
এখन উত্তল नেন্সে পর্দাত 9 cm उখ প্রতিবিম্ব সৃষ্টি কবিছে। यदि লেন্সখন পর্দাব ফানে নিয়া হয়, তেন্ঠে ই পুনব 4 cm ওখ প্রতিবিম্ব সৃষ্টি কব্বে। নক্ষ্য বস্তুব উচ্চতা হ’ব
[A] 6 cm
[B$] \quad 6.25 \mathrm{~cm}$
[C] 6.5 cm
[D] None of the above ওপবব এটাও নহয়
20. An object is placed 15 cm in front of a concave mirror of radius of curvature 7.5 cm . A glass slab of thickness 4 cm and $\mu=1.5$ is then placed close to the mirror in between object and mirror. What is the position of the final image formed?
7.5 cm ভাঁজ ব্যাসার্দ্ধব এখন অর্রতন দাপোণব পবা 15 cm দৃবত্দত এটা নক্ষ্যবস্তু স্থাপন কबা হ’ল।
 স্থান হ’ব
[A] -4.81 cm
[B] 2.81 cm
[C] 4.32 cm
[D] -4.32 cm
21. A student performs an experiment to determine the Young's modulus of a wire, exactly 2 m long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be 0.6 mm with an uncertainty of $\pm 0.05 \mathrm{~mm}$ at a load of exactly 1 kg . The student also measures the diameter of the wire to be 0.4 mm with an uncertainty of $\pm 0.02 \mathrm{~mm}$. The value of g is $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ (exact). The Young's modulus obtained from the reading is
 পবীক্ষ-নিবীক্ষা সমাপন কবে। এটা বিশেষ জোখমাপত ছাত্রজনে $\pm 0.05 \mathrm{~mm}$ ब अनिশ্চয়্ততাবে তাঁবডাল

 ইয়্ডঙ্ গুণাংকব মান হ'ব
[A] $\quad(2 \cdot 0 \pm 0.56) \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
[B] $\quad(2 \cdot 0 \pm 0 \cdot 21) \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
[C] $\quad(2 \cdot 0 \pm 0 \cdot 15) \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
[D] $(2.0 \pm 0.37) \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
22. A car starting from rest is accelerated at a constant rate α until it attains a speed v. It is then retarded at a constant rate β until it comes to rest. The average speed of the car during its entire journey is
স্মিব অবস্ছাব পবা গতি কবা গাড়ী এখনে v বেগ নোপোঝালৈকে α সুষম হাবত ত্ববণ প্রয়োগ কবা হয়। তাব পিছতত গাড়ীখন đৈ নোযোবাবৈকে β সুষম হাবত গাড়ীখনব মঘ্বণ হয়। সম্পৃর্ণ যাা্রাটোত গাড়ীখনব গড় বেগ হ’ব
[A] 0
[B] $\frac{v}{2}$
[C] $\frac{\alpha v}{2 \beta}$
(D] $\frac{\beta v}{2 \alpha}$
23. The figure below shows the variation of velocity v of a body with position x from the origin O. Which of the answer figures correctly represents the variation of acceleration a with position x ?

उলত দিয়া চিত্রটোরে মূলবিদ্দু O ব পবা ছান x সাপেক্ষে বস্তু এটাব বেগক v সূচায়। উত্ত্ হিচপপ দিয়া চিত্রকেইটাব ভিতबত কোনটোর্বে স্থান x সাপপক্ষে বস্কুটোব ত্ববণ a क সৃচায়?

[A]

[B]

[C]

24. The amplitude of a damped oscillator of mass m varies with time t as

$$
A=A_{0} e^{-a t / m}
$$

The dimensions of a are m डबব অबমদ্দিত দোলক এটlব বিস্তাব সময়ব (t) স’তে তলত দিয়া ধবণে সলনি হয়

$$
A=A_{0} e^{-a t / m}
$$

a ব মাত্রা হ’ল
[A] $\quad M L^{0} T^{-1}$
[B] $\quad M^{0} L T^{-1}$
[C] $M L T^{-1}$
[D] $M L^{-1} T$
25. The maximum height attained by a projectile is increased by 10% by changing the angle of projection, without changing the speed of projection. The percentage increase in the time of flight will be

প্রক্ষেপ্য এটাব প্রক্ষেপণ বেগ সলনি নকবাকৈ কেব্রল প্রক্ষেপণ কোণব মান সলনি কবি, প্রক্ষেপ্যটোরে আহবণ কবা শীর্ষতম উচ্চতা 10% বৃদ্ধি কবা হ'ল। প্রক্ষেপ্যটোব উবণকালব শতকবা বৃদ্ধি হ’ব
[A] 20%
[B] 15%
[C] 10%
[D] 5\%
26. A projectile has the same range R when the maximum height attained by it is either h_{1} or h_{2}. Then R, h_{1} and h_{2} will be related as প্রক্ষেপ্য এটইই আহবণ কबা শীর্ষতম উচ্চতা h_{1} বा h_{2} इ’নে ইয়াब পबিসबब মান হয় $R . R, h_{1}$ আব h_{2} ब মাজব সম্পক্কটো হ’ল
[A] $\quad R=\sqrt{h_{1} h_{2}}$
[B] $R=2 \sqrt{h_{1} h_{2}}$
[C] $R=4 \sqrt{h_{1} h_{2}}$
[D] $R=8 \sqrt{h_{1} h_{2}}$
27. A body of mass $m=1 \mathrm{~kg}$ is dropped from a height $h=40 \mathrm{~cm}$ on a horizontal platform fixed to one end of an elastic spring. The other end of the spring is fixed to a base. As a result, the spring is compressed by an amount $x=10 \mathrm{~cm}$. What is the force constant of the spring ($g=10 \mathrm{~m} \mathrm{~s}^{-2}$) ?

স্থিতিস্ছাপক স্দ্রিং এডালব এটা মূবত বাষ্ধি বখা আনুভূমিক প্লেটফম্ম এখনব ওপবত $h=40 \mathrm{~cm}$ উচ্চতাব পবা $m=1 \mathrm{~kg}$ ভबব বস্তু এটা পেলাই দিয়া হ’ন। স্দ্রিংডালব আনটো মূব আধাব এটাত লগাই থোরা আহে। বস্তুটো পেনাই দিয়াব ফনত স্প্রিংডানব $x=10 \mathrm{~cm}$ সংকোচন হয়। স্প্রিংডালব বল গ্রু্রকব মান কিমান হ’ব $\left(g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$?

[A] $600 \mathrm{Nm}^{-1}$
[B] $800 \mathrm{Nm}^{-1}$
[C] $1000 \mathrm{Nm}^{-1}$
[D] $1200 \mathrm{Nm}^{-1}$
28. Two equal spheres A and B lie on a smooth horizontal circular groove at opposite ends of a diameter. Sphere A is projected along the groove and at the end of time T impinges on sphere B. If e is the coefficient of restitution, the second impact will occur after a time
মিহি আনুভূমিক বৃত্তাকাব খাঁজ এটাব ব্যাস এডালব দুটা মৃবে দুটা সমান গোলক A आকু B থোনা आছে।
 দ্বিতীয় সংঘর্ষটো সংঘটিত হ’বলৈ নগা সময় হ’ব
[A] T
(16] $e T$
[C] $\frac{2 T}{e}$
[D] $2 e T$

29. A small object of uniform density rolls up a curved surface with an initial velocity v. It reaches up to a maximum height $h=\frac{3 v^{2}}{4 g}$, with respect to the initial position. The object is a
 সাপেক্ষে ই শীর্ষতম উচ্চতা $h=\frac{3 v^{2}}{4 g}$ পায়গগ। বস্বুটো হ’ল
[A] ring
आঙুঠि
(B) solid sphere
গোটা গোলক
[C] hollow sphere
[D] disc
ফোঁপোলা গোলক
কँशी
30. A circular disc rolls down an inclined plane without slipping. What fraction of its total energy is translational?
এখन বৃত্তাকাব কাशী হেলনীয়া তল এখনেবে নুচুচ্বাকৈ বাগবি নামি আহহ। ইয়াब মুঠ শক্তিব কিমান অংশ সঞ্চাবী শজ্জি?
[A] $\frac{1}{\sqrt{2}}$
(-1B] $\frac{1}{2}$ [8] $\frac{1}{3}$
[D] $\frac{2}{3}$
31. Two stars, each of mass m and radius R, are approaching each other for a head-on collision. They start approaching each other when their separation is $r \gg R$. If their speeds at the initial separation are negligible, the speed with which they collide would be
m ভबब आ< R ব্যাসার্দ্বব দूটা তबাই মুখামুখি সংঘর্ষব বাবে পবস্পবব কাষ চাপি आহে। সিহঁতब মাজব দূবত্ব
 হ’লে, সংখর্ষব সময়ত সিহঁতব বেগ হ’ব
[A] $\sqrt{G m\left(\frac{1}{R}-\frac{1}{r}\right)}$
[B] $\sqrt{G m\left(\frac{1}{2 R}-\frac{1}{r}\right)}$
[C] $\sqrt{G m\left(\frac{1}{R}+\frac{1}{r}\right)}$
[D] $\sqrt{G m\left(\frac{1}{2 R}+\frac{1}{r}\right)}$
32. The radius of the earth is R and g is the acceleration due to gravity on its surface. What should be the angular speed of the earth so that bodies lying on the equator may appear weightless?
পৃথিবীব ব্যাসাদ্দ্ধ R আকু মাধ্যাকর্ষণিক ज্ববণণ মান g (পৃষ্ঠত)। পৃথিষীব কৌণিক বেগব মান কিমান হ’লে, বিষুর বেখাত থকা বস্কুসমূহ ভবশূন্য যেন नাগিব?
[A] $\sqrt{\frac{g}{R}}$
[B] $\sqrt{\frac{2 g}{R}}$
[C] $\sqrt{\frac{g}{2 R}}$
(D] $2 \sqrt{\frac{g}{R}}$
33. An elastic spring of unstretched length L and force constant k is stretched by a small length x. It is further stretched by another small length y. The work done in the second stretching is

 দীঘढৈन টনা হ'ল। দ্বিতীয়বাব টানোতে সঙ্পাদন কবা কার্যব পবিমাণ ছ'ল
[A] $\frac{1}{2} k y^{2}$
[B] $\frac{1}{2} k\left(x^{2}+y^{2}\right)$
[C] $\frac{1}{2} k(x+y)^{2}$
(ID) $\frac{1}{2} k y(2 x+y)$
34. The Poisson's ratio of a material is 0.4 . If a force is applied to a wire of this material, there is a decrease of cross-sectional area by 2%. The percentage increase in its length is
পদার্থ এবিধব পয়ঁঁ অনুপাত হ’’ 0.4. এই পদার্থবে গঠিত তাঁব এডানত বল প্রয়োগ কবিলে তাঁবডালब প্রস্ছচছছদদ কাनि 2% হ্রাস পায়। তাঁবডালব দীঘব শতকবা বৃদ্ধিব হাব হ'ল
[A] 3%
[B] $2 \cdot 5 \%$
[C] 1%
JDY 0.5\%
35. A capillary tube is immersed vertically in water and the height of the water column is x. When this arrangement is taken into a mine of depth d, the height of the water column is y. If R is the radius of the earth, then the ratio $\frac{x}{y}$ is

কৈশিক নলিকা এটা পানীত উলম্বভারে ডুবাই দিয়াত নলিকাটোব ভিতষত পানীব স্তম্তব উচ্চতা হ’ল x. এই
 হয়, তেন্তে $\frac{x}{y}$ অনুপাতब মাन হ'ল
[A] $\left(1-\frac{d}{R}\right)$
[B] $\left(1+\frac{d}{R}\right)$
[C] $\left(\frac{R-d}{R+d}\right)$
[D] $\left(\frac{R+d}{R-d}\right)$
36. The density of air in the earth's atmosphere decreases with height as $\rho=\rho_{0} e^{-k h}$, where $\rho_{0}=$ density of air at sea level and k is a constant. The atmospheric pressure at sea level is

পৃথিষীব বায়ুমজুত উচ্চতাব স’তে বায়ুব ঘনত্বব পবিবর্ত্তনব প্রকাশবাশি হ’ল $\rho=\rho_{0} e^{-k h}$, য’ত $\rho_{0}=$ সাগब পৃষ্ঠত বায়ুब ঘনত্ব आব্ k এটা 纟্রুপ্বক। সাগব পৃষ্ঠত বায়ুব চাপ হ’ব
(A) $\frac{\rho_{0} g}{2 k}$
[B] $\frac{\rho_{0} g}{k}$
[C] $\frac{2 \rho_{0} g}{k}$
[D] $\frac{\rho_{0} g}{\sqrt{2} k}$
37. A small metal sphere of radius r and density ρ falls from rest in a viscous liquid of density σ and coefficient of viscosity η. Due to friction, heat is produced. The rate of production of heat when the sphere has acquired the terminal velocity is proportional to
r ব্যাসাদ্ধ্ধ आক্ ρ ঘনত্বব স< धাতর গোলক बটা σ ঘনত্বব আব η সাদ্র্রতা গুণাংকবিশিষ্ট সাদ্দ্র তবল এটাব মাজ্জেবে श্যিব অরস্থাব পবা পবিবনৈ ধবে। ঘর্ষণব ফनত তাপব উৎপাদন হয়। গোলকটোতে চবম বেগ লাভ কবাব পাছত উৎপাদ্তিত তাপব পবিমাণ তলব কোনটোব সমানুপাতিক হ’ব?
†A] r^{2}
[B] r^{3}
[C] r^{4}
[D] r^{5}
38. The time taken by a particle executing simple harmonic motion of time period T to move from the mean position to half the maximum displacement is সबन পর্যাবৃত্ত গতিব কণিকা এটাব দোলन কাল T হ’লে সাম্য বিক্দুব পবা সর্বোচ্চ সবণব অর্ধ্রে মান অতিক্রুম কবিবনৈৈ মগা সময্য হ'ব
[A] $\frac{T}{2}$
[B] $\frac{T}{4}$
[C] $\frac{T}{8}$
[D] $\frac{T}{12}$
39. A source of sound of frequency 600 Hz is placed inside water. The speed of sound in water is $1500 \mathrm{~m} \mathrm{~s}^{-1}$ and in air it is $300 \mathrm{~ms}^{-1}$. The frequency and wavelength of sound recorded by an observer who is standing in air respectively are
600 Hz কम্পनाংকब শব্দব 广ৎস এটা পানীब মাজত বथा રৈছে। পানীত শব্দব বেগ হ’ণ $1500 \mathrm{~m} \mathrm{~s}^{-1}$ आ< বায়ুত ‘ইয়াব বেগ হ’ল $300 \mathrm{~ms}^{-1}$. বায়ুত থিয় ঢৈ থকা পর্যবেক্ষক এ্রজনব বাবে শব্দব কম্পনাংক আক তबংগদৈর্ঘ্য হ’ব ক্রমে
[A] $600 \mathrm{~Hz}, 0.5 \mathrm{~m}$
[B] $600 \mathrm{~Hz}, 2.5 \mathrm{~m}$
[C] $3000 \mathrm{~Hz}, 0.4 \mathrm{~m}$
[D] $120 \mathrm{~Hz}, 2 \mathrm{~m}$
40. The density of a liquid of coefficient of cubical expansion γ is ρ at $0^{\circ} \mathrm{C}$. When the liquid is heated to a temperature T, the change in density will be
 কবিলে, ঘনত্বব পবিবর্তনব মান হ’ব
[A) $-\frac{\rho \gamma T}{(1+\gamma T)}$
[B] $-\frac{\rho \gamma T}{(1-\gamma T)}$
[C] $-\frac{\rho(1+\gamma T)}{\gamma T}$
[D] $\frac{\rho(1-\gamma T)}{\gamma T}$
41. Which of the graphs shown below correctly represents the variation of $\beta=-\frac{1}{V} \frac{d V}{d p}$ with p for an ideal gas at constant temperature?

স্থিব উষ্ণতাত থকা আদর্শ গেছ এবিধব ক্ষেত্রত তলব কোনট্টে লেখচিত্রইই p ব লগত $\beta=-\frac{1}{V} \frac{d V}{d p}$ ব পবিবর্ত্তনক সূচाয়?
[A]

[B]

[C]

[D]

42. An insulated box containing a diatomic gas of molar mass M is moving with a velocity v. The box is suddenly stopped. The resulting change in temperature is (R is the gas constant)
দ্বিপাবমাণবিক M ম’লাব ভबব গেছ এবিধ বহন কবা অন্তবিত বাকচ এটাব বেগ v. বাকচটো ऐঠতত বাথি দিয়া হ’ন। উষ্ণতাব পবিবর্ত্তনব মান হ’ব (R হ’লল গেছ গ্রতবক)
[A] $\frac{M \nu^{2}}{2 R}$
-[B] $\frac{M v^{2}}{3 R}$
[C] $\frac{M v^{2}}{5 R}$
[D] $\frac{2 M v^{2}}{5 R}$
43. A blackbody is at a temperature of 2880 K . The energy of radiation emitted by this body between 499 nm and 500 nm wavelengths is U_{1}, between 999 nm and 1000 nm is U_{2} and between 1499 nm and 1500 nm is U_{3}. The Wien's constant $b=2.88 \times 10^{6} \mathrm{nmK}$. Then

কৃষ্ণকায় বস্তু এটাব উষ্ণতা 2880 K . এই বস্তুটোরে 499 nm आব 500 nm তबংগদৈর্য্যब মাজ্তত বিকিবণ কबा শক্তিব পबিমাণ $U_{1}, 999 \mathrm{~nm}$ आক 1000 nm ब মাজত U_{2} आক 1499 nm आক 1500 nm ब মাজত U_{3}. ব্রেইনন ঙ্রুথ্রক $b=2.88 \times 10^{6} \mathrm{nmK}$. তেন্তে
[A] $\quad U_{1}=0$
[B] $U_{3}=0$
[C] $\quad U_{1}>U_{2}$
[D] $\quad U_{2}>U_{1}$
44. Three rods made of the same material and having the same cross-section have been joined as shown below. Each rod is of same length. The left and right ends are kept at $0^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ respectively. The temperature of the junction of the three rods will be
 আট゙ইকেইডাল দণু সমান দৈর্ঘ্যব। বাওঁ আক সেঁমূबब উষ্ণতা ক্রমে $0^{\circ} \mathrm{C}$ আふ $90^{\circ} \mathrm{C}$. তিনিডাল দগুব জংচনব উষ্পতা হ’ব

[A] $45^{\circ} \mathrm{C}$
[B] $60^{\circ} \mathrm{C}$
[C] $30^{\circ} \mathrm{C}$
[D] $20^{\circ} \mathrm{C}$
45. A non-conducting ring of radius 0.5 m carries a total charge of $1.11 \times 10^{-10} \mathrm{C}$ distributed non-uniformly on its circumference producing an electric field E everywhere in space. The value of the line integral $\int_{\infty}^{0}(-\vec{E} \cdot d \vec{l})(l=0$ being the centre of the ring) in volt is
0.5 m ব্যাসার্দ্ধब অপবিবাহী आঙুঠি এটাই অসুমমভান্রে ব্যাপ্ত रू থকা $1.11 \times 10^{-10} \mathrm{C}$ आधान ধাबণ কবি
 ভ’ন্টত জুখিনে $\int_{\infty}^{0}(-\vec{E} \cdot d \vec{l})$ অনুকলনब মান হ’ব $(l=0$, आঙুঠিটোব কেন্দ্রত)
[A] +2
(B) -1
[C] -2
[D] 0
46. A parallel combination of a $0 \cdot 1 \mathrm{M} \Omega$ resistor and a $10 \mu \mathrm{~F}$ capacitor is connected across a 1.5 V source of negligible resistance. The time (in second) required for the capacitor to get charged up to 0.75 V is approximately এটা $0.1 \mathrm{M} \Omega$ বোধ आ< এটা $10 \mu \mathrm{~F}$ ধাবকব সমান্তবাল সজ্জা এটা নগণ্য বোধব 1.5 V উৎস এটাব স’তে সংযোগ কবা হ’ল। ধাबকটো 0.75 V नৈ आহিত হ’বলৈল লগা আনুমানিক সময় (ছেকেণুত) হ’ব
[A] ∞
[B] $\log _{e} 2$
(C) $\log _{10} 2$
[D] 0
47. The wire loop $P Q R S P$ formed by joining two semi-circular wires of radii R_{1} and R_{2} carries a current I as shown in the figure below. The magnitude of the magnetic induction at the centre C is
R_{1} आক R_{2} ব্যাসার্দ্ধব দুডাল অর্ধবৃত্তাকাব তাঁबেবে তলব চিত্রত দেখুওবাব দबে PQRSP বর্তনী जটা তৈয়াব কबि I প্ররাহ পবিবাহিত হ’বনৈ দিয়া হ'ল। কেস্দ্র C ত চুষ্বকীয় आরেশব মান হ'ব

[A] $\frac{\mu_{0} I}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
[B] $\frac{\mu_{0} I}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
[C] $\frac{\mu_{0} I}{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
[D] $\frac{\mu_{0} I}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
48. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_{1} and R_{2} respectively. The ratio of mass of X to mass of Y is দুটो সমआধানयूক্ত কণা X आব Y য়ে সমান বিভব অন্তবब মাজ্জেবে ত্ববিত হোবাব পিছত এখন সুষম চৌ্বক ক্ষেত্রত প্রব্রেশ কবে আক R_{1} आক R_{2} ব্যাসার্দ্ধব বৃত্তাকাব পথত গতি কবে। X আাক Y ব ভ্বব অনুপাত হ’ল
[A] $\left(\frac{R_{2}}{R_{1}}\right)^{1 / 2}$
[B] $\frac{R_{2}}{R_{1}}$
[C] $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
[D] $\frac{R_{1}}{R_{2}}$
49. A coil of inductance 8.4 mH and resistance 6Ω is connected to a 12 V battery. The current in the coil is 1.0 A at approximately the time
 কিমান সময়ত বর্তনীটোব মাজেবে প্রबাহব মান 1.0 A ₹’ব?
[A] 500 s
[C. 35 ms
[B] 20 s
[D] 1 ms
50. A small square loop of wire of side l is placed inside a large square loop of wire of side $L(L \gg l)$. The loops are coplanar and their centres coincide. The mutual inductance of the system is proportional to
 মাজত बখা ছৈছে। দুয়োটা বর্ত্তনী একেখন সমতলত আছে আষ বর্তনী দুটাব কেন্দ্রবিন্দু একেটাই। প্রণালীটোব প্রতি আব্রেশ তনব কোনটোব সমানুপাতিক হ’ব?
[A] $\frac{l}{L}$
$\underset{x^{[B]}}{[\mathrm{B}]} \frac{l^{2}}{L}$
[C] $\frac{L}{l}$
[D] $\frac{L^{2}}{l}$
51. In a compound microscope, the intermediate image is

যুগ্ম অণুবীক্ষণ यস্ত্র এটাত, মধ্যবন্ত্তী প্রতিবিম্বটো হ’ল
[A] real, inverted and magnified সৎ, उनোটা আবু বিবর্ধিত
[By real, erect and magnified
সৎ, পোন আবু বিব্ধি্ষত
[C] virtual, erect and magnified অসৎ, পোন আব্ বিবর্ধিত
[D] virtual, erect and reduced অসৎ, পোন আাক সংকুচিত
52. In the visible region, the dispersive powers and the mean angular deviations for crown and flint glass prisms are ω and ω^{\prime}, and d and d^{\prime} respectively. When the two prisms are combined, the condition of zero dispersion is
দৃশমান অঞ্চলত ক্রাউন আকু ফ্মিল্ট গ্লাছব দুখन প্রিজমব বিক্ষেপণ ক্ষমতা আকু গড় কৌিক বিক্ষেপণব মান হ’ন ক্রচম ω आ< ω^{\prime}, आ<< d आ< d^{\prime}. প্রিজম দুখन নগলগালে শূন্য বিক্ষেপণব চর্ত্তটো হ'ব
[A] $\sqrt{\omega \bar{d}}+\sqrt{\omega^{\prime} d^{\prime}}=0$
[B] $\quad \omega^{\prime} d+\omega d^{\prime}=0$
[C] $\omega d+\omega^{\prime} d^{\prime}=0$
[D] $(\omega d)^{2}+\left(\omega^{\prime} d^{\prime}\right)^{2}=0$
53. In the ideal double-slit experiment, when a glass plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass plate is
আদশ্শ দ্বি-ছিদ্র পবীক্ষা এটাত সমাবোপণ সংঘটন কबা बশ্মি এটাব সম্মুথত (তবংগদ̆দ্ঘ্য λ) t বেধयুক্ত গ্झाছ প্লেট (প্রতিসবণ গুণাংক 1.5) এখন সুমাই দিয়া হ’ল। ফলত, আগতে কেদ্দ্রীয় উচ্চমানব झ্ছানত প্রারল্যব কোনো সাল-সলनि নখটিল। श্ाাহ প্লেটখনব সর্বনিম্ম বেধ হ’ব
[A] 2λ
[B] $2 \lambda / 3$
[C] $\lambda / 3$
[D] λ
54. The kinetic energy of a 300 K thermal neutron is 300 K তাপীয় নিউট্ট্রনব গতিশক্তি হ'ন
[A] 300 eV
[B] 300 MeV
[C] 0.026 eV
[D] 0.26 eV
55. If velocity (V), force (F) and energy (E) are taken as fundamental units, then the dimensions of mass will be
यদি গতিবেগ (V), বল (F) आক শক্তি (E) ক মোিिক একক বৈनि ধবা হয়, তেন্তে ভबব মাত্রা হ'ব
[A] $\quad V^{-2} F^{0} E^{3}$
(B] $V^{0} F E^{2}$
[C] $V F^{-2} E^{0}$
[D] $V^{-2} F^{0} E$
56. In 1 s , a particle goes from point A to point B moving in a semi-circle of radius 1 m as shown in the figure. The magnitude of average velocity is
ঘবিত দেখুও্তাব দবে 1 m ব্যাসার্দ্ধব অর্ধবৃত্তাকাব পথেবে গতি কবি A বিল্দুব পবা B বিল্দুলৈ যাবলৈ কণা এটাক 1 s সময় লাগে। গড় গতিবেগব লক্ধ মান হ'ল

[A] $3.14 \mathrm{~m} / \mathrm{s}$
[B] $2 \mathrm{~m} / \mathrm{s}$
[C] $1 \mathrm{~m} / \mathrm{s}$
[D] 0
57. Forces of $5 \mathrm{~N}, 12 \mathrm{~N}$ and 13 N are in equilibrium. If $\sin 23^{\circ}=\frac{5}{13}$, then the angle between 5 N and 13 N forces is
 13 N বল দুটাব মাজব কোণ হ’ব

- $\mathrm{A} \mid 23^{\circ}$
[B] 67°
[C] 90°
[D] 113°

58. A cricket ball is hit at 45° to the horizontal with a kinetic energy E_{k}. The kinetic energy at the highest point is
आনুভুমিক দিশব লগত 45° কোগ কবি E_{k} গতিশক্তিবে ক্রি<েট বन এটা মাবি পঠिওবা হ’न। শীর্ষতম বিभूত বনটোব গতিশক্তি হ’ল
[A] E_{k}
[B] $E_{k} / 2$
[C] $E_{k} / \sqrt{2}$
[D] 0
59. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between block and wall is $0 \cdot 2$. The weight of the block is বেব এখনব বিপবীতে টুকুবা এটা কেব্রল ধবি বাখিবলৈ 10 N ব आনুভূমিক বল এটাব প্রয়োজন হয়। לুকুবাটো আকু বেবখনব মাজব ঘর্যণ গুণাংক যদি 0.2 হয়, তেন্তে לুকুবাটোব ওজন হ’ব

[A] 20 N
[B] 50 N
[C] 100 N
[D] 2 N
60. A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time t is proportional to
বস্তু এটা প্রাবম্ততে স্থিব অর্রম্থাত আছে। তাব পিছত ই সুষম ত্ববনেবে একমাত্রিক গতি সম্পাদন কবে। t সময়ত ¡য়াক দিয়া ক্ষমতা তলব কোনটোব সমানুপাতিক হ’ব?
(A) $t^{1 / 2}$
[B] t
[C] $t^{3 / 2}$
[D] t^{2}
61. A circular disc X of radius R is made from an iron plate of thickness t and another plate Y of radius $4 R$ is made from an iron plate of thickness $t / 4$. The ratio of moments of inertia, I_{Y} / I_{X}, is
t বেধ্ব লোব প্লেট এখনব পৰা R ব্যাসাদ্দ্ধব বৃত্তাকাব কাঁহী এখন আকু $t / 4$ বেধব লোব প্লেট এখনব পবা $4 R$ ব্যাসার্দ্ধব বৃত্তাকাব কাহী এখন বনোব্রা হ’ন। জড়তত ভ্রামকব অনুপাত I_{Y} / I_{X} ব মান হ’ব
[A] 32
[B] 16
[C] 1
[D] 64
62. The radius of gyration of a uniform rod of length L about an axis passing through its centre of mass is
L দৈर्य্যब সুষম দণ এডালব ভबকেন্দ্রব মাজ্রেবে পাব তৈ যোরা অক্ষ এডালব সাপকক্ষে দণুডালব বিঘূণ্ণন ব্যাসাদ্ধ্ধ ₹'ब
[A] $\frac{L}{\sqrt{12}}$
[B] $\frac{L^{2}}{12}$
[C] $\frac{L}{\sqrt{3}}$
(1) $\frac{L}{12}$
63. Energy required to send a body of mass m from an orbit of radius $2 R$ to $3 R$ (where $M=$ mass of the earth, $R=$ radius of the earth) is m ভबব বস্তু এটাক $2 R$ ব্যাসার্দ্ধব কক্ষপথ এটাব পবা $3 R$ ব্যাসার্দ্ধব কক্ষপথ এটাবৈ পঠিয়াবলৈ প্রয়োজন হোবা শক্তিব পবিমাণ (য’ত $M=$ পৃথিবীব ভब, $R=$ পৃথিবীব ব্যাসাদ্দ্গ) হ’ব
[A] $\frac{G M m}{12 R^{2}}$
[B] $\frac{G M m}{3 R^{2}}$
[C] $\frac{G M m}{8 R}$
[D] $\frac{G M m}{6 R}$
64. For a ball falling in a liquid with constant velocity, the ratio of resistance force due to the liquid to that due to gravity is (symbols have their usual meanings)
ছ্যিব বেগেবে তबन এবিধব মাজ্ঞেবে অধোগমন হোবা বল এটাব ক্ষেত্রত বলটোব ওপবত তबলবিধব প্রতিবোধকাबী বল আ< মাধ্যাকর্ষণ বলব অনুপাত হ’ল (চিহ্নেবোব সচবাচ্ব অর্থত দিয়া לৈহে)
[A] 1
[B] $\frac{2}{9} \frac{a^{2} \rho g}{\eta^{2}}$
[C] $\frac{2}{9} \frac{a^{2}(\rho-\sigma) g}{\eta}$
[D] None of the above ওপবব এটাও নহয়
65. A wire suspended vertically from one of its ends is stretched by attaching a weight of 200 N to the lower end. The weight stretches the wire by 1 mm . Then the elastic energy stored in the wire is
এটা মূবত বান্ধি উনম্বভাব্রে ওলোমাই থোবা তাঁব এডালব আনটো মূবত 200 N ওজন প্রয়োগ কবি তাঁবডাল দীঘन কबा হ'न। তাঁबডালब দীঘ उজন প্রয়োগব ফলত 1 mm বৃদ্ধি পায়। তाँबডালত সঞ্চিত ঢৈ থকা户্থিতিম্থাপক শক্তিব মান হ’ল
[A] $\quad 0.2 \mathrm{~J}$
[B] 10 J
[C] 20 J
(D) 0.1 J
66. If a gas has n degrees of freedom, then the ratio of principal specific heats of the gas is यদি গেছ এবিধব n স্বাতন্ট্র মাত্রা থাকে, তেন্তে গেঘবিধব দুট্া মুখ্য আ<পক্ষিক তাপব অনুপাত হ’ন
(A) $1+\frac{2}{n}$
[B] $1+\frac{n}{2}$
[C] $1-\frac{2}{n}$
[D] $1-\frac{n}{2}$
67. A linear harmonic oscillator of force constant $2 \times 10^{6} \mathrm{Nm}^{-1}$ and amplitude 0.01 m has a total mechanical energy of 160 J . Its
এট বৈथिক পর্যাবৃত্ত দোলকब বन క্রুब্রকব মান $2 \times 10^{6} \mathrm{Nm}^{-1}$ आক বিস্তাब 0.01 m . ইয়াব মুঠ যান্ত্রিক শক্তি 160 J . ইয়াব
[A] maximum PE is 100 J
সর্বোচ্চ স্রিতিশক্তি হ'ল 100 J
[B] maximum KE is 160 J
সর্বোচ্চ গতিশক্তি হ'ল 160 J
[C] maximum PE is 160 J
সর্বোচ্চ স্থিতিশক্তি হ’ল 160 J
[D] maximum PE is zero
সর্বোচ্চ श্থিতিক্তি হ’ল শূন্য
68. The displacement of a particle varies according to the relation $x=4(\cos \pi t+\sin \pi t)$. The amplitude of the particle is
কণिका आটlব সবণ ऊলব প্রকাশবাশি অनুসবি সলनि হয়

$$
x=4(\cos \pi t+\sin \pi t)
$$

কণিকাটোব বিস্তাব হ’ন
[A] -4
[B] 4
[C] $4 \sqrt{2}$
[D] 8
69. A string of 5.5 m length has a mass of 0.035 kg . If the tension in the string is 77 N , then the speed of a wave on the string is
 বেগ হ’ব
[A] $77 \mathrm{~m} / \mathrm{s}$
[B] $\quad 102 \mathrm{~m} / \mathrm{s}$
[C] $110 \mathrm{~m} / \mathrm{s}$
[D] $164 \mathrm{~m} / \mathrm{s}$
70. A transverse wave is represented by the equation $y=y_{0} \sin \frac{2 \pi}{\lambda}(v t-x)$. For what value of λ, the maximum particle velocity is equal to two times the wave velocity? बढা অनूপ্রহ্থ जबংগব প্রকাশবাশি হ’ল $y=y_{0} \sin \frac{2 \pi}{\lambda}(v t-x)$. λ ব कि মানব বাবে, কণিকাব সর্বোচ্চ বেগ एবःগ বেগব দুঞুণ হ’ব?
[A] $2 \pi y_{0}$
[B] $\frac{\pi y_{0}}{3}$
[C] $\frac{\pi y_{0}}{2}$
[D] πy_{0}
71. Shown below is a distribution of charges. The flux of electric field due to these charges through the surface is
 অভিব্বাহব মান হ’ব

[A] $\frac{3 q}{\varepsilon_{0}}$
[B] 0
[C] $\frac{2 q}{\varepsilon_{0}}$
[D] $\frac{q}{\varepsilon_{0}}$
72. A current of 1.6 A is passed through a solution of CuSO_{4}. How many Cu^{++}ions are liberated in one minute ($e=1.6 \times 10^{-19} \mathrm{C}$)?
CuSO_{4} দ্রু এটlব মাজ্জেবে 1.6 A প্রবাহ পবিব্রাহিত কবা হ’ল। এক মিनিটত কিমান Cu^{++}आয়নब উদ্তর ₹’đ $\left(e=1.6 \times 10^{-19} \mathrm{C}\right)$?
[A] 3×10^{20}
[B] 3×10^{10}
[C] 6×10^{20}
[D] 6×10^{10}
73. The charge Q flowing through a resistance R varies with time t as $Q=a t-b t^{2}$. The total heat produced in R is
 উৎপন্ন হোবা তাপব পবিমাণ হ’ল
[A] $\frac{a^{3} R}{6 b}$
[B] $\frac{a^{3} R}{3 b}$
[C] $\frac{a^{3} R}{2 b}$
[D] $\frac{a^{3} R}{b}$
74. The magnetic moment of atomic neon is equal to পাবমাগবিক নিয়ননব চুম্বকীয় ভ্রামক ছ'ল
[A] $\quad \frac{1}{2} \mu_{B}$
[B] $\quad \frac{3}{2} \mu_{B}$
[C] $2 \mu_{B}$
IDY 0
75. The phase difference between current and voltage at resonance is অনুनাদब সময়ত প্রর্রাহ আক্ বিভরব মাজब দশা পার্থক্য ছ’ল
[A] 0
[B] $\frac{\pi}{2}$
[C] π
[D] $-\pi$
76. The average power dissipation in a pure capacitor in AC circuit is 'পবিবন্তী প্রবাহ্ বর্ত্তনী এটাত বিশুদ্ধ ধাবক এটাব ক্ষমতাব অরক্ষয়ী মান হ’ব
[A] $\frac{1}{2} \mathrm{CV}^{2}$
[B] $C V^{2}$
[C] $2 \mathrm{CV}^{2}$
[D] 0
77. The dimensions of $\varepsilon_{0} \frac{d \phi_{E}}{d t}$ are of $\varepsilon_{0} \frac{d \phi_{E}}{d t}$ ब মাত্রা তनब কোনটোব স’তে একে?
[A] potential বিভর
[B] charge
आधান
[C] capacitance ধাবকত্ব
[D] current প্রबাহ
78. The maximum velocity of an electron emitted by light of wavelength λ incident on the surface of a metal of work function ϕ is ($h=$ Planck's constant, $c=$ velocity of light, $m=$ mass of the electron)
 সর্বোচ্চ গতিবেগ হ’ব ($h=$ প্লাংকব গ্রু্রক, $c=$ পোহবব গতিবেগ, $m=$ ই ইনেক্ট্রনব ভব)
[A] $\left[\frac{2(h c+\lambda \phi)}{m \lambda}\right]^{1 / 2}$
[B] $\frac{2(h c-\lambda \phi)}{m}$
[C] $\left[\frac{2(h c-\lambda \phi)}{m \lambda}\right]^{1 / 2}$
[D] $\left[\frac{2(h c-\phi)}{m}\right]^{1 / 2}$
79. Two identical photocathodes receive light of frequencies f_{1} and f_{2}. If the velocities of the photoelectrons of mass m coming out are respectively v_{1} and ν_{2}, then
 গতিবেগ ক্রুমে v_{1} आক v_{2} হয়, তেন্ঠে
[A] $v_{1}^{2}-v_{2}^{2}=\frac{2 h}{m}\left(f_{1}-f_{2}\right)$
[B] $\quad v_{1}+v_{2}=\left[\frac{2 h}{m}\left(f_{1}+f_{2}\right)\right]^{1 / 2}$
[C] $v_{1}^{2}+v_{2}^{2}=\frac{2 h}{m}\left(f_{1}+f_{2}\right)$
[D] $\quad v_{1}-v_{2}=\left[\frac{2 h}{m}\left(f_{1}-f_{2}\right)\right]^{1 / 2}$
80. The K_{α} X-ray emission line of tungsten occurs at $\lambda=0.021 \mathrm{~nm}$. The energy difference between K and L levels in this atom is about
টাংট্টেনब $K_{\alpha} \mathrm{X}$-बশ্মি निর্গমন বেখা $\lambda=0.021 \mathrm{~nm}$ 丁 পোরা যায়। এই পবমাণুটোব K आ< L স্তबब মাজব শক্তিব পার্থক্য হ'ল প্রায়
[A] 0.51 MeV
[B] $\quad 1 \cdot 2 \mathrm{MeV}$
[C] 59 keV
[D] 136 eV
81. A ring of radius a contains a charge Q distributed uniformly over its length. The electric field at a point P on the axis of the ring at a distance x from centre is এটা a ব্যাসার্দ্রব বৃত্তত Q आধান সমভাব্রে বিতবণ দু আছে। বৃত্তটোব অক্ষত বৃত্তব পब়া x দূবত্বত থকা P বিন্দুত বিদ্যুৎ ক্ষেত্রব মান হ’ব

[A] $\propto Q$
$[\mathrm{B}] \propto \frac{1}{\left(x^{2}+a^{2}\right)^{3 / 2}}$
[C/ Both [A] and [B]
[D] None of the above

ওপবব এটাও নহয়
82. A vessel of volume $8 \times 10^{-3} \mathrm{~m}^{3}$ contains an ideal gas at 300 K and 200 kPa . The gas is allowed to leak till the pressure falls to 125 kPa . The amount of gas leaked is (assuming temperature remains constant)
$8 \times 10^{-3} \mathrm{~m}^{3}$ आয়তনব এটা পাত্রত 300 K উষ্ণতা আক 200 kPa চাপব গেছ ভর্ত্তি గৈ আছে। গেছখিনিব চাপ 125 kPa হোবালৈকে ইয়াক এটা ক্ষুদ্র ছিদ্রব মাজ্েেে যাবনৈৈ দিয়া ছ’ল। ছিদ্রব মাজ্ৰেবে যোরা গেছব পবিমাণ হ’ব (ধবা হুওক উষ্ণতা একে থাকে)
[A] 2.4 mol
[B] 24 mol
[C] 0.24 mol
[D] 240 mol
83. In terms of the values of thermal conductivities তাপব পবিবাহিতাব ক্রমত সজানে
[A] copper > glass > water > steel কপাব > কাঁচ > পানী > তীখা
[B] steel > copper > glass $>$ water তীখা > কপাব > কাঁচ > পানী
[C] copper > steel > glass > water কপাব > সীখা > কাঁচ > পানী
[D] water > glass > steel > copper পানী > কাঁচ > তীখা > কপাব
84. Three charges are arranged on the vertices of an equilateral triangle as shown in the figure below. The dipole moment of the combination is তলব চ্ত্রিত দেখুওবাব দবে তিনিটা আধান এটা সমবাহ ত্রিভুজব তিনিটা কোণত বখা হ’ল। এই তন্ত্রটোব দ্বিমেকু ভ্রামকব মান হ’ব

[A] 0
-[B] 2qd
[C) $\sqrt{3} q d$
[D] $\sqrt{2} q d$
85. A resistor develops 400 J of thermal energy in 10 s when a current of 2 A is passed through it. The energy developed in 20 s , if the current is increased to 4 A , is এটা বোধকব মাজ্জেে 2 A প্রনাহ 10 s পাব ঢৈ যাওঁতে 400 J তাপশক্তি উৎপন হয় । যদি বোধকটোব মাজ্জেবে 4 A প্ররাহ 20 s সময় পাব হয়, তেক্টে শক্তি উৎপন্ম হ’ব
[A] 400 J
[B] 1600 J
[C] 3200 J
[D] 6400 J
86. The effective resistance between points A and B is A आ<ু B ব মাজব বোধব পবিমাণ হ’ব

[A] 3Ω
[B] 12Ω
[C] 2Ω
[D] 2.25Ω
87. A stone is dropped from a balloon going up with uniform velocity of $5.0 \mathrm{~m} / \mathrm{s}$. If the balloon was 50 m high when the stone was dropped, then its height when the stone hits the ground is ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)
$5.0 \mathrm{~m} / \mathrm{s}$ বেগেबে ওপৰবৈৈ গৈ থকা এটা বেলুনব পবা এটা শিনগুট়ি পেলাই দিয়া হৈহে। যদি শিলটো পেলাই দিয়ার সময়ত বেলুনব উচ্চতা 50 m आছিল, তেন্তে শিলটো মাটি স্পশ্শ কবাব সময়ত বেলুনব উচ্চতা কিমান ₹'ব $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$?
[A] 18.5 m
[B] 60.0 m
[C] 68.5 m
[D] 55.0 m
88. The force exerted on a proton by a proton is এটা প্র’টনব ওপবত আন এটা প্র’টনব বন হ’ল
[A] gravitational, magnetic, nuclear মহাক্বণীয়, চুম্বকীয়, পাবমাণব্রিক
[B] nuclear, electromagnetic, weak পাবমাণবিক, বিদু্যৎুম্ষকীয়, দूर্বন
[C] gravitational, nuclear, weak মহাকর্ষণীয়, পাবমাণবিক, দুর্גল
[D] electromagnetic, nuclear, gravitational বিদ্যুৎুম্বকীয়, পাবমাণব্বিক, মহাকর্ষনীয়
89. A body is suspended from a spring balance kept in a satellite. The weight of the body is W_{1} when radius of the satellite orbit is R and W_{2} when radius of the satellite orbit is $2 R$. Hence
এটা উপগ্রহত থকা এখন স্প্রিং তুলাব পবা এটা বস্তু ওলমাই বখা ছৈছে। উপখ্রহন কক্ষপথব ব্যাসার্ষ R इওঁতে বস্তুটোব ভब W_{1} आ< $2 R$ হওঁতে বস্তুটোব ভब W_{2}. সেয়ে
[A] $\quad W_{1} \neq W_{2}$
[B] $W_{1}=W_{2}$
[C] $\quad W_{1}>W_{2}$
[D] $W_{2}>W_{1}$
90. The density of air near the earth's surface is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$ and atmospheric pressure is $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. If the atmosphere has uniform density same as that near the surface, what would be the height of the atmosphere that exerts the same pressure?
 সক্লো ঠৗইতে পৃথিবীপৃষ্ঠব কাষব সুষম घনত্বব সমান হয়, তেন্তে একেই চাপ প্রয়োগ কবিবলৈ বায়ুমগলব উচ্চতা কিমান হ'ব?
[A] 1300 m
[B] 7850 m
[C] 9800 m
[D] 13000 m
91. When liquid droplets merge to form a bigger drop স<< সক্ক টোপাল লগলাগি এটা ডাঙব টোপাল সৃষ্টি হ’লে
[A] energy is liberated
[B] energy is absorbed
শক্তি শোষণ হ’ব
[C] energy is neither liberated nor absorbed
শজ্জি নির্গত বা শোষণ এটাও নহয়
[D] energy may be liberated or absorbed depending on the nature of the liquid জুলীয়া পদার্থব প্রকৃতিব ওপবত নির্ভব কবি শক্তি নির্গত হ’ব বা শোষণ হ’ব
92. A photon and an electron have got the same de Broglie wavelength. If E_{1} is the energy of the electron and E_{2} is the energy of the photon, then
 শক্তি হয়, তেন্তে
[A] $\quad E_{1}>E_{2}$
[B] $E_{1}=E_{2}$
[C] $E_{2}>E_{1}$
IDY None of the above
ওপবব এটাও নহ্য়
93. A calorie is a unit of heat and equals $4 \cdot 2 \mathrm{~J}$. Now which of the following will represent 1 calorie in a new system of units, where the unit of mass is $a \mathrm{~kg}$, the unit of length is b metre and the unit of time is c second?
এক কেল’বি তাপব পবিমাণ 4.2 J ब সমান। এতিয়া यদি কোনো এক একক পদ্ধতিত ভবব একক a কि. গ্রা., দৈर्্যयব একক b মিটটব आ< সময়ব একক c ছেকে↔ হয়, তেন্তে তলব কোনটো বাশিব দ্বাবা নতুন একক পদ্ধতিটোত 1 কেল'বিক নির্দেশ কবা হ'ব?
[A] $\frac{1}{4 \cdot 2} a b^{2} c^{2}$
[B] $\frac{1}{4 \cdot 2} a^{-1} b^{-2} c^{2}$
[C] $4 \cdot 2 a b^{2} c^{2}$
[D] $4 \cdot 2 a^{-1} b^{-2} c^{2}$
94. In any system, large number of particles are moving randomly with a constant speed of v in all possible directions. Then the magnitude of the relative velocity between a pair of particles averaged over all the pairs in the collection will be
কোনো এক নিকায়ত বহু সংখ্যক কণা v క্রুন্রক বেগেবে যি কোনো সষ্ভার্য দিশত বিশৃংখলভার্রেবে গতি কবি আছহ। তেন্তে নিকায়টোব যি কোনো দুটা কণাব মাজব গড় আপেক্ষিক বেগব মান হ’ব
[A] 0
[B] $2 \pi v$
[C] $\frac{2 v}{\pi}$
[D] $\frac{4 v}{\pi}$
95. Two persons are pulling a box at angles 30° and 135° to the positive direction of x-axis with a force of 10 magnitude each. Then the resultant force on the box will be দুজন ব্যক্তিয়ে বাকচ এটা 10 একক বনেবে x-অক্ষব ধনাত্মক দিশব সৈতে ক্রমে 30° আব 135° কোণ কবি টানিলে, बব্ধ বলब মান ₹’ব
[A) $1.59 \hat{i}+12.07 \hat{j}$

物 $12 \cdot 07 \hat{i}+1 \cdot 59 \hat{j}$
[C] $13 \cdot 66 \hat{i}+10 \cdot 48 \hat{j}$
[D] None of the above ওপবব এটাও নহয়

96. Brakes exerting equal force are applied simultaneously to a car and a bus which are moving with equal kinetic energy. If t_{1}, t_{2} are the time required by the car and the bus respectively to come to rest from the moment of braking and s_{1}, s_{2} are distance covered by the car and the bus respectively before coming to rest from the moment of braking, then which of the following information is correct?
সমপবিমাণব গতিশক্তিবিশিষ্ট এখন মটবগাড়ী আব্ বাছত একে সময়তে সমান পবিমাণব বলবিশিষ্ট ব্রেক প্রয়োগ
 আক s_{1}, s_{2} ক্রমে মটবগাড়ী আবু বাছখন্ন ব্রেক প্রত্যোগব পাছত অতিক্রুম কবা দূবত্ব, তেন্তে তলব কোনটো তথ্য শুদ্ধ?
[A] $t_{1}=t_{2}$ and $s_{1}=s_{2}$ $t_{1}=t_{2}$ आ< $s_{1}=s_{2}$
[B] $t_{1}<t_{2}$ and $s_{1}=s_{2}$
$t_{1}<t_{2}$ आক $s_{1}=s_{2}$
[C] $t_{1}<t_{2}$ and $s_{1}<s_{2}$ $t_{1}<t_{2}$ आ< $s_{1}<s_{2}$
[D] None of the above ওপবব এটাও নহয়

97. The change in entropy when 1 g of ice at $0^{\circ} \mathrm{C}$ is heated to form water at $40^{\circ} \mathrm{C}$ is यেতিয়া $0^{\circ} \mathrm{C}$ থকা 1 g বबফক $40^{\circ} \mathrm{C}$ ব পানীলৈৈ পবিবর্তিত কবা হয়, তেতিয়া এন্ট্রপিব পবিবর্তন হ
[A] $0.42 \mathrm{cal} /{ }^{\circ} \mathrm{C}$
[B] $1.411 \mathrm{cal} /{ }^{\circ} \mathrm{C}$
[C] $0.28 \mathrm{cal} /{ }^{\circ} \mathrm{C}$
[D] None of the above
ওপবব এটাও নহয়
98. A particle is moving in a circular path of radius 20 m such that it covers a distance $s=2+\frac{1}{3} t^{3}$, where s is in metre and t is in second. Then the acceleration of the particle after 3 seconds will be

[A] $7 \cdot 2 \mathrm{~m} / \mathrm{s}^{2}$
[B] $3.6 \mathrm{~m} / \mathrm{s}^{2}$
[f] $11 \mathrm{~m} / \mathrm{s}^{2}$
[D] $6 \mathrm{~m} / \mathrm{s}^{2}$
99. A particle moves in the $x-y$ plane with velocity $v_{x}=8 t-2$ and $v_{y}=2$. If it passes through the point $x=14$ and $y=4$ at $t=2 \mathrm{~s}$, then the equation of the path will be কণा बটাই $x-y$ সমতनত এनেদবে গতি কবে याতে ইয়াब বেগ $v_{x}=8 t-2$ आব $v_{y}=2$. यদि $t=2 \mathrm{~s}$
 ₹’ব
[A] $x=y^{2}-y+2$
[B] $x=2 y^{2}+2 y-3$
[C] $x=3 y^{2}+5$
[D] None of the above ওপবব এটル নহ্য
100. Engine of a vehicle can give it an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$, while the brake of the vehicle can retard it at $8 \mathrm{~m} / \mathrm{s}^{2}$. Then the minimum time in which the vehicle can complete a journey of 600 m will be
 মছ্য৭ণ সৃষ্টি কবিব পাবে। তেন্ঠে 600 m দूबত্ব্ব यাত্রাটো সম্পন্ন কবিবলৈ গাড়ীখনক প্রয়োজন হোনা নূন্তম সময়্র মান হ’ব
[A] 80 s
[C) 40 s
[B] 60 s
[D] None of the above ওপবব এটাও নহয়

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

