PULEET - 2011

Code No.: 2101 Important: Pleas	e consult your Admit	Card/Roll No. slip befo	ore filling your Rol
Roll No.	ber on the Test Bookle In Figure	et and Answer Sheet. In Words	
O.M.R. Answer S	Sheet Serial No		
	Sign	ature of the Candidate	
Time: 90 minutes	Number of Qu	estions: 75 Maxir	num Marks: 75

DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO

INSTRUCTIONS

- 1. Write your roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- 2. Enter the Code No. of Question Booklet on the OMR answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. To open the Question Booklet remove the seal gently when asked to do so.
- 5. Please check that this Question Booklet contains 75 questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of test.
- 6. Each question has four alternative answer (A, B, C, D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be negative marking for wrong
- 7. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
- 8. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question Booklet.
- 9. If you want to change an already marked answer, erase the shade in the darkened bubble completely.
- 10. For rough work only the blank sheet at the end of the Question Booklet be used.
- 11. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 12. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent
- 13. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/ noted from this. Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled
- 14. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 15. Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.

		Multiple Choic	ce Questions	ou Junifer of the
1.		*	.P., a G.P. and H.P. are	equal and their nth
	terms are a,b,c respectively, then			
	(A) $a = b = c$	(B) $a \le b \le c$	(C) $a+c=b$ (D)	$ac-b^2=0$
		[λ. −1	1 07	
2.		1 0 50	-1 is 2, then the	value of λ is
	(A) any row number	er (B) 3	S = A and SA (C) 1. (1)	(D) 2
3.	The values of μ , f	for which the follow	ing system of equations	EURo Milita R (A)
	$(\mu - 1)x + (3 \mu + 1)$	$y + 2\mu z = 0$; $(\mu - 1)$	$(x + (4 \mu - 2) y + (\mu + 3) x$	z = 0 and
	$2x + (3 \mu + 1)y + 30$	$(\mu - 1)z = 0$ is consi	istent and has a nontrivi	al solution are
	(A) 0 or 3	(B) 0 or 5	(C) 3 or 2	(D) 0 or 2
4.	The value of sin 2	0° sin 40° sin 60° sin	80° is equal to	
	(A) $-\frac{3}{16}$	(B) $\frac{5}{16}$	(C) $\frac{3}{16}$	(D) $-\frac{5}{16}$
5.	The area of the cir	cle centred at (1,2)	and passing through (4	,6) is
	(A) 5π	(B) 10π	(C) 25 π	(D) 16π
6.	$\text{If } f(x) = x^3 + 8x^2$	$x^2 + 15x - 24$, then the	ne value of $f\left(\frac{11}{10}\right)$ by u	sing Taylor's serie
	is			
	(A) 3.961	(B) 3.511	(C) 5.961	(D) 4.511
7.	The radius of curv	vature of the curve:	$x^3 + y^3 = 3 axy $ at the p	point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ is
	$(A) \frac{3a}{8\sqrt{2}}$	(B) $\frac{5a}{8\sqrt{2}}$	(C) $\frac{7a}{8\sqrt{2}}$	(D) $\frac{a}{8\sqrt{2}}$
8.	If $f(x,y) = 0$, the	$n \frac{dy}{dx} \text{ is equal to}$		
	$(A) \frac{f_x}{f_y}$	(B) $\frac{f_y}{f_x}$	(C) $-\frac{f_y}{f_x}$	$(D) - \frac{f_x}{f_y}$

	Ilm modi kan langa s	$\partial(x,y)$ is $\partial(x,y)$	LA sur la summe diff - n	
	(A) x	(B) x^2	(C) xy	
	10. Under what condition $(a \sinh x \cos y + b \cos y)$		quation: $x \cos y + d \cosh x \sin y$	dy = 0 is exact?
	(A) $a = d, b = -c$ (B) $a = b, d = -c$	(C) $a = -d, b = c$ (D)	a = d, b = c
	11. The volume of the so	olid obtained by rota	ting the region bounded	by the curves
	$y = x - x^2 \text{ and } y = 0$	0 about the line $x =$	2 is C(8)'	
	(A) $\frac{\pi}{2}$ cubic units		(B) $\frac{\pi}{4}$ cubic	units
			(D) π cubic	
	12. The value of the dou	able integral $\iint_{R} e^{x^2} dx$	dy, where the region dy	R is given by
	$R:2y \le x \le 2$ and	$0 \le y \le 1$ is		
46	(A) $\frac{1}{4}(e^4 - 1)$	(B) $\frac{1}{4}(e^4 + 1)$	(C) $\frac{1}{4} (e^4 - 4)$	(D) $\frac{1}{4}(e^4+4)$
43.5	13. The torsion of the c	(C) 25 m ·	* x01 (E)	
	(A) $\frac{a}{a^2+b^2}$	(B) $\frac{a}{a^2 - b^2}$	(C) $\frac{b}{a^2 + b^2}$	(D) $\frac{b}{a^2 - b^2}$
	14. The value of the line	e integral $\int_{C} \left[\left(x^{2} + xy \right) \right]$	$dx + (x^2 + y^2)dy$ where	c C is the square
	formed by the lines	$y = \pm 1$ and $x = \pm 1$ i	s IIê.ê (8)	
	(A) 0 (A)	(B) 10	(C) 35 10 9 Meyer	(D) $-\frac{2}{3}$
	15. If $\vec{F} = ax\hat{i} + by\hat{j} +$	$cz\hat{k}$, a,b,c are cons	stants, then $\iint_{S} \vec{F} \cdot \hat{n} dS$,	S being the
	surface of a unit sph (A) 0 (B)		C) $\frac{4\pi}{3}(a+b+c)$ (D)	none of these
			4 70	

16.	A block is projected along a rough horizontal road with a speed of 10m/s. The
	coefficient of kinetic friction is 0.10. The distance travelled by the block before
	coming to rest will be

- (A) 10 m
- (B) 50 m
- (C) 5 m
- (D) 15 m
- 17. A particle is moving in a circle of radius 10 cm with uniform speed completing the circle in 4 s. The magnitude of linear acceleration of the particle will be
 - (A) 2.5 cm/s^2
 - (B) $0.5 \, \pi \, \text{cm/s}^2$
 - (C) $1.5 \, \pi \, \text{cm/s}^2$
 - (D) $2.5 \,\pi^2 \,\text{cm/s}^2$
- 18. A source and detector move away from eachother, each with a speed 10 m/s with respect to the ground with no wind. Given speed of sound in air = 340 m/s. If the detector detects a frequency 1950 Hz of the sound coming from the source, the original frequency of the source will be
 - (A) 2070 Hz
 - (B) 1930 Hz
 - (C) 2170 Hz
 - (D) 1800 Hz
- 19. A diffraction grating consisting of a large number of parallel slits all of same width 'a' and spaced equal distance 'd' between centres. For the electromagnetic wave of wavelength λ made incident normal to the surface of grating, the position of the nth maxima making angle θ with the grating surface is given by
 - (A) $2a \sin \theta = n\lambda$
 - (B) d Cos $\theta = n\lambda$
 - (C) $2d \sin \theta = n \lambda$
 - (D) 2d Sin $\theta = n(\lambda/2)$

2	20. A particle executes a simple harmonic mot	ion of time period T. The time taken
	by the particle to go directly from its mean	position to half the amplitude is
	(A) T/12	
	(B) T/2	
	(C) T/5	
	(D) T/20	
21.	21. The number of photons emitted per secon	d by a 5 mW laser source emitting
	characteristic wavelength of 632.8 nm	
	(A) 6.3×10^{20}	
	(B) 1.6×10^{16}	
	(C) 1.6×10^{22}	- ⁶ glama π 2.0 (B)
	(D) 6.6×10^{34}	
22.	22. Ultraviolet light of wavelength 280 nm and	intensity 1.00 W/m2 is directed at a
	lithium (work function = 2.5 eV) surface.	The maximum kinetic energy of the
	photoelectron is	Introdes and of vienes
	(A) 1.5 eV	
	(D) 10-W	
	(C) 2.0 eV	
	(D) 2.5 eV	
23.	23. A nucleus has radius 5.0 x 10 ⁻¹⁵ m. The low	er limit on the energy an electron
	$(m = 9.1 \times 10^{-31} \text{ kg})$ must have to be part of	the nucleus is
	(A) ~20 MeV	
	(B) ~ 1 GeV	
	(C)~1 MeV	wavelength A mude incide
	(D) ~10 MeV	e Gulgne spillern emlann
24.	24. In the helium-neon laser, which of the following	g is not true?
	(A) the laser transition occurs in neon atom.	
	(B) the purpose of the helium atoms is to help a	chieve a population inversion in the neon atoms
	(C) the purpose of the neon atoms is to help ach	ieve a population inversion in the helium atoms
	(D) the metastable state occur in both the Helius	m and Neon atoms.

- * 25. The rms, peak and average voltage values for the household power supply (220 V a.c) in India are
 - (A) 220 V, $(2\sqrt{2}/\pi)$ 220 V, and 220 $\sqrt{2}$ V, respectively.
 - (B) $220/\sqrt{2}$ V, 220 V, and $(\sqrt{2}/\pi)$ 220 V, respectively
 - (C) 220 V, 220 $\sqrt{2}$ V, and ($\sqrt{2}/\pi$) 220 V, respectively.
 - (D) 220 V, 220 $\sqrt{2}$, and $(2\sqrt{2}/\pi)$ 220 V, respectively.
- 26. Three capacitors of capacitances $2\mu F$, $3\mu F$ and $6\mu F$ are connected in series with a 12 V battery. All the connecting wires are disconnected, the three positive plates are connected together and three negative plates are connected together. The charges on the capacitors after reconnections will be
 - (A) 108/11 μC , 108/11 μC and 108/11 μC , respectively.
 - (B) 24 μ C, 36 μ C and 72 μ C, respectively.
 - (C) 2 μC, 3 μC and 6 μC, respectively.
 - (D) $72/11 \,\mu\text{C}$, $108/11 \,\mu\text{C}$ and $216/11 \,\mu\text{C}$, respectively.
- 27. The daughter nucleus after beta (β) decay of the $^{210}_{83}Bi$ isotope undergoes alpha decay, the final product will be
 - (A) $^{205}_{82}Pb$
 - (B) $^{206}_{82}Pb$
 - (C) 206 Bi
 - (D) 206 Tl
- 28. White light is passed through a double slit and interference pattern is observed on a screen 2.5 m away. The separation between the slits is 0.5 mm. The first violet and red fringes are formed at 2.0 mm and 3.5 mm away from the central white fringe. The wavelengths of the violet and the red light are
 - (A) 400 nm and 700 nm, respectively.
 - (B) 450 nm and 750 nm, , respectively.
 - (C) 350 nm and 650 nm, , respectively.
 - (D) 700 nm and 400 nm, respectively.

29.	The correct order of electromagnetic spectrum with decreasing wavelength is
	(A) X-rays, Ultraviolet rays, Infrared rays, Microwaves, Radiowaves
	(B) Radiowaves, Infrared rays, Microwaves, Ultraviolet rays, X-rays
	(C) Radiowaves, Infrared rays, Ultraviolet rays, Microwaves, X-rays
	(D) Radiowaves, Microwaves, Infrared rays, Ultraviolet rays, X-rays
30.	Number of atoms in a face centred cubic cell is
	(A) 8
	(B) 2
31	If the applied voltage of a certain transformer is increased hr 50% and the frequency is
	reduced to 50% (assuming that the magnetic circuit remains unsaturated), the maximum
	core flax density will
	(A) change to three times the original value.
	(B) change to 1.5 times the original value.
	(C) change to 0.5 times as the original value.
	(D) remain the same as the original value.
32	
	(A) active and bilateral.
	(B) active and unilateral. (C) passive and bilateral.
	(D) passive and unilateral.
	The new place and bus (file and take customs assign on all 1. To
33	the diagram for alternating quantities can be drawn if the have wave.
	(A) rectangular.
	(B) sinusoidal.
	(C) triangular
	(D) any of these.
34	in an ac circuit the apllied voltage and current drawn are represented as $v=V_{max}\sin\omega t$ and $i=I_{max}\sin(\omega t+\phi)$, then the power factor of the circuit is
	(A) sin φ
	(B) cos φ(lagging) (C) cos φ(leading)
	(D) none of these.
35	in series DC motor, the field flux is
	(A) praclecally constant
	(B) inversely proportional to armature current (C) directely proportional to armature current
	(D) directely proportional to armature current (D) directely proportional to square root of armature current.

	black or realized the second of the latest or trailed	
36	when an induction motor runs at rated load and	speed, the iron losses are:
	(A) negligible	
	(B) very heavy	
	(C) independent of supply frequency (D) independent of supply voltage.	
	(b) independent of suppry vortage.	
37	Single phase induction motor can be made self	starting by
	(A) adding series combination of a capacitor at main winding.	nd auxiliary winding in parallel with the
	(B) adding an auxiliary winding in parallel wit	h the main winding.
	(C) adding an auxiliary winding in series with	a capacitor and the main winding.
	(D) none of these.	
38	Material subjected to rapid reversals of magne	tism should have
	(A) high permeability and low hysteresis loss.	
	(B) Large B-H loop area.	
	(C) Large coercivity and high retentivity.	
	(D) Low permeability and large coercivity.	
39.	an ac circuit is given by i = 10+10sin314t. The	ne average and r.m.s. values of current are
	(A)16.36A,17.07A	
	(B) 10A, 17.07A	
ė.	(C) 10A,12.25A (D) 16.36A,12.2A	
	(2) 10:301,12:21	
40	three phase power in electrical system is calcu	late by the expression.
	(A) VICosφ	
	(B) $\sqrt{3}$ V _{Ph} I _{Ph} Sin ϕ	
	$(C)\sqrt{3}V_{L}I_{L}Cos\phi$	wally participated within the first of the f
	(D) 3V _L I _L Cosφ	
	Which type of special-purpose diode is formed r of semiconductor?	by a junction between a layer of metal and a
	A) A tunnel diode	(8) A zener diode
	(c) A varactor diode	A Schottky diode
42.	Physical logic gates take a finite time to respond	d to changes in their input signals. What
	e is given to this time?	Makali wataw tanga Makalika
	At Set up time	(A) Propagation delay time
	A) Set-up time.	(B) Propagation delay time.
	e) Rise time	D) Hold time.

		-8-			
	43. In a bipolar transistor biased in I _B =50 μA and the collector current A) 0.949	the forward active region the base current is is I_C =2.7 mA. The α is 8) 54			
	C) 0.982	; ' D) 0.018			
	44. A device that converts thermal e	nergy into electrical energy is called a:			
		by to carried a.			
	A) thermocouple c) piezoelectric device	B) solar cell D) generator			
	45. What is the most widely used me expressions?	45. What is the most widely used method for the automated simplification of Rosland			
	A) Karnaugh maps.	B) Quine-McCluskey minimisation.			
	c) Fast Fourier transforms.	D) Binary reduction.			
	46. The conditions for oscillation to	46. The conditions for oscillation to occur are described by which of the following?			
	A) Nyquist's theorem.	B) Sampling theorem.			
	c) Faraday's law.	D) The Barkhausen criterion.			
	47. What term describes the maximu sensor?	m expected error associated with a measurement or a			
4.54	44.0				
	A) Range.	B) Resolution.			
6 84	c) Accuracy.	D) Precision.			
	48. What is meant by a single-chip dat	a acquisition system?			
	A single integrated circuit cont	aining a DAC and a demultiplexer			
	49. In 50 % modulated AM signal, the transmitted power would be:	carrier is suppressed before transmission. The saving in			
	A) 72 %	B) 11.1%			
	C) 88.9 %	D) 18 %			
	50.An FM signal with a deviation ratio δ is passed through a mixer and has its frequency reduced sixfold. The deviation in the output of the mixer is:				
	A) 6 δ	(3) 8/6			
	c·) insufficient information	D) 8			

```
51 In C, the escape sequence begins with character
          A) %
          B) /
          C) \
          D) #
  52
          Consider the following code:
          switch (ch)
                 case 'a': printf("a");
case 'b': printf("b");
                 default: printf("error");
          If value 'a' is given to character variable ch, then the output will be
          A) a
          B) ab
          C) error
         D) aberror
  53
          Which of the following is not a valid reason for using functions
          A) They use less memory than repeating the same code
          B) They run faster
          C) They keep different program activities separate
          D) They keep variables safe from other parts of the program
          Which of the following operation is not permitted on pointers
 54
          A) Division of a pointer variable by a number
          B) Adding a number to a pointer variable
          C) Difference of two pointer variables
          D) Incrementing a pointer variable
 55
          A structure is
          A) scalar data type
          B) derived data type
          C) primitive data type
          D) none of the above
  56
          The operator used to access the structure member is
          B) *
          C) [] .
  57
          The function fopen() when fails to open a file, then it returns value
          A) NULL
          B) -1
          C) + 1
          Consider the following code segment
 58
          FILE *fp;
          fp=fopen("notes.txt","r+");
          Which of the following operations can be performed on notes.txt file
          A) reading
          B) writing
          C) appending
          D) all of the above
```

59	The unit that performs the arithmetic and numbers is known as A) Control unit B) ALU	logical operations on the stored
	C) Memory Unit D) I/O Unit	
60	Choose the wrong statement A) C++ allows any operator to be overloaded B) Some of the existing operators cannot be c) Operator precedence cannot be changed D) C++ can be used for the development of poriented programs.	overloaded
61	Steady flow energy equation is applicable to A) Compressor	B) Turbine
	c:) Heat exchanger	D) All of the above
62	Steam table can be used for At) Producing steam C) Calculating the volume of steam	B) Collecting steam D) Calculating dryness fraction
63	Which of the following is a steam power cyc	
		B) Diesel cycle D) Dual cycle
64	A flow net is drawn using	B) Equi-potential lines D) Flow lines
65	Bernoulli's equation is applicable to	
		B) Pitot tube D) All of the above
66	Rotameter is used for measuring (A) Rotational speed (C) Density of liquid	B) Flow rate D) Piezometric head
. 67	A gear is mounted on a shaft with a key a should be	arrangement. Factor of safety (FOS) of key
	A) Smaller than FOS of gear C) Both (a) and (b)	B) Smaller than FOS of shaft D) Larger than FOS of shaft and gear
68	Point of contraflexture is a point where A) Bending moment is zero	B) Shear force is zero
	C) Shear force is maximum	D) Bending moment is maximum
69	Beams are designed mainly for taking up A) Direct tensile stresses c) Bending stresses	B) Direct compressive stresses D) Torsional shear stresses
70	In the bending formula, $\frac{M}{I} = \frac{f}{y} = \frac{E}{R}$; symbo	1 'M' represents
	A) Mass C) Mean Force	B) Bending moment D) Mean load

Q.No. 71 The water of a river has an important property called

	(A) (B) (C) (D)	Self Purification Permeability Infiltration Capacity		
Q	No. 72	Human ear is sensitive to	sound waves in the	frequency range of
	(A) (B) (C) (D)	20 Hertz to 20000 Hertz 30 Hertz to 30000 Hertz 40 Hertz to 40000 Hertz All the above		
Q	No. 73	Aeration is done for rem	loval of	
	(A) (C)	Colour Hardness	(B) (D)	Turbidity Bad Odour
Q	No. 74	In an ecosystem tertiary	consumers are	
	(B) C (C) C	animals feeding on trees farnivores like snakes, bird farnivores like lion, tiger e ficroorganisms like fungi		
Q	No. 75	To measure quality of an	nbient air, instrume	nt used is known as
	(A) (B) (C) (D)	Barometer High Volume Sampler Atomic Absorption Spec Gas Chromatograph	trophotometer	