
A Mathematical Analysis of the
R-MAT Random Graph Generator

Chris Groër ∗ Blair D. Sullivan
Steve Poole

Oak Ridge National Laboratory, Oak Ridge, TN 37830

January 5, 2011

Abstract

The R-MAT graph generator introduced by Chakrabarti, Faloutsos, and Zhan [6]
offers a simple, fast method for generating very large directed graphs. These properties
have made it a popular choice as a method of generating graphs for objects of study in a
variety of disciplines, from social network analysis to high performance computing. We
analyze the graphs generated by R-MAT and model the generator in terms of occupancy
problems in order to prove results about the degree distributions of these graphs. We
prove that the limiting degree distributions can be expressed as a mixture of normal
distributions with means and variances that can be easily calculated from the R-MAT
parameters. Additionally, this paper offers an efficient computational technique for com-
puting the exact degree distribution and concise expressions for a number of properties
of R-MAT graphs.

1 Introduction

The R-MAT model for graph generation was introduced by Chakrabarti, Faloutsos, and Zhan
[6]. The generator has an elegant, parsimonious design that is also very easy to implement.
Additionally, R-MAT is easily parallelized and it is capable of quickly generating very large
graphs. In the initial description of this generator, the authors state that R-MAT “naturally
generates power-law (or ‘DGX’ [4]) degree distributions.” The authors demonstrate that they

∗Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

1

are able to find parameters such that graphs generated by R-MAT provide a reasonable match
to the degree distributions derived from empirical data.

Due to its speed, simplicity, and the availability of open source implementations [2], R-
MAT is a widely used graph generator. Graphs generated by R-MAT have been used in a
variety of research disciplines including graph theoretic benchmarks [1, 15], social network
analysis [9], computational biology [3], and network monitoring [14]. Despite the wide use
of this generator, there has been only minimal mathematical analysis of the graphs that it
produces.

In this paper, we begin to fill this gap by providing a rigorous analysis of the degree
distributions of graphs generated by R-MAT. We begin by developing an exact formula for
the probability of observing a given edge in an R-MAT graph where this probability is defined
in terms of the binary representation of the edge’s endpoints. We then analyze the degree
distribution of graphs generated by R-MAT by modeling the edge generation procedure in
terms of the classical occupancy problem from probability theory. Our main result is that the
in-degree, out-degree, and total degree distributions tend to a limiting distribution that can
be expressed as a mixture of normal distributions with means and variances easily calculated
in terms of the initial parameters.

The paper is organized as follows. In Section 2, we present a description of the R-MAT
random graph generator, describe how the generation of each random edge can be viewed in
terms of binary digits, and prove some elementary properties related to these probabilities.
We also contrast the R-MAT generator with a larger set of generators based on the matrix
Kronecker product [12]. Section 3 examines the degree distribution of vertices in the graphs
before duplicate edge removal in the R-MAT algorithm. Section 4 contains our main results
related to the degree distributions for vertices in R-MAT graphs after duplicate removal,
and Section 5 describes some computational techniques that can be used to speed up the
calculation of the exact degree distributions.

2 The R-MAT Graph Generator

To describe the way that the R-MAT generator produces a random graph, we first need a
bit of notation. Let G = (V,E) be a directed multigraph on n = 2k vertices with M edges.
Letting V = {0, 1, . . . , n − 1}, we write the adjacency matrix for G as A = {aij} with entry
aij corresponding to the edge(s) from vertex i to vertex j. Duplicate edges are recorded by
permitting the entries in A to be non-negative integers, with aij = k if the multigraph has k
edges from i to j.

2.1 Original Model

The R-MAT model for graph generation operates by recursively subdividing the adjacency ma-
trix of a directed graph into four equally-sized partitions and distributing M edges within these
partitions with unequal probabilities. The distribution is determined by four non-negative pa-

2

rameters α, β, γ, δ such that α+β+γ+δ = 1. Starting with aij = 0 for all 0 ≤ i, j ≤ n−1, the
algorithm places an edge in the matrix by choosing one of the four partitions with probability
α, β, γ or δ, respectively. The chosen quadrant is then subdivided into four smaller partitions,
and the procedure repeated until we have selected a 1× 1 partition, where we increment that
entry of the adjacency matrix by one. For example, in Figure 1, we recursively partition the
matrix five times before arriving at the shaded 1 × 1 partition. In general, since |V | = 2k,
exactly k subdivisions are required. The algorithm repeats the edge generation process M
times to produce a matrix with

∑
i

∑
j aij = M . Since R-MAT creates digraphs without

duplicate edges, the final step of the algorithm is to replace each nonzero matrix entry by
one, creating a 0/1-adjacency matrix A′ for a digraph G′ on 2k vertices with M ′ ≤ M edges.
Finally, we note that the initial description in [6] suggests that one should “add some noise”
to the α, β, γ, δ parameters at each stage of the recursion. However, because no specifics are
provided and since our main results deal with the limiting distributions, we do not address
this issue.

Α Β

Γ ∆

Α Β

Γ ∆

Α Β

Γ ∆
Α Β

Γ ∆

Α Β

Γ ∆

Figure 1: Generating an Edge with R-MAT

2.2 A Bitwise Interpretation

R-MAT’s generation of the nonzero elements in the adjacency matrix has a bitwise interpreta-
tion that is particularly convenient for computer implementation. Note that when generating
each edge ij in a digraph on 2k vertices, we choose a total of k quadrants at random based
on the value of the parameters α, β, γ and δ. For each of the k steps, we generate a random
r ∼ U(0, 1) and select one of the four quadrants based on the value of r. For 1 ≤ t ≤ k, we
associate the t-th quadrant selected with the t-th bit of i and j (counting from the left). If
the upper left quadrant is chosen at step t, then we set bit t of i and j to both be zero. If
the upper right quadrant is selected, then we set bit t of i to 0 and bit t of j to 1. Similarly,

3

selecting the lower left quadrant at step t corresponds to setting bit t of i to 1 and bit t of
j to 0, while the bottom right quadrant corresponds to setting the t-th bit in both i and j
to 1. An example of this interpretation of the R-MAT generator is given in Example 1, and
Algorithm 1 provides pseudocode for this algorithm.

Step 0 1 2 3 4 5
Quadrant Bottom Upper Bottom Upper Bottom
Selected Left Left Right Right Right
Bits of i ***** 1**** 10*** 101** 1010* 10101
Bits of j ***** 0**** 00*** 001** 0011* 00111

Example 1: The generation of the edge ij depicted in Figure 1 requires five steps. We begin
in Step 0 with 5 empty bit positions for both i and j (these are denoted with a ∗) and then
set each bit to 0 or 1 moving from left to right based on the quadrant selected at each step.

Algorithm 1 Given parameters α, β, γ, δ with α + β + γ + δ = 1, generate a 0/1-adjacency
matrix A = {aij} for a graph on 2k vertices containing at most M edges.

1: Set aij = 0 for 0 ≤ i, j ≤ 2k − 1
2: for m = 1 to M do
3: Set i = 0, j = 0 // Initialize all bits to 0
4: for t = 0 to k − 1 do
5: Generate r ∼ U(0, 1)
6: if r ∈ [α, α + β) then
7: j = j + 2k−1−t // Set bit to 1 in j
8: else if r ∈ [α + β, α + β + γ) then
9: i = i+ 2k−1−t // Set bit to 1 in i

10: else if r ∈ [α + β + γ, 1) then
11: i = i+ 2k−1−t and j = j + 2k−1−t // Set bit to 1 in i and j
12: end if
13: end for
14: aij = aij + 1
15: end for
16: Replace all nonzero entries in A with ones

2.3 Preliminaries

We now give a number of definitions and basic lemmas necessary for our analysis of graphs
generated with the R-MAT algorithm. For the remainder of this paper, unless otherwise noted,
G will denote a directed multigraph on n = 2k vertices and M edges, generated by R-MAT

4

without duplicate removal (lines 1-15 of Algorithm 1). The duplicate-free graph recovered by
replacing each positive entry of A with a one (line 16 of Algorithm 1) will be denoted G′, and
we write M ′ for the number of edges in G′.

Definition 2.1. Let G = (V,E) be a directed graph (which may have multiple edges), and
let u ∈ V be a vertex of G. We define the out-degree of u, notated d+

G(u), to be the number
of edges e ∈ E so that e is of the form (u, v) for some v ∈ V . Similarly, the in-degree of u,
denoted d−G(u), is the number of edges e ∈ E of the form (v, u) for some v ∈ V . The total
degree of u, written dG(u), is the number of edges e ∈ E so that e = (u, v) and/or e = (v, u)
for some v ∈ V .

Definition 2.2. Given some vertex u with 0 ≤ u ≤ 2k − 1, let uz denote the number of zeros
in u’s binary representation.

Definition 2.3. Given some edge e = (u, v) in G where 0 ≤ u, v ≤ 2k−1, write u =
∑k−1

i=0 ui2
i

and v =
∑k−1

i=0 vi2
i in binary so that ui, vi ∈ {0, 1} for 0 ≤ i ≤ k − 1. Define eα to be the

number of (ui, vi) pairs that are (0, 0), eβ to be the number of (0, 1) pairs, eγ to be the
number of (1, 0) pairs, and eδ to be the number of (ui, vi) pairs equal to (1, 1). Note that
eα + eβ + eγ + eδ = k.

Lemma 2.4. The probability of generating an edge e = (u, v) at some iteration of the R-MAT
algorithm is equal to

p(e) = p(u, v) = αeαβeβγeγδeδ .

Proof. For the edge e = (u, v), we must choose the upper left quadrant (corresponding to α)
exactly eα times, the upper right quadrant (corresponding to β) exactly eβ times, and so on.
The result follows since the selection of subsequent quadrants is independent. 2

Observation 2.5. If p(u, v) = αeαβeβγeγδeδ , then p(v, u) = αeαγeββeγδeδ .

Lemma 2.6. For a vertex u, the sum of the ith powers of the probabilities of edges starting
from u is given by

2k−1∑
v=0

p(u, v)i = (αi + βi)uz(γi + δi)k−uz .

Similarly, for edges ending at u, we have

2k−1∑
v=0

p(v, u)i = (αi + γi)uz(βi + δi)k−uz .

5

Proof. Since eα + eβ = uz and eγ + eδ = k − uz, we can apply Lemma 2.4 to obtain

2k−1∑
v=0

p(u, v)i =
uz∑
eα=0

k−uz∑
eγ=0

(
uz
eα

)(
k − uz
eγ

)
(αeαβuz−eαγeγδk−uz−eγ)i

=
uz∑
eα=0

(
uz
eα

)
αieαβi(uz−eα)

k−uz∑
eγ=0

(
k − uz
eγ

)
γieγδi(k−uz−eγ)

= (αi + βi)uz(γi + δi)k−uz ,

where the final equality follows from the binomial theorem. Using Observation 2.5, the proof
for edges ending at u is analogous. 2

Definition 2.7. Let α, β, γ, δ > 0 satisfying α + β + γ + δ = 1 denote the probabilities
of assigning an edge to each of the four quadrants of a matrix (as in Figure 1). Define
λ = α + β, which can be interpreted as the probability of choosing “up” in a step of the
recursion algorithm. Similarly, let µ = α + γ be the probability of moving “left”.

Definition 2.8. For 0 ≤ i ≤ k, let Pi = λi(1− λ)k−i and Qi = µi(1− µ)k−i.

Corollary 2.9. Given a vertex u, the probability of an edge being of the form (u, v) for some
v is

2k−1∑
v=0

p(u, v) = λuz(1− λ)k−uz = Puz ,

and the probability of an edge of the form vu is

2k−1∑
v=0

p(v, u) = µuz(1− µ)k−uz = Quz .

Proof. This is a special case of Lemma 2.6 with i = 1. 2

Definition 2.10. For a vertex u in G, define p+
u to be the vector of probabilities p+

u =

{p(u, v)}2k−1
v=0 , let p−u be the vector of probabilities p−u = {p(v, u)}2k−1

v=0 , and let pu be the
vector of 2k+1 − 1 probabilities obtained by appending p−u to p+

u where we keep only the
first copy of p(u, u). Additionally, let p̂+

u denote the probability vector (the entries sum to 1)
obtained by appending the value 1−

∑
v p(u, v) to p+

u . We similarly define p̂−u and p̂u.

Lemma 2.11. For a vertex u, there are at most (uz + 1)(k− uz + 1) distinct values of p(u, v)
in the vectors p+

u and of p(v, u) in p−u .

Proof. From Lemma 2.4, it follows that p(u, v) = αeαβuz−eαγeγδk−uz−eγ . As v runs from 0
to 2k − 1, there are uz + 1 possibilities for eα and k + 1 − uz possibilities for eγ, implying
that αeαβuz−eαγeγδk−uz−eγ assumes at most (uz + 1)(k − uz + 1) distinct values. The proof is
analogous for p−u . 2

6

2.4 R-MAT & Kronecker Generators

The R-MAT generator is similar to a larger class of graph generators based on the matrix
Kronecker product [17]. The stochastic Kronecker generator defined in [12] begins with an
N1 × N1 probability matrix P1 and is expanded to an Nk

1 × Nk
1 probability matrix Pk via

Kronecker exponentiation. If one begins with an initial 2×2 matrix P1, then it is not difficult
to see that the entry in row i, column j of this probability matrix, Pk[i, j], is equal to the edge
probability defined in Lemma 2.4. In [12], the authors state that

Stochastic Kronecker graphs include several other generators, as special cases: For
α = β, we obtain an Erdös-Rényi random graph; for α = 1 and β = 0, we obtain a
deterministic Kronecker graph; setting the G1 matrix to a 2× 2 matrix, we obtain
the R-MAT generator.

However, there is an important distinction in how the edges in the random graph are generated
given these probabilities. Given an initial 2 × 2 matrix, the stochastic Kronecker model
described in [12] requires 2k · 2k iterations where the generation of each edge ij is the result
of an independent Bernoulli trial with “success” probability Pk[i, j]. On the other hand, in
the R-MAT generator the user supplies a maximum number of edges M = c · 2k, and the
algorithm then runs for M iterations. Each R-MAT iteration is independent and it is possible
for any of the 22k edges to be added to G at any stage. The probability that the edge ij is
added at any particular iteration is equal to Pk[i, j]. This procedure can lead to generating
the same edge more than once, and these duplicates are discarded during the final step of the
R-MAT generator when G is transformed into the graph G′ (step 16 in Algorithm 1).

We note that a more recent paper [13] addresses the relationship between R-MAT and
stochastic Kronecker graphs in more detail. Additionally, they propose a way of speeding up
the generation of stochastic Kronecker graphs by using the recursive partitioning procedure
used in R-MAT. Given an N1 × N1 initial probability matrix and letting E be the expected
number of edges in a stochastic Kronecker graph K produced via these parameters, a random
graph is produced by running E iterations of R-MAT’s recursive partitioning. While R-MAT
requires a 2 × 2 probability matrix for the partitioning, this interpretation of the Kronecker
model allows an arbitrary N1 × N1 probability matrix for the partitioning. Finally, while
R-MAT removes duplicate edges from G to form the simple graph G′, this version of the
stochastic Kronecker generator keeps these multi-edges in the graph. This implies that if the
initial Kronecker probability matrix is 2× 2, then the resulting random graphs are produced
in the same manner as those produced by R-MAT if one ignores the final duplicate removal
step in Algorithm 1.

3 The R-MAT multigraph G

Having shown some simple facts related to the edge probabilities for graphs generated by R-
MAT, we now explore the degree distributions. Our ultimate goal is to determine the degree
distributions in the graph G′ which is obtained from G by removing duplicates.

7

Lemma 3.1. The probability that a vertex u has out-degree d in G is

Pr[d+
G(u) = d] =

(
M

d

)
(Puz)

d (1− Puz)
M−d ,

and the probability that a vertex u has in-degree d is

Pr[d−G(u) = d] =

(
M

d

)
(Quz)

d (1−Quz)
M−d .

Proof. We will only prove the result for out-degree, as the proof for in-degree is analogous.
In terms of the adjacency matrix, the probability that u has out-degree d is the probability
that the sum of the entries in row u is equal to d after all M edges have been added. Noting
that Puz is the probability of incrementing an entry in row u when adding an edge to the
graph, the probability of incrementing entries in row u exactly d times out of M is then(
M
d

)
(Puz)

d(1− Puz)M−d, where the binomial coefficient corresponds to choosing which d steps
generate an out-neighbor for u. This completes the proof. 2

Corollary 3.2. The probability distributions of the out-degree and in-degree of a vertex u in G
are determined by the parameters α, β, γ, δ and the number of zeros in the binary representation
of u. In particular, they are given by the binomial distributions B(M,Puz) and B(M,Quz),
respectively.

The following result was proven by Chakrabarti & Faloutsos in [5]. We include it here for
completeness, with a slightly different proof.

Lemma 3.3. The expected number of vertices in G with out-degree d is

k∑
i=0

(
k

i

)(
M

d

)
(Pi)

d(1− Pi)M−d,

and the expected number of vertices in G with in-degree d is

k∑
i=0

(
k

i

)(
M

d

)
(Qi)

d(1−Qi)
M−d.

Proof. This follows directly from the fact that each vertex u has a k-bit binary representation,
and the probability of out-degree (or in-degree) d is completely determined by uz. For each
i ∈ [0, k], there are

(
k
i

)
vertices with uz = i, and the probability such a vertex has out-degree

d is
(
M
d

)
(Pi)

d (1− Pi)M−d from Lemma 3.1 (likewise, in terms of Qi for in-degree). 2

8

4 The R-MAT simple directed graph G′

Recall that G′ is the graph generated by running the R-MAT algorithm to place M edges
among n = 2k vertices, then removing any duplicate edges (the edge (u, v) is in G′ if and only
if G has at least one (u, v) edge), and we write M ′ for the number of edges in G′. In this
section, we are able to use a number of results from the rich theory of occupancy problems in
order to derive both exact and limiting degree distributions for the graph G′.

The classical occupancy problem is often described in terms of tossing r indistinguishable
balls into m distinguishable urns and finding the probability that exactly n of these urns
are non-empty (see [8, 11]). The R-MAT generator can be modeled as such a problem by
envisioning the 4k positions in the adjacency matrix as the set of urns, and the M randomly
generated edges as the set of balls tossed into these urns. The number of edges in the graph
G′ then corresponds to the number of non-empty urns.

4.1 Occupancy Problems - Notation and Background

In the simplest ball and urn model, a ball falls into each of m urns with the same probabil-
ity (namely, 1/m). In the case of R-MAT, however, the edges are generated with different
probabilities (see Lemma 2.4), and so we must use a more general model where each urn
potentially has a different probability of receiving a ball. In this model, a ball falls into urn i
with probability qi (we assume

∑m
i=1 qi = 1), and the probability vector q = {q1, q2, . . . , qm}

denotes the set of these probabilities for each of the m urns. The following definition clarifies
the specific quantity of interest.

Definition 4.1. Givenm urns with probabilities q = {q1, q2, . . . , qm}, let U(r, l,m,q, t) denote
the probability that exactly t of the first l ≤ m urns are empty after tossing r balls into the
set of m urns.

In what follows, for a random variable X, we denote the expected value of X as E [X], its
variance by Var [X], and we use Cov [X, Y] to denote the covariance of two random variables
X and Y . Using this notation, we now give the mean and variance of the number of empty
urns as well as an exact formula for the probability distribution of the number of empty urns.

Theorem 4.2 (Johnson and Kotz [11], p. 107–113). Given a set of m urns with probabilities
represented by the probability vector q = {q1, q2, . . . , qm}, let X be the random variable corre-
sponding to the number of empty urns after tossing r balls into these urns. Then the mean
and variance of X are given by

9

E [X] = µ(q, r) =
m∑
i=1

(1− qi)r, and (1)

Var [X] = σ(q, r) =
m∑
i=1

[(1− qi)r (1− (1− qi)r)]

+2
m∑
i=1

m∑
j=i+1

(1− qi − qj)r − (1− qi)r(1− qj)r, (2)

and the probability that exactly t of the m urns are empty is given by

U(r,m,m,q, t) = Pr [X = t] =
m−t∑
i=0

(
t+ i

t

)
(−1)i

∑
A⊆{1,2,...,m}
|A|=t+i

(
1−

∑
j∈A

qj
)r
.

Proof. Letting Xj = 0 if urn j is occupied and Xj = 1 if urn j is empty, Pr [Xj = 1] = (1−qj)r.
By linearity of expectation,

E [X] =
m∑
j=1

E [Xj] =
m∑
j=1

(1− qj)r.

For the variance, we use the formula

Var [X] =
m∑
j=1

Var [Xj] + 2
m∑
i<j

Cov [Xi, Xj]

and the result follows by calculating

Var [Xj] = E
[
X2
j

]
− (E [Xj])

2 = Pr [Xj = 1]−Pr [Xj = 1]2 ;

Cov [Xi, Xj] = E [XiXj]− E [Xi] E [Xj]

where E [XiXj] = Pr [XiXj = 1] = (1− qi − qj)r. Turning to the probability distribution, for
a subset A ⊆ {1, 2, . . . ,m} with |A| = j ≤ m, let PA denote the probability that all of the
j urns represented by the set A are empty and that the remaining remaining m− j urns are
non-empty. Then Pr[X = t] can be calculated by summing over all possible sets of t urns:

Pr[X = t] =
∑

A⊆{1,2,...,l}
|A|=t

PA. (3)

The result follows by noting that the probability that every urn in A is empty is equal to
(1−

∑
j∈A qj)

r and then using inclusion-exclusion to rewrite the sum. 2

10

The following corollary considers the case when one is concerned with number of empty
urns contained in some subset of the m urns.

Corollary 4.3. Given a set of m urns with probabilities q = {q1, q2, . . . , qm}, for 1 ≤ l ≤ m,
let Yl be the random variable representing the number of empty urns among urns 1, 2, . . . , l
after tossing r balls into the set of all m urns. Then

U(r, l,m,q, t) = Pr [Yl = t] =
l−t∑
i=0

(
t+ i

t

)
(−1)i

∑
B⊆{1,2,...,l}
|B|=t+i

(
1−

∑
j∈B

qj
)r
. (4)

Proof. The proof is nearly identical to the proof of Theorem 4.2, except that we replace the
quantity PA with PB which is the probability that each of the j ≤ l ≤ m urns represented by
the set B is empty and that the remaining l − j urns are full. 2

4.2 Exact Degree Distributions in G′

Having stated the required results related to occupancy problems, we return to the analysis of
the out-degree distribution for some vertex u in G′. Perhaps the most obvious way of modeling
the out-degree of u in terms of balls and urns is to envision all possible edges leaving u as a
set of 2k urns. In this model, the probability of a ball falling in each urn can be calculated
via Lemma 2.4. The generation of the M edges in G corresponds to tossing M balls, but as
these M balls are scattered over the entire adjacency matrix and not just the row for vertex
u, we must condition on the number of balls that end up in this row. Using the vectors
defined in Definition 2.10, we have the following results which provide an exact formula for
the out-degree distribution of u in G′.

Theorem 4.4. Given a vertex u, let p̄+
u = {p(u, v)/

∑2k−1
w=0 p(u,w)}2k−1

v=0 . The probability that
a vertex u has out-degree d in G′ is

Pr[d+
G′(u) = d] =

M−d∑
j=0

Pr[d+
G(u) = d+ j]U(d+ j, 2k, 2k, p̄+

u , 2
k − d).

Proof. The vertex u has degree d in G′ if it had degree d+ j in G and those d+ j edges went
to precisely d distinct vertices. Since we are conditioning on the event that these d+ j edges
are all of the form (u,w) for some w ∈ {0, 1, . . . , 2k− 1}, the probability that a particular one

of these edges is of the form (u, v) is p(u, v)/
∑2k−1

w=0 p(u,w). Thus, U(d+ j, 2k, 2k, p̄+
u , 2

k − d)
is the probability of getting d distinct ends from these d + j edges. The result follows by
considering separately each possible value of j from 0 to M − d. 2

The analogous results for in-degree and total degree can be obtained using a nearly identical
argument.

11

4.3 Limiting Degree Distributions in G′

Theorem 4.4 allows us to compute the probability that a given vertex u has out-degree d.
However, for a graph with M edges, this computation involves a sum of M−d terms involving
very large binomial coefficients and summation over a large set of subsets. Thus, it is clear
that we must turn to limiting distributions if we wish to obtain computationally tractable
expressions for the degree distributions of very large graphs.

Given an occupancy problem with unequal urn probabilities, limiting distributions are
known for the number of empty urns under a variety of conditions (see Chapter 6 of [11] for
a survey of these kinds of results). In this subsection, we state a particular result of this kind
and then prove that R-MAT satisfies the necessary conditions. Chistyakov [7] shows that if
the urn probabilities are bounded in a particular fashion, and if the ratio of balls to urns
approaches a constant as they tend to infinity together, then the probability distribution of
the number of empty urns is asymptotically normal.

Theorem 4.5 (Chistyakov [7]). Given a set of m urns with probabilities q = {q1, q2, . . . , qm}
with

∑m
i qi = 1, let X be the random variable corresponding to the number of empty urns after

tossing r balls into these urns. Then if r,m → ∞ with r/m → C1 where 0 < C1 < ∞ and
m · qi ≤ C2 <∞ for each i, then the probability distribution of X is asymptotically normal.

To apply Theorem 4.5, the quantity m · qi must be uniformly bounded for all m urns as
m→∞. However, in the event that only m−1 of the urns satisfy this bound, a straightforward
modification to Chistyakov’s proof demonstrates that the distribution for the number of empty
urns among these m− 1 urns remains asymptotically normal.

Corollary 4.6. Given a set of m urns with probabilities q = {q1, q2, . . . , qm} where
∑m

i qi = 1,
let Y be the random variable corresponding to the number of empty urns among the first m−1
of the m urns after tossing r balls into the set of all m urns. If r,m → ∞ with r/m → C1

where 0 < C1 < ∞ and m · qi ≤ C2 < ∞ for i = 1, 2, . . . ,m − 1, then Y is asymptotically
normally distributed.

We now prove that the limiting approximations given in Theorem 4.5 and Corollary 4.6 ap-
ply to graphs generated with R-MAT for nearly all choices of parameters. The proof is divided
into two cases. The first case has α, β, γ, δ ≤ 1/2 and the second case has max(α, β, γ, δ) > 1/2.

Lemma 4.7. Let G′ be an R-MAT graph with n = 2k vertices and p(e) denote the probability
of edge e being generated in an iteration of the R-MAT algorithm. If 0 < α, β, γ, δ ≤ 1/2,
then for any edge e, the quantity n · p(e) is uniformly bounded above by the constant 1.

Proof. Without loss of generality, we assume α ≥ β, γ, δ. By Lemma 2.4, we have p(e) =
αeαβeβγeγδeδ , with eα + eβ + eγ + eδ = k. Then p(e) ≤ αk ≤ 2−k, so n · p(e) ≤ 2k · 2−k = 1,
proving our result. 2

To handle the case where the largest R-MAT parameter is greater than 1/2, we require a
result regarding the limiting behavior of sums of binomial coefficients. The following lemma
can be proved by applying Chebyshev’s Inequality (see [16], page 47).

12

Lemma 4.8. For any ε > 0 and n ∈ N,∑
{k:|k/n−1/2|≥ε}

(
n

k

)
2−n ≤ 1

4nε2
.

We require the following corollary to this result.

Corollary 4.9. If c > 1/2 and n ∈ N, then

lim
n→∞

cn∑
k=0

(
n

k

)
2−n = 1.

In order to apply Corollary 4.6, we must now show that as n → ∞, there is a uniform
bound C so that for each vertex u the quantity n · p(u, v) ≤ C <∞ for all v whenever one of
α, β, γ, δ is greater than 1/2. The next result uses Corollary 4.9 to show that the proportion
of vertices satisfying this bound with C = 1 tends to one as n→∞.

Lemma 4.10. Let p(u, v) denote the probability of edge (u, v) being generated in an iteration
of the R-MAT algorithm where n = 2k vertices, min(α, β, γ, δ) > 0, and max(α, β, γ, δ) > 1/2.
Let ψn(α, β, γ, δ) be the number of vertices u so that for all v,

n · p(u, v) ≤ 1.

Then

lim
n→∞

ψn(α, β, γ, δ)

n
= 1.

Proof. Without loss of generality, let 0 < β, γ, δ < 1
2
< α < 1 and let ε = min(β, γ, δ).

Claim: There exists a θ > 1/2 such that

αx (1− α− 2ε)(1−x) ≤ 1/2 for all 0 ≤ x ≤ θ. (5)

Since α > 1/2, we have α/(1−α− 2ε) > 1, and so αx(1−α− 2ε)(1−x) is strictly increasing for
x ≥ 0. For those u with uz ≤ θk, note that β, γ, δ ≤ 1 − α − 2ε. We can then bound p(u, v)
as follows:

p(u, v) = αeαβeβγeγδeδ ≤ αeα(1− α− 2ε)k−eα ≤ αuz(1− α− 2ε)k−uz ≤ (αθ(1− α− 2ε)1−θ)k.

Assuming that the claim holds, it follows that

{u : uz ≤ θk} ⊆
{
u : p(u, v) ≤ 2−k for all v

}
= {u : n · p(u, v) ≤ 1 for all v} . (6)

Since the number of vertices with uz = i is
(
k
i

)
, we have

|{u : uz ≤ θk}| =
bθkc∑
i=0

(
k

i

)
.

13

Together with (6), we see that

bθkc∑
i=0

(
k

i

)
2−k ≤ ψn(α, β, γ, δ)

n
≤ 1.

Since θ > 1/2, Corollary 4.9 applies and it follows that ψn(α,β,γ,δ)
n

tends to 1 as n tends to
infinity. We now need only to prove the claim.
Proof of Claim: Equality is achieved in (5) when θ = log(2(1−α−2ε))

log((1−α−2ε)/α)
. As we have already

seen that αx(1 − α − 2ε)(1−x) is uniformly increasing for x ≥ 0, we must only show that this
choice of θ is greater than 1/2 for valid choices of α and ε:

log(2(1−α−2ε))
log((1−α−2ε)/α)

> 1/2 ⇔

log (2(1− α− 2ε)) < log
(√

1−α−2ε
α

)
⇔

log
(

2(1−α−2ε)
√
α√

1−α−2ε

)
< 0 ⇔

2
√
α(1− α− 2ε) < 1 ⇔

4α(1− α− 2ε) < 1 ⇔
1/2− α/2− 1/(8α) < ε.

The final inequality holds since the left hand side is negative for 1/2 < α < 1. 2

Lemmas 4.7 and 4.10 imply that as long as the R-MAT parameters α, β, γ, and δ are
all strictly positive, then for almost all vertices u, the limit limn→∞ n · p(u, v) is uniformly
bounded above for all v. This allows us to apply Corollary 4.6 which leads to a proof of our
main result, namely that the limiting distributions for the out-degree, in-degree, and total
degree of a vertex u in G′ are asymptotically normal.

Theorem 4.11. Let u be a vertex in a graph G′ generated by R-MAT with n = 2k vertices and
M = O(n) edges before removing duplicates. For all but a vanishing proportion of vertices u, as
n,M →∞, the quantities d+

G′(u), d+
G′(u), and dG′(u) are asymptotically normally distributed.

Proof. For out-degree, we treat each of the n possible edges (u, v) as an urn with probability
p(u, v) and have an additional urn representing all edges that do not begin at u. We envision
tossing M balls into these n + 1 urns. Depending on the values of α, β, γ, and δ, either
Lemma 4.7 or 4.10 implies that for all but a vanishing proportion of vertices u, the quantity
(n + 1) · p(u, v) is uniformly bounded for every v. Since M = O(n), we can apply Corollary
4.6 so that the the distribution of the number of empty urns in this model is asymptotically
normal. We compute E [X] and Var [X] by accounting for all n+1 urns when using equations
(1) and (2) and so we also use the probability vector p̂+

u which accounts for the probability of
the final urn. The number of edges originating at u that are present in G′ is thus the random

14

variable n + 1 − X, which is normally distributed with mean n + 1 − E [X] and variance
Var [X]. The proof for in-degree is analogous. For total degree, we have a total of 2n − 1
possible edges as we count the uu edge only once. Envisioning now a total of 2n urns (with
the last urn representing all edges of the form (v, w) for v, w 6= u), we again toss M balls into
these urns and invoke Corollary 4.6 to show that the distribution of the number of empty urns
is asymptotically normal and the result follows. 2

We note that exact expressions for the mean and the variance for these limiting distri-
butions can be computed more easily than one might expect. In the case of out-degree, for
a particular value of n = 2k, there are k + 1 underlying distributions corresponding to the
k + 1 possible values of uz. By also taking advantage of the fact that there are many du-
plicate probabilities one can simplify these calculations even further, and we find that the
overall complexity of this calculation is only O(k5). Finally, by modifying a result given in
[7], we are able to deduce approximations which require only O(k3) work to obtain the values
required for the entire out-degree distribution. The contribution of the final urn to the mean
and variance turns out to be negligible (since it is essentially always full), and by applying
standard asymptotic expressions given in [7], we find that for fixed k and a particular value of
uz with θ+

i,j = αiβuz−iγjδk−uz−j, we can express the required mean and variance to compute
the out-degree distribution as follows:

µ(pu
+,M) =

uz∑
i=0

k−uz∑
j=0

(
uz
i

)(
k − uz
j

)
e−Mθ+i,j +O(1), and (7)

σ(pu
+,M) =

uz∑
i=0

k−uz∑
j=0

(
uz
i

)(
k − uz
j

)(
e−Mθ+i,j − e−2Mθ+i,j

)
−

M

(
uz∑
i=0

k−uz∑
j=0

(
uz
i

)(
k − uz
j

)
θ+
i,je
−Mθ+i,j

)2

+O(1). (8)

An approximation for the in-degree mean and variance is obtained by replacing θ+
i,j in the

above expressions with θ−i,j = αiγuz−iβjδk−uz−j (note that if β = γ, then the in- and out-
degree distributions are identical).

In order to obtain the limiting in-, out-, or total degree distribution of a randomly chosen
vertex in G′ with 2k vertices, we construct a mixture of k + 1 normal distributions, one for
each possible value of uz = 0, 1, . . . , k. In this mixture, the distribution for uz = j is weighted
by the probability that a randomly chosen vertex has j zeros in its binary representation,
namely

(
k
j

)
/2k. The resulting distribution typically exhibits “waves” created by summing up

these weighted k+ 1 distributions that (usually) have different means and variances. Figure 2
shows the predicted and observed out- and in-degree distributions for 2048 randomly generated
graphs with n = 212 nodes, M = 217 edges before removing duplicates, and α = .55, β =
.15, γ = .1, δ = .2.

15

10 20 30 40
Degree0.00

0.01

0.02

0.03

0.04

0.05

0.06

Probability

Observed in-degree
Predicted in-degree
Observed out-degree
Predicted out-degree

Figure 2: The observed and predicted out- and in-degree distributions for a set of 2048 random
graphs generated with the same set of R-MAT parameters α = .55, β = .15, γ = .1, δ = .2

4.4 The number of edges in G′

A potential drawback of the R-MAT generator is that the number of edges in the final graph,
M ′, is itself a random variable whose value is not realized until the generation is complete.
We can treat this random variable by again using the ball and urn model of the occupancy
problem. We now have one urn for each position in the adjacency matrix and we are tossing
M balls into these urns. Using arguments similar to those used earlier in the paper, we can
derive expressions for the mean and variance of M ′, allowing one to have an estimate of M ′

in terms of the R-MAT parameters prior to generating a random graph.

Theorem 4.12. The expected number of edges in the graph G′ containing n = 2k vertices
generated with parameters α, β, γ, δ and M edges before removing duplicates is given by

E [M ′] = 4k −
k∑

uz=0

(
k

uz

) uz∑
i=0

k−uz∑
j=0

(
uz
i

)(
k − uz
j

)
(1− αiβuz−iγjδk−uz−j)M . (9)

Proof. First, note that the number of edges in G′ can be obtained by summing up the out-
degrees of all the vertices so that M ′ =

∑
u d

+
G′(u). By linearity of expectation,

E [M ′] = E

[∑
u

d+
G′(u)

]
=
∑
u

E
[
d+
G′(u)

]
.

16

For a given vertex u, let Xv be a random variable where Xv = 1 if the edge (u, v) exists in G
and Xv = 0 otherwise for v = 0, 1, . . . , 2k − 1 so that

E
[
d+
G′(u)

]
= E [X0 +X1 + · · ·+X2k−1] = E [X0] + E [X1] + · · ·+ E [X2k−1] .

Noting that E [Xv] is one minus the probability that the edge (u, v) is never generated in M
independent trials, we have E [Xv] = 1− (1− p(u, v))M so that

E
[
d+
G′(u)

]
= 2k −

2k−1∑
v=0

(1− p(u, v))M . (10)

However, the value of (10) is completely determined by uz, so that we must only consider the
k + 1 different values of uz to compute E[M ′]. Since p(u, v) = αeαβeβγeγδeδ by Lemma 2.4
where eα + eβ = uz and eγ + eδ = k − uz, we can rewrite the sum in (10) by counting the
occurrences of each possible value of p(u, v), obtaining

2k−1∑
v=0

(1− p(u, v))M =
uz∑
eα=0

(
uz
i

) k−uz∑
eγ=0

(
k − uz
j

)
(1− αeαβuz−eαγeγδk−uz−eγ)M .

The result follows since there are
(
k
uz

)
choices of u for each value of uz. 2

Theorem 4.12 allows one to compute the expected number of edges for an R-MAT graph
on 2k vertices by summing up (k+ 1)(k+ 2)(k+ 3)/6 values, providing an efficient method of
computing the number of duplicate edges given the initial α, β, γ parameters.

An exact formula for the variance of M ′ is significantly more cumbersome, but we can apply
the asymptotic formulas given in [7] to provide an efficient approximation for the variance
similar to (8). For a fixed value of k and letting φi,j,uz = αiβuz−iγjδk−uz−j, an approximation
for the variance of M ′ is given by

Var [M ′] =
k∑

uz=0

uz∑
i=0

k−uz∑
j=0

(
k

uz

)(
uz
i

)(
k − uz
j

)
e−Mφi,j,uz − e−2Mφi,j,uz (11)

−M

(
k∑

uz=0

uz∑
i=0

k−uz∑
j=0

(
k

uz

)(
uz
i

)(
k − uz
j

)
φi,j,uze

−Mφi,j,uz

)2

+O(1).

In the general case when r balls are tossed into m urns, if r/m → 0 and r2/m → ∞,
then the limiting distribution of the number of empty (or full) urns is asymptotically normal.
However, in our case with r = c2k balls and m = 4k urns, the limit of r2/m tends to a constant
so that the above result does not apply. A recent result of Hwang and Janson [10] implies
that if we could show that Var [M ′] tends to infinity with M , then M ′ is normally distributed.
Whether or not this hypothesis holds for all choices of R-MAT parameters is still an open

17

problem. However, computational experiments suggest that M ′ is indeed normally distributed
for graphs containing up to 220 vertices. To empirically study the distribution of M ′, we
generated 216 random graphs with n = 220 vertices, M = 8∗220 edges, and R-MAT parameters
α = .55, β = .1, γ = .1, δ = .25. Using the approximation (1 − x)M = e−Mx + O(Mx2) in
(9), we predict that E [M ′] = 8, 266, 452 and (12) predicts a variance of Var [M ′] = 139, 619.
These compare quite favorably with the observed sample mean and variance of 8,266,453 and
139,266. Figure 3 shows a histogram of the observed values of M ′ versus a normal distribution
with the predicted mean and variance.

8.2655 ´ 106 8.2660 ´ 106 8.2665 ´ 106 8.2670 ´ 106 8.2675 ´ 106 8.2680 ´ 106 Value of M'

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Probability

Figure 3: A histogram of the observed values of M ′ for 216 random graphs generated with the
same R-MAT parameters and n = 220 vertices. The solid line shows a normal distribution
with the predicted parameters of µ = 8, 266, 452 and σ2 = 139, 619 calculated via (9) and
(12).

We performed a chi-square goodness-of-fit test to evaluate the null hypothesis that the
observed values of M ′ are drawn from a normal distribution with the predicted mean and
variance. We created bins of size 112 (chosen by using a common statistical rule of thumb)
and calculated the test statistic to be X2 = 33.44. Under the assumption that the null
hypothesis is true, we expect this test statistic to be drawn from a chi-square distribution
with 27 degrees of freedom. Comparing our computed value of X2 with the upper critical
values of this distribution, we fail to reject the null hypothesis at a significance level of .1,
providing empirical confirmation of the hypothesis that M ′ is a normally distributed random
variable for these parameters.

5 Computational Considerations

In this section, we discuss computational techniques we developed to compute the exact degree
distributions, which may be of independent interest. These methods allowed us to calculate

18

the exact degree distribution of graphs with significantly less computational work than a näıve
approach.

Theorem 4.4 provides a means to compute the exact degree distribution of a vertex in
G′. However, as we noted earlier it is cumbersome and not very useful from a computational
perspective. We observe that by using Corollary 4.3, we can derive an alternative expression
for the out-degree distribution.

Theorem 5.1. For a vertex u in a graph G′ generated by R-MAT with n = 2k vertices
and M edges before removing duplicates, parameters α, β, γ, δ and probability vector p̂+

u =
{p1, p2, . . . , p2k+1}, the probability that u has out-degree d is

Pr[d+
G′(u) = d] = U(M, 2k, 2k + 1, p̂+

u , 2
k − d)

=
2k−d∑
i=0

(
d+ i

d

)
(−1)i

∑
A⊆{1,2,...,2k}
|A|=d+i

(
1−

∑
j∈A

pj
)M
. (12)

Proof. Consider the set of 2k + 1 urns where the first 2k correspond to all the possible edges
leaving u, and the final urn corresponds to the set of 4k − 2k edges that are not of the
form (u, v) for some v. This final urn receives a ball with probability 1 −

∑
v p(u, v) =

1− (α + β)uz(γ + δ)k−uz (Lemma 2.6). Each of the M edges generated falls into exactly one
of these urns, and by definition, U(M, 2k, 2k + 1, p̂+

u , 2
k− d) gives the probability that exactly

d of the first 2k urns are non-empty. 2

The formula given in Theorem 5.1 provides a more concise expression for the out-degree
distribution for vertex u in G′. However, it is still a formidable computational task to calculate
the entire probability distribution for a vertex u, even for small graphs. For example, suppose
we have a graph with k = 6 (64 vertices), and we wish to compute Pr

[
d+
G′(u) = 1

]
for some

vertex u. To illustrate the magnitude of this calculation, when i = 32 for the sum in equation
(12), we have to consider

(
64
32

)
> 1018 subsets of {1, 2, . . . , 64} to obtain just this contribution

to the sum.
However, since p(u, v) assumes relatively few values as v ranges over all 2k possible values

(Lemma 2.11), many elements in the vector p+
u will be identical. Thus, when we consider

all the subsets A ⊆ {1, 2, . . . , 2k} of a particular size s in equation (12), we expect that the

quantity
∑

j∈A(1−pj)M will assume only a small number of the
(
2k

s

)
possibilities. We can use

this to our advantage when computing the exact distribution.

Definition 5.2. Given a vector of real numbers v = {v1, v2, . . . , vn}, for 0 < i, j ≤ n, define
V (i, j,v) to be the set of ordered pairs {(w1, n1), (w2, n2), . . .} where the values of wk are all
distinct and represent all possible values obtained when summing up j values taken from
v1, v2, . . . , vi and nk counts the number of subsets that sum to wk.

Definition 5.3. Given some set of ordered pairs V (i, j,v) = {(w1, n1), (w2, n2), . . . , (wm, nm)}
and some real number z, we define z + V (i, j,v) to be the set of ordered pairs {(w1 + z, n1),
(w2 + z, n2), . . . , (wm + z, nm)}.

19

For example, if v = {0.2, 0.4, 0.2, 0.1}, then V (4, 1,v) = {(0.2, 2), (0.4, 1), (0.1, 1)} as
these represent the distinct singleton elements of v and their multiplicities, and V (3, 2,v) =
{(0.6, 2), (0.4, 1)} as we can form 0.6 = 0.4 + 0.2 from both v1 + v2 and v2 + v3, and we can
form 0.4 = 0.2 + 0.2 from v1 + v3. Furthermore, 0.1 + V (3, 2,v) is defined to be the set
{(0.7, 2), (0.5, 1)}.

Lemma 5.4. Given a vector v = {v1, v2, . . . , vn}, let {w1, w2, . . . , wm} be the distinct values
of vi ∈ v and let {n1, n2, . . . , nm} be their multiplicities. Then the sets V (i, j,v) satisfy the
recursion

• V (i, 0,v) = ∅ and V (i, j,v) = ∅ if j > i.

• V (i, 1,v) = {(w1, n1), (w2, n2), . . . , (wm, nm)},

• V (n, n,v) = {(
∑n

i=1 vi, 1)},

• For 0 < i, j < n, V (i, j,v) = V (i− 1, j,v)
⋃
vi + V (i− 1, j − 1,v).

Proof. The first three claims follow directly from Definition 5.3. For the final claim, note that
V (i, j,v) can be divided into two disjoint sets: the set of all partial sums of j terms taken
from v1, v2, . . . , vi−1 and the set of all partial sums of j terms taken from v1, v2, . . . , vi where
one of the terms is vi. The first set is V (i − 1, j,v) and the second is V (i − 1, j − 1,v) + vi,
proving the claim. 2

In practice, we wish to minimize the number of ordered pairs required to represent V (i, j,v).
If we encounter pairs (ws, ns) and (wt, nt) with ws = wt when we take the union of V (i−1, j,v)
and vi + V (i− 1, j − 1,v), then we “merge” these two pairs by replacing them with a single
set (ws, ns + nt).

In order to obtain the entire exact out-degree probability distribution for a given u via equa-
tion (12), we must compute Pr

[
d+
G′(u) = d

]
for d = 0, 1, . . . , 2k which requires the computa-

tion of
∑

j∈A(1−pj)M forA ranging over all 22k subsets of {1, 2, . . . , 2k}. In other words, for p+
u

as given in Definition 2.10, we require the values of V (2k, 0,p+
u), V (2k, 1,p+

u), . . . , V (2k, 2k,p+
u).

Algorithm 2 demonstrates how to use our recursion for V to minimize the amount of work
required in computing this exact distribution.

In lines 3-4, we use the recursion to compute and store the contribution of each subset to
the sum in Theorem 5.1. The individual probabilities are then computed in line 7 by utilizing
the precomputed values.

Although the recursive computations required in Algorithm 2 can require quite a bit of
memory, it has allowed us to compute the exact out-degree distribution for graphs where a
direct approach is infeasible. For example, we used this procedure to calculate the entire out-
degree distribution for a 64-node graph with M = 128 edges (before removing duplicates).
As the out-degree distribution of a vertex u is completely determined by the value of uz, we
implemented the algorithm in Mathematica and ran it for the seven possible values of uz,
obtaining the entire distribution after about four hours and using about 3.5 GB of memory

20

Algorithm 2 Given a vertex u in an R-MAT graph with 2k vertices and M edges before
removing duplicates, calculate the exact out-degree distribution for u in the graph G′ .

1: Compute the probability vector p̂+
u = {p1, p2, . . . , p2k+1} via Lemma 2.4.

2: for j = 0 to 2k do
3: Construct the set V (2k, j, p̂+

u) = {(x1, y1), (x2, y2), . . . , (xm, ym)}.
4: Set Sj =

∑m
i=1 yi(1− xi)M .

5: end for
6: for d = 0 to 2k do
7: Compute Pr

[
d+
G′(u) = d

]
=
∑d

j=0(−1)j
(
2k−d+j

j

)
S2k−d+j

8: end for

on a desktop machine. The näıve approach to computing this distribution requires one to
perform roughly O(267) operations, a task that is certainly infeasible without substantial
computational resources. These seven different distributions are shown in Figure 4 where the
distribution for each value of uz is weighted by

(
6
uz

)
, the number of vertices that fall into this

category. We also show the overall distribution for the out-degree of u.

uz = 6

uz = 5

uz = 4

uz = 3

uz = 2

uz = 1

uz = 0

u

out-degree

probability

5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 4: The exact out-degree distribution for the seven different values of uz and the overall
out-degree distribution for a 64-node graph withM = 8·64 and α = .55, β = .1, γ = .1, δ = .25.

6 Conclusions

The R-MAT graph generator is widely used due to its simplicity and ease of implementation.
By modeling the creation of edges as an occupancy problem, we have obtained exact and
asymptotic formulas for the degree distributions of these graphs, as well as the mean and
variance of the number of edges in the final graph. The asymptotic formulas can be calculated

21

quickly and allow a practitioner to determine the effect of initial parameter choices on the
resulting graph. Finally, we have provided a computational technique that allows one to
accelerate the computation of some exact probability distributions arising from our analysis.

7 Acknowledgements

This work was supported by the Department of Defense and used resources in the Extreme
Scale System Center at Oak Ridge National Laboratory.

The investigation of the degree-distribution of the R-MAT generator grew out of a broader
discussion of the SSCA#2 benchmark [1]. We would especially like to thank Richard Barrett
and Jeff Kuehn at Oak Ridge National Laboratory for their work on testing the benchmark,
and helpful discussions regarding the graphs arising from the R-MAT generator implemented
in the benchmark. Additionally, conversations with Sheila Vaidya, Andy Yoo, and Yang Liu at
Lawrence Livermore National Laboratory, Blair Perot from the University of Massachusetts-
Amherst, and Michael Merrill were important in motivating and providing context for this
work.

Finally, the authors thank Henry Cohn of Microsoft Research for pointing them in the
right direction for proving the limiting behavior of the sum of binomial coefficients using
Chebyshev’s Inequality and Ed D’Azevedo of Oak Ridge National Laboratory and several
anonymous referees for careful readings of the paper.

References

[1] D. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh, K. Madduri, B. Mann, and
T. Meuse. The SSCA2 Benchmark, 2007.

[2] D. Bader and K. Madduri. GTgraph: A suite of synthetic graph generators, 2006.

[3] D. Bader and K. Madduri. A graph-theoretic analysis of the human protein-interaction
network using multicore parallel algorithms. Parallel Computing, 34:627–639, 2008.

[4] Z. Bi and C. Faloutsos F. Korn. The “DGX” distribution for mining massive, skewed
data. In KDD ’01: Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 17–26. ACM, 2001.

[5] D. Chakrabarti and C. Faloutsos. Graph Patterns and the R-MAT Generator. In D. Cook
and L. Holder, editors, Mining Graph Data, pages 65–95. John Wiley and Sons, 2007.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model for Graph
Mining. In SIAM International Conference on Data Mining, 2004.

[7] V.P. Chistyakov. On the calculation of the power of the test of empty boxes. Theory of
Probability and its Applications, 9:648–653, 1964.

22

[8] W. Feller. An Introduction to Probability Theory and Its Applications, Volume I. John
Wiley and Sons, third edition, 1968.

[9] Shawndra Hill and Akash Nagle. Social Network Signatures: A Framework for Re-
Identification in Networked Data. SSRN eLibrary, 2009.

[10] H. Hwang and S. Janson. Local limit theorems for finite and infinite urn models. The
Annals of Probability, 36(3):992–1022, 2008.

[11] N. Johnson and S. Kotz. Urn Models and Their Applications. John Wiley and Sons,
1977.

[12] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos. Realistic, mathematically
tractable graph generation and evolution, using Kronecker multiplication. Knowledge
Discovery in Databases: PKDD 2005, pages 133–145, 2005.

[13] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research,
11:985–1042, 2010.

[14] M. Sasak, Liang Zhao, and H. Nagamochi. Security-aware beacon based network moni-
toring. In Communication Systems, 2008. ICCS 2008. 11th IEEE Singapore International
Conference on, pages 527–531, Nov. 2008.

[15] Matthew C. Schmidt, Nagiza F. Samatova, Kevin Thomas, and Byung-Hoon Park. A
scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel and
Distributed Computing, 69:417–428, 2009.

[16] A. Shiryaev. Probability. Springer-Verlag, second edition, 1996.

[17] Willi-Hans Steeb and Tan Kiat Shi. Matrix Calculus and Kronecker product with appli-
cations and C++ programs, chapter 2, page 55. World Scientific, 1997.

23

