Sl. No. :

69014445

Register Number

2014

ELECTRONICS AND COMMUNICATION ENGINEERING (Degree Standard)

Time Allowed : 3 Hours]

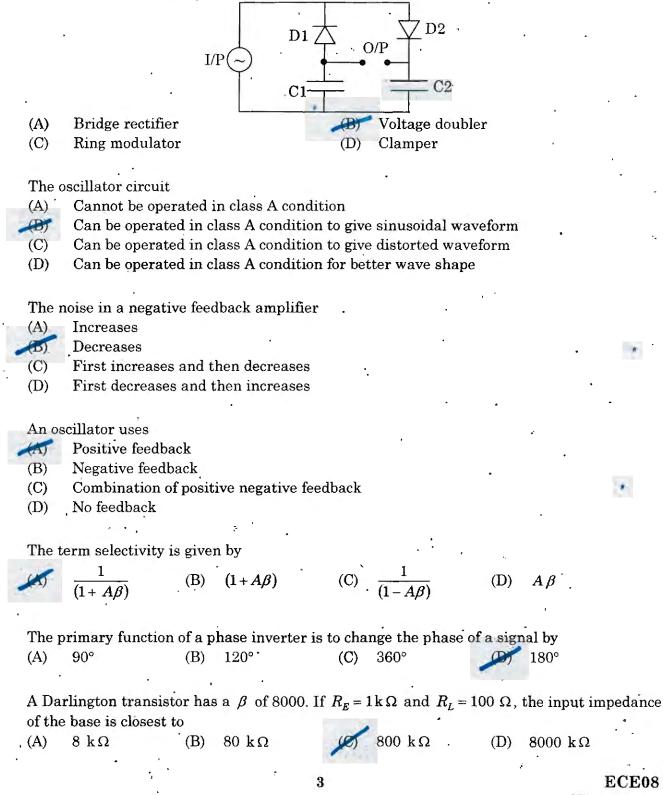
[Maximum Marks : 300

ECE08

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. <u>with Blue or</u> <u>Black ink Ball point pen</u> in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 6. Each question comprises *four* responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 7. In the Answer Sheet there are **four** circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. *e.g.* If for any item, (B) is the correct answer, you have to mark as follows:



- 8. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 9. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 10. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 11. Do not tick-mark or mark the answers in the Question booklet.

. Under steady state, thermal runaway in a CE amplifier is avoided if 1.

(A)
$$\frac{\partial P_C}{\partial T_C} = \frac{1}{\theta}$$
 $\frac{\partial P_C}{\partial T_C} < \frac{1}{\theta}$ (C) $\frac{\partial P_C}{\partial T_C} > \frac{1}{\theta}$ (D) $\frac{\partial P_C}{\partial T_C} =$

2. The circuit shown in the figure is best described as a

ECE08 Turn over

.

χ.

3.

4.

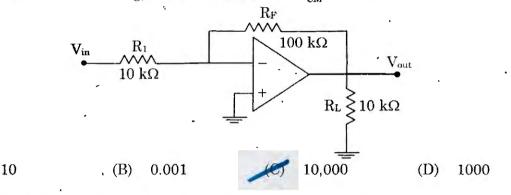
5.

6.

7.

8.

9.	A blee	e ded re sistor i	s used i	n a d.c power	supply b	ecause it		•	
	(A)	Keeps the su	-		(B)	Keeps the s			
	(C)	Improves filt	ering ac	tion .	(3)	Improves vo	ltage reg	gulation	
10.	Tho w	ipple factor of	a indua	tor filtor is					
·. ·						R.		R.	
	(A)	$\frac{R_L w}{\sqrt{2}\sqrt{3L}}$	(B)	$\sqrt{2\sqrt{3}L}$		$\frac{2}{3\sqrt{2wL}}$	(D)	$\frac{R_L}{\sqrt{3}2wL}$	
11.	Whicł	h of the follow:	ing cireu	uits cannot be	e operated	directly from	n the mai	ins?	
	(A)	Half wave re	ctifier		(B)	Full wave re	ectifier		
•	(C)	Voltage doub	ler			Center tapp	ed full w	ave rectifier	1
12.	The r	ipple factor of	a half v	vave rectifier	is ·				
	(4)	1.21	(B)	0.482	. (C)	0.406	(D)	0.121	
13.	In the	e transistor cli	pping ci	ircuit, the tra	nsistor is	operated in i	ts		
·	(A)	Break down :	-			-			
-	(3)	Either in cut		n saturation o	or in both	regions			
	(C) (D)	Along the loa Active region							
	(D)	Active region	L	·					
14.	At the	e break point o	of a clipp	ping circuit, a	a diode be	haves as			
-	(1)	Short circuit	and ope	e <mark>n circ</mark> uit sim	ultaneous	sly	,		
	(B)	Short circuit							
	(C) (D)	Open circuit It is difficult	to decid	۰ ۵	·				
		it is unneut	to accia	·					
15.	For Se states	chmitt trigger are 15 V and	, the up 2 V. Th	per and lowe e output for a	r trip volt a sinusoid	ages are 3 V a lal input of 10	and 1 V, a V peak	and higher and l will be between	low
	(4)	2 V and 15 V	(B)	1 V and 3 V	(C)	1 V and 15 V	V (D)	10 V and 15 V	
16.	A mor		vibrator		$\mathfrak{c}\Omega$ and \mathfrak{C}	C=1pF?Wha	t is the w	vidth of the pulse	e?
	(A)	6.3 ps	B	6.3 ns	. (C)	6.3 µs	(D)	6.3 ms	
17.	In the	break region	of clipp	ing circuit. a	diode beh	aves as			
	(A) ⁻	fully on	11	*	(B)	it is difficult	to decid	е	
•	(C)	fully off			(8)	neither fully	' on nor f	ully off	
18. ·	In a d	iode clamping	, when	$R_s = 0$, the re	sult is			•	-
	(A)	good impedar		2	• .				
	(B)	the magnitud	le of dis	continuity in		d output wave	forms is	same	
	(C)	large source o			ping circu	uit ·	•		
	(D)	no clamping o	operatio	n				•	
	(-)								


- In Wein bridge oscillator, if the open loop gain of the Op-Amp is greater, then 19. the frequency stability of the oscillator. Greater (B) 'Lesser Zero (C)(D) Constant
- · 20. An ideal operational amplifier has
 - 4 Infinite input resistance: zero o/p resistance, infinite bandwidth
 - Finite input resistance; infinite o/p resistance, finite bandwidth (B)
 - Zero input resistance, infinite o/p resistance, infinite bandwidth (C)
 - Infinite input resistance, zero o/p resistance, finite bandwidth (D)
- 21. The voltage that is to be applied between the two input terminals for making zero output voltage is

(A)

Output offset voltage

- \cdot (B) Threshold voltage
- Input offset voltage
- ·None of the above (D)
- 22.For the circuit shown in fig, what is the CMRR if $A_{CM} = 0.001$

23.The main reason that PLL has been widely used as an integrated system component is Less complex (A)

- (B) • Easy to fabricate
 - Feasibly of getting fabricated on a single chip for all individual components

(D) Require less time for fabrication

24.Fick's second law for diffusion process is

Assertion (A) :

 $\frac{\partial N(x,t)}{\partial t} = D \cdot \frac{\partial^2 N(x,t)}{\partial r^2}$ (B) $\frac{\partial N(x,t)}{\partial t} = D \cdot \frac{\partial N(x,t)}{\partial x}$ (D) $\frac{\partial^2 N(x,t)}{\partial t^2} = D \cdot \frac{\partial^2 N(x,t)}{\partial x^2}$ (C) $\frac{\partial^2 N(x,t)}{\partial t^2} = D \cdot \frac{\partial N(x,t)}{\partial x}$

5

25.Consider the following statements :

The output of the last flip flop in a shift register was connected back to the control input of the first flip flop in the register is called direct feedback.

This technique is also referred to as inverse feedback. Reason (R)

- Choose your answer as per the coding scheme. Both (A) and (R) are false (A)
- (A) is true but (R) is false C
- (B) Both (A) and (R) are true
- (A) is false but (R) is true (D)

ECE08 [Turn over

		۰.							
26.				-	est pow	er consumption			
	(A)	ECL .	(B)	DTL	10)	CMOS	(D)	RTL	
								1	
27.			(s) are			lder to perform 8			
	. (A)	Two	(a)	One	(C)	Three .	(D)	Eight	
28.	The B	oolean expressi	on $X =$	AB+CD repr	esents				
	(A)	Two ORs AND			(3)	Two ANDs ORe	ed toge	ether	
	(C)	A 4-input AND	•		(D)	EX · OR gate	0	•	
							٠		
29.		odulus of a cou				Ν.			
	(A)	The number of	-	-	,	•	•	,	
		The actual num			-	•			
	(C) (D)	The number of The maximum		=					
		The muximum	Possto	ie number of s	aico				
30.	If B ₇ a	nd B ₆ bits of m	ode reg	sister in 8237 a	re set te	o 11, which mod	e of op	eration is s	elected?
	(A)	Cascade mode		•	(B)	Single mode			
	(C)	Block mode			(D)	Demand mode			
0.1	1171 • 1	•		· -				ø	
31.	Which (A)	READY		t to demultiple. ALE	x addre (C)	ss and data bus' HOLD		HLDA	
	(n)	READ I		ALL ·	(\mathbf{C})	IIOLD	(D)·	ILDA	
32.	What	is the maximur	n numl	ber of I/O devic	es can l	be interfaced wi	th 808	5 using I/O	mapping
	of I/O	device techniqu	ie?				-		
	, (A).	8.	(B)	16	(C)	128	(D)	256 .	
33.	The m	aximum input	elock fr	, requency to 82!	53 is				
00.	(A)	3 MHz	(B)	3.125 MHz	(C)	2.6 MHz	(D)	2.75 MHz	
							,		
34.	What				ency of	8086 microproce	essor?	·	
	(A)	3 MHz	(B)	16 MHz	(C)	5 MHz	(D)	8 MHz	
25	117h - +	· · · · · · · · · · · · · · · · · · ·	e · .		·	11 9			
35.	(A)	is the capacity of 128 bytes	of inter (B)	256 bytes	(C)	4 KB	(D)	8 KB	
•		120 09 103	(D)	200 bytes .	(0)	A ILD	(D)	, o ixi	
36.	In 805	3/8054 timer, h	ow ma	ny independen	t counte	ers are available	?		
•	(A)	2	(B)	3	(C)	4	·(D)	5	
				,		÷ .			
37.			n numł			an be generated			
	(A)	64	(B)	256	(C)	128	(D)	16	
ECEC)8			(3 '				χ
			•		,			•	•• •

•.

.

· · · ·

| . .,

.

.

.

38. Consider the following pascal program fragment : Var i. j : integer Procedure Y (p, q : integer); Began p: q - q: p:p+qp:q-pend i : =2:i := 3;Y(i, j);If both parameters to Y are passed by reference, what are the values of i and j at the end of the program fragment? (B) i = 1, j = 5 (C) i = 2, j = 3(b) i = 3, j = 2(A) .i = 0, j = 2Which of the following has a major role in implementation of function calls in C? 39. (A) **(B) Data Segment** Processor's registers COT System stack (D) The heap 40. The user microprogramming feature enables the designer to design the microprogrammed controller (A) Bi write his own microcode redefine the microprogram stored in the control ROM (C)(D) none of the above statement is true 41. Comparing the time T1 taken for a single instruction on a pipelined CPU with time T2 taken on a non-pipelined but identical CPU we can say that T1 = T2a (B) T1 > T2(C) T1 < T2T1 = T2 + time taken for one instruction fetch cycle(D) What is the correct sequence of time delays that happen during a data transfer from a disk 42. to memory? (A) Seek time, access time, transfer time Seek time, latency time, transfer time (B) (C) Latency time, seek time, transfer time Di Latency time, access time, transfer time Digital multimeter display is generally -- digits. 43. (B) $2\frac{1}{3}$ (C) 1% (D) 13/ 31/2 44. Generation of an emf due to motion of a coil in a magnetic field (A) Thermocouple **(B)** Piezo electric transducer (C) Photo voltaic cell Moving coil generator ECE08 χ

[Turn over

45.	In π mode of operation of magnetron, the	angular velocity of spokes equal to
	(A) sum of all anode poles/cycles	(B) two anode poles/cycle
	difference between 2 anode poles/cyc	cle (D) difference of all anode poles/cycle
46.	Microwave 4 port circulator can be constru	icted using
	(A) Magic tee and directional coupler	(B) Magic tee and isolator
	(C) Magic tee and attenuator	Magic tee and phase shifter
<u>,</u> 47.	$E_{th} = 2800$ V/cm applied field $E = 3200$ V/c	has the following parameters threshold field im, device length $L = 10 \ \mu$ m doping concentration = 10 CHz. Find the electron drift velocity
	$n_0 = 2 \times 10^{14} \text{ cm}^{-3}$, operating frequency is f	,
	(A) 10 ³ cm/sec 	(C) 10^{15} cm/sec (D) 10^{18} cm/sec
48. '	A parametric amplifier has input and o 4.75 GHz. It is a	utput frequency of 2.25 GHz and is pumped at
	Degenerate amplifier	(B) Travelling wave amplifier
	(C) Lower side band up-converter	(D) Upper side band up converter
49 .	A backward wave oscillator is based on the	· · ·
	(A) Rising sun magnetron	(B) Crossed field amplifier
	(C) Coaxial magnetron	(D) Traveling wave tube
50.	At what condition the transmission line is	called flat line?
	Standing wave ratio is unity	(B) Standing wave ratio is zero
	(C) Standing wave ratio is > 1	(D) Standing wave ratio is < 1
51	In an attenuator the rectangular to cir TE ₁₀ mode into	rcular waveguide transition is used to convert
	$\mathcal{TE}_{11} \qquad (B) TE_{01}$	(C) TM_{10} (D) TM_{11}
52.	A matched load is a single port device ha	aving ideal parameters $Z_{in} = Z_0 = 50 \ \Omega$. What is
	load location in the smith chart?	
	Center of the smith chart	(B) Outside the smith chart
-	(C) Inside the smith chart	(D) None of the above
53.	A GUNN diode	
	(A) Does not have a junction	(B) Can rectify
	(C) Can be used as a CW oscillator	Has negative resistance characteristics
ECE	208	8 χ

χ				. C.	9.			ECE08	
,	(A)	$7.96\mu W/m^2$	(B)	$1.99 mW / m^2$	(C)	$2.99\mu W/m^2$	95	$1.99 \mu W /m^2$	
64.	An ise	otropic antenna	radiatir	ng 100 W of pow	ver, the p	power density a	t 2000 n	n from the source is	
. 63. ·	What (A)	is the directivi	ity of th (B)	e isotropic anto 2	enna? (C)	3	(D)	4	
62 <u>.</u>		tis the radiat ting 5 KW? 75Ω	ion resi	stance of an a 50Ω	antenna (C)		wing 1((D)	0 amps current and 60Ω .	
•1.		n free space? 2.6 m A		2.6 μA		26 m A	(D)	$26 \mu A$	
61.	If the	electric field s	trength	of a plane way	ve is 1 V	m, what is the	strengt	th of a magnetic field	
60. ,		t is the cut off f × 2 cm? 7 GHz	requenc	y for the domin 3.75 GHz	nant mo (C)	de in rectangu 375 GHz	lar wave (D)	eguide of dimensions 2 GHz	
59.	away		n region What is	of the ionosp	here is	at a height of n path?	-	on the earth 200 Km m and has a critical 13.4 MHz	
58.	The r (A)	relative permitt = 0 _.		ionosphere at : <1.	radio fre (C)	equencies is >1	(D)	= 1	1
	What (A)	t is its half pow 60	er beam (B)	width? 70 .	(C)	. 10	(D)	6	
57.					outh is	to have a pow	er gain	of 600 at $\lambda = 10 cm$.	
56.	The c (A)	characteristic in $\mu_0 \ l \in_0 \Omega$	npedan		pace is (C)	$120 \pi \times Z_L \Omega$	(D)	$377 H^2 \Omega$	
	IS (A)	20.5 µs	(B)	22.22 m s	10)	$22.22\mu s$	(D)	25.75 µ s	
55.			-					ce. For a velocity of reception of the echo	
	(A)	$120 \times 10^{6} \text{ W}$		$120 \times 10^3 \text{ W}$		120 W	(D)	12 W .	
54.		0 W carrier is V sideband is tr			-		the tota	al power if 20% of the	;

ECE08 [Turn over

The continuous time unit impulse is defined as 65. $\delta(t) = \frac{d}{dt}u(t) \quad (B) \quad \delta(t) = \int u(t) dt \quad (C) \quad \delta(t) = \frac{d}{dt}r(t) \quad (D) \quad \delta(t) = \int r(t) dt$ Let function $A = \sin w_0 t$ and $B = \sin(w_0 + \phi)$. The power of two signals; P_A and P_B is related 66. as $P_B = \phi P_A$ (B) $P_B = \frac{1}{\phi} P_A$ (C) $P_B = \tan \phi P_A$ $P_B = P_A = P$ (A) The impedance parameters of a two port network are $z_{11} = 6\Omega$, $z_{22} = 4\Omega$, $z_{12} = z_{21} = 3\Omega$. 67. What are the equivalent ABCD parameters? (B) A = 1, B = 5, C = 1/3, D = 4/3(A) A = 5, B = 5, C = 1/3, D = 4/3A = 2, B = 5, C = 1/3, D = 4/3 (D) A = 2, B = 3, C = 5, D = 1What is the convolution of two signals? $x_1(n) = \{1, -1, 2\}$ and $x_2(n) = \{1, -2, 3\}$ 68. **(1, −, 3, 7, −7, 6)** $\{1, -3, 7, -7, 6\}$ (A) (D) $\{1, 3, 7, -7, 6\}$ $\{1, -3, 7, 7, 6\}$. (C) What is the power of the signal $x(t) = 10 \sin\left(50t + \frac{\pi}{4}\right) + 16 \cos\left(100t + \frac{\pi}{3}\right)?$ 69. (C) 100 watts (A) 10 watts (B) 256 watts. 178 watts 70. The impedance of 3 - element Yagi receiving antenna is around (A) · 75 ohms (B) 300 ohms (D) 750 ohms(C) 50 ohms The function of chroma section in the TV receiver tube is to 71. (A) Combine electron beam Separate electron beam · (B) (C) Combine colors Separate colours 72. In television pictures an effective rate of ---- vertical scans per second is utilized to reduce flicker. 50 (D) 5000 (A) 500 (B) 5 In TV, if the picture is very slow to appear and the picture tube may be gassy (its cathode 73. emission very low) (A) No brightness Low brightness (C) **Excessive** brightness Average brightness Video Bandwidth is 74. (B) $R_h \times 2t$ $(C) \quad 2t / R_{h}$ $R_h/2t$ (D) $2R_h/t$ ECE08 10 χ

75.	In radar propagation,	above 100 MHz, t	he ionospl	neric attenua	tion seldom exceed	S
	(A) 1 dB	(B) 2 dB	(C) ·	5 dB	(D) 7 dB	٠
			•	•	•	
' 76.	In radar propagation,	attenuation in tl	he clear a	tmosphere is	seldom a serious	problem at ·
	frequencies below			•		
	(A) 30 GHz	(B) 16 GHz	(C)	16 MHz	(D) 30 MHz	•
77.	A radar pulse sent to	the target return	ıs after 20) μsec. Wha	t is the distance of	f the target
	from the radar?				•	
	(A) 30 Km	(B) 3 Km	. (C)	300 Km	(D) 3000 Km	ı
70	Treaking rador datar	ince		•		
78.	Tracking radar determ	Ines	-		·	
	(A) Range(B) Azimuth angle	•	,			
					· ·	
		elevation and Do	nnler chif	4	• • •	
	italige, azillutil,		, hbier suu	.u	• 1	
		· .				• •
79.	High range resolution	is obtained with	-		<u> </u>	
	(A) High attenuation	n - · ·	(B)	Low attenus	ation	•
1	Short pulse		(D)	Large pulse	•.	
	.					
80.	Consider the following					
		orbit in which th ation is called pr			e same direction as	the earth's
	Reason (R) : Th	e inclination of a	prograde	orbit always	lies between 0° and	1 90°
	Select your answer acc	ording the coding	scheme			
	. (A) Both (A) and (R)	are false	(B)	(A) is false b	out (R) is true	
	(C) (A) is true, but (R) is false	DY	Both (A) and	d (R) are true -	
-			-			
' 81.	Consider the following	statements .				
. 01.			ondere n	ocees the un	, ling satellite signa	l in such a
•	wa	• •	r amplitu	de and the	frequency is altere	
	``	-	-		referred to as	bent pipe ⁻
		-	-		information back to	
	Both (A) and (R)	-			ut (R) is false	
	(C) (R) is true but (A		· (D)		d (R) are false	
·γ			11 ·			ECE08

[Turn over

82.	Mat	rh Liet -	_ I with	List – H	and o	elect the correct answer as per the codes :
نە ر.	ITLOU	List – I		1191 – 11	anu 31	List – II
	(-)			-	•	
	(a)	-	int fartl	nest	1.	Retrograde orbit
		from ea				
	' (b)	Direct	orbit clinatior	ofthic	2.	Mean anomaly
	(c)		•		3.	Apogee
				es betwee	en	*
		90° and				•
	(d)	Averag	e value	of the	4.	Prograde orbit
		angula	r positic	on of the		•
		satellit	e with r	eference		•
		to the p	perigee		•	· · ·
		(a)	(b)	(c)	(d)	- · ·
•	(A)	2	3	4	1.	
	(B)	3	4	• 1	2	
-	(C)	3 ≁	2	1.	4	
	(D)	1	2	3	4	
						· · ·
83.	Mat	+		List – II a	and se	elect the correct answer as per the codes :
		List – I		•		List – II
	(a)	Univer	sal coor	dinated	1.	86, 636.55536 mean sidereal seconds
		time			•	· · · · ·
	(b)	Siderea			2.	Used for all civil time keeping purposes
	(c)		solar d		3.	86, 164.09054 mean solar second
	(d) ,	1 mean	i siderea	ıl day	4.	Time measured relative to the fixed stars
		(a)	(b)	(c)	(d)	
	(A)	1	.2	3	4	•
	(B)	2	3	4	1	*
	(C)	2	4	1	3	· ·
	(D)	3 ,	1	2 "	4	
		•				

ECE08

12

84.	Mat	ch Lis List	•	n List – I	I and se	elect the correct answer as per the codes given below : List – II	
	(a)		oand is di	vided	1.	TDMA	
			small fre		-	· · · · · · · · · · · · · · · · · · ·	
	(b) (c)	Spre	e and forw ad spectr	rum ,	m 2. · 3.	FDMA Navigation technique	
			tiple acce			-	
	(d)		d reckonii		4.	CDMA	
		(a)	(b)	(c)	(d)		
•	(A)	1.	2	3	4	· ·	
	(B)	2	4	3	1		
,	(C)	3	$\frac{2}{1}$.	1 -	4	· ·	
	10)	2	· I .	4	3	· •	
	~		· · · · ·	· ·		, ·	
85.	Cons	sider t	he follow	ing state	ments :		
	Asse	rtion ((A) · .	•	:	A transponder is the series of interconnected units which forms a single communication channel between the receive and transmit antennas in a communication satellite.	
	Reas	son (R))		: •	A transponder cannot handle one modulated carrier such as a TV signal.	
	Seleo	ct vou	r answer			· .	
	(A)	-	h (A) and	(R) are f	alse	(A) is true but (R) is false	
	(C) ·		is false bu			(D). Both (A) and (R) are true	
-	(0)	() -		-	i uc		
86.			gnal of ba (2.56. Its			Hz is used to frequency modulate a carrier, the deviation	
	(A)	4.2	MHz			(B) 10.752 MHz	
	(0)	29.9	MHz			(D) 8.4 MHz	
•	-			•			
87.	Cone	idor ti	he followi	ing states	monta :		
07.		rtion (-		satellite wideband receiver, a duplicate receiver is	
				provide	d , this	s combination is called redundant receiver.	
	Reas	on (R)	· . :	Althoug time.	gh two	are provided, both are used simultaneously at a given	
	Choo	se you	ir answei	•			
	(A)	Botł	ı (A) and	(R) are t	rue	(B) Both (A) and (R) are false	
	(C)		s false bu			(A) is true but (R) is false	
χ	•					13 ECE08	

[Turn over

,

۵

88. Consider the following statements :

Assertion (A) : The total number of maximal sequences that can be generated by an n-stage shift register is $Smax = \phi(N) \cdot n$.

Reason (R) : $\phi(N)$ is known as Bessels function.

Choose your answer

(A) (A) is true but (R) is false (B) (A) is false but (R) is true

(C) Both (A) and (R) are false (D) B

(D) Both (A) and (R) are true

89. Consider the following statements :

Assertion (A) : One of the most important properties of code signal C(t) is its auto · correlation.

Reason (R) : The auto correlation is not a periodic sequence.

(A) (A) is true but (R) is false (B) (A) is false but (R) is true

(C) Both (A) and (R) are true (D) Both (A) and (R) are false

90. Consider the following statements :

Assertion (A) : The CATV system employs a single outdoor unit, which separates feeds available for each sense of polarization, like the MATV system.

Reason (R) : So that, all the channels are made available simultaneously at the indoor receiver in CATV systems.

Choose your answer

(A)	(A) is false but (R) is true	(B)	(A) is true but (R) is false
-			

Both (A) and (R) true (D) Both (A) and (R) false

91. At 1300 nm, the quantum efficiency for InGaAs is 90%. The responsivity is equal to

(Å)	82 A/W		•		(B)	85 A/W
(C)	92 A/W			•	(D)	97 A/W

14

92.	Gene	erally, the SM fiber will have a cor		•
	(A)	10 μm	(B)	$30 \mum$
	(C)	$50 - 100 \ \mu m$	(D)	$50-200 \ \mu m$
	• •			· · · ·
93.	The	fiber splice is a joint b	etween 2 f	fibers.
	(A)	Temporary	(B)	Permanent
	(C)	Demountable	(D)	Alignment
94.	Whe	n the mean ontical nower launche	 d into an S	8 Km length of fiber is 120 μw . The mea
04.		al power at the fiber output is 3μ		
	(A)	10 log ₁₀ 25	CRI	10 log ₁₀ 40 · · ·
			(D)	
	(C)	$20\log_{10} 40$	(D)	20 log ₁₀ 25
95.	Whie	h of the following use syndrome d	acoding?	
90.	. WIII	Block codes	(B)	Line codes
	(C)	Convolutional codes	. (D)	Cyclic codes
		Convolutional codes		,
96.	For a	a hamming distance of "6" how ma	ny errors c	an be corrected?
	(A)	3 errors (B) 6 errors	yer	2 errors (D) 1 error
97.	lfap	oulse carries more than one bit the	pulse rate	e is
	(4)	Lower than bit rate	(B)	Greater than bit rate
	(C)	Equal to bit rate	. (D)	Equal to 1
·				
98.	For a	any positive integer m and t , the bl	ock length	of Bose – Chaudri – Hocquenghem code is
	(A) [·]	2t+1 (B) $n-t$	191	$2^m - 1$ (D) 2^m .
99.	Fort	the code $X_1 = (000, 111)$ how many	orrore can	he successfully detected?
55.	rort		•	
		upto two	· (B)	upto three
	(C)	upto seven	(D)	upto four
χ	- ·	· · ·	15	ECEO
				[Turn over

÷

.

ECE08 [Turn over

. •

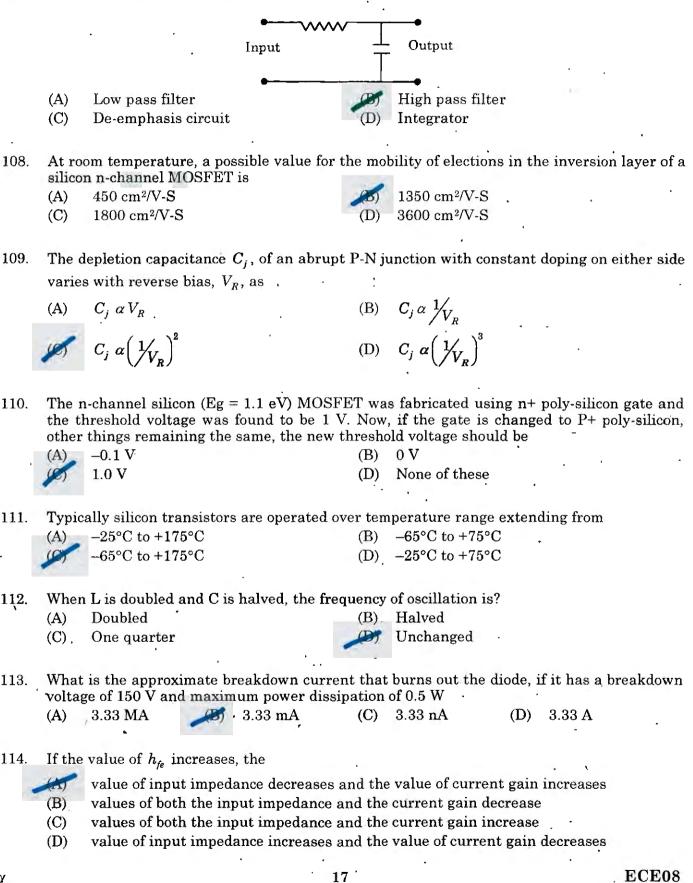
100.	detect	- · · · ·		ngth of 1300 nm fall on an InGaAs photo hole pairs are generated. The quantum
·	(A)	75%	(B)	80%
	(C)	85%	(D)	90%
101.	What	type of wiring does ISDN use?		
	(A)	Coaxial cable	(B)	Twisted pair .
	.(C) .	Solenoid	(D)	Thin wire
102.	The le	ocal loop is		•
	(A)	An antenna used for telephone con	nmunicat	ions
	(B)	The connection between telephone	subscrib	er and central office
	(C)	A cell site		
	(D)	A ring network used to connect use	ers to the	telephone office .
			*	
103.		essage switching network is design 10 messages/min. Find the average		95% utilization of its transmission links. time
	(A)	1.058 min .	(B)	1.805 min
	(C)	1.508 min	(D)	1.068 min
104.	Block	ing probability of a 3 stage switch in	n term of	inlet utilization P
	(A)	$B = [1 - (1 - P/\beta)^2]^K$	(B)	$B = \left[\left(1 - P / \beta \right)^2 \right]^K .$
-	(C)	$B = [(1 - P/\beta)^2]$	(D)	$B = [(1 - P/\beta)^2 - 1]^K$
105.	Telep	hone traffic is measured		
	(A)	with echo cancellers	(B)	by relative congestion
	(C)	in terms of the grade of service	(D)	in erlangs
		2	/	
106.	Ident	ical telephone numbers in different	parts of c	country are distinguished by their
	(A) -	language digits	(B)	access digits
	(C)	area codes	(D)	central office codes
-			_	· .
ECE	08		16	. χ

••

•

.

.


.

χ

l

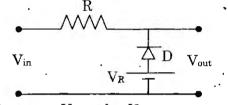
i

107. Which statement is not correct? The given circuit is

[Turn over

	۲DI	1	e	116: J		JD/J-, a Ja	-hour 100 h	• •
11 <u>5</u> .		voltage gain of ency gain is 84						Hz. If the m
		' 60 dB	(B)	52 dB	(C)		(D)	64 dB
	•							
116.		e using a bipol						
		nterchanged n he biasing is s						
-		following?	suitably	aujusteu, ti	le mierch	ange of term.	1111a18 will re	SUIL IIIU WI
	(A)	Infinite gain			' (B)	Zero gain		
	(C)	No change ir	n gain at	all .	(3)	Reduced g	gain .	
117.	Thore	ommon – mod	la voltage	a dain of a d	ifforentia	l amplifier is	\mathbf{R}	divided by
11 <i>1.</i>								
	(A)	ľ _e	(D)	1 _e /4	. (U)	$\cdot 2r'_e$.		μn _E
110	•	· · · · · · · · · · · · · · · · · · ·	b		- L - EP - P	- -	100 1/11	4 a J. 1.
118.		pn transistor 10 mA . The va	•					t a dc blas
•	• <i>c</i> − _. - `(A)	100 PF		120 PF		150 PF	(D)	300 PF
	* */	TAA T T		1		100 11	(ν)	
119.	Rippl	e factor of cap	acitor fil	lter is				
						1	· /D\	√3
	(1)	$\frac{1}{4\sqrt{3}fCR_L}$	(B)	$\sqrt{3} f CR_r$	(C)	$\sqrt{3}4 f CR_r$	- (D)	$\overline{4fCR_L}$
		· · · · ·		·		- 1		,* _*
120.	Maxi	mum efficienc	y of Brid	ge rectifier	is		• •	
	(4)	81.2%	•	8.12%	(C)	40.6%	(D)	4.06%
		•		·				•
121.	Perig	ee means	•				,	
	()	Smallest rad						1
4	(B) (C)	Largest radi				int on powth	ta estallita	
	(D)	The distance		-	-			
	<u> </u>							
122. [·]	The I	D.C. componer	nt of indu	actor filter is	з.			
	u	$2V_m$	(B)	V_m	. (C)	V_m	(D)	V ·
-		π	(L)	π	· (0)	2π	、D) ·	V_m
						-	•	
123.		factor of half					~	0
	(A)	π.,	(B) ⁻	$\pi/4$		$\pi/2$	• (D).	Ζπ
	Ŧ	, . .			· C T7	, 		
124.		centre tapped						
		nd of the seco						**
	(A) .	V_m .	Pr	$2V_m$.	· (C)	$\frac{m}{2}$ ·	(D)	$\frac{V_m}{\sqrt{2}}$
				·	18		. '	,
ECEO	0							

125. Which of the following is also called as Eccles Jordan circuit?


- (A)

Astable Multivibrator Bistable Multivibrator

- (B) Monostable Multivibrator
- (D) Schmitt Trigger

126. Clamping circuit theorem is mathematically expressed in the standard notation as

- (A) $\frac{A_f}{A_r} = \frac{R}{R_f}$ $\frac{A_f}{A_r} = \frac{R_f}{R}$ (C) $\frac{A_r}{A_f} = \frac{R_f}{R}$ (D) $\frac{A_r}{A_f} = 1 + \frac{R_f}{R}$
- 127. A sinusoidal wave of amplitude V_m is applied as an input to the parallel diode clipping circuit shown in fig. What is its output voltage?

Output is allowed in between V_R and $+V_m$

(B) Output is allowed in between $-V_R$ and $+V_m$

(C) Output is allowed in between $-V_R$ and $-V_m$

(D) Output is allowed in between $-V_m$ and V_{R_1}

- 128. In a multi-diode circuit containing n-diodes, the following statement is not correct
 - (A) The circuit has $2^n (n+1)$ suppressed states
 - (B) The circuit has n-break points

The circuit has n realizable states

(D) . The transfer characteristics has n+1 straight line segments

- 129. The granular noise can be reduced by
 - (A) In

(CT

- Increasing the step size Reducing the step size
- (B) Increasing input signal amplitude

(D) Reducing input signal amplitude

- 130. In PLL, the range of input frequency for which the initially unlocked loop will lock on an input signal is known as
 - (A) Cutoff range

Capture range

Japture range

- (B) Lock range
- (D) Space range
- 131. Trans conductance amplifier is a

Voltage to current converter

(C) Current controlled current source

(B) Current to voltage converter

- (D) Voltage controlled voltage source
- 132. An audio signal ranging from dc to 20 kHz could be reconstructed by taking uniformlyspaced samples at a rate of40,000 samples/second(C)10,000 samples/second(D)4,000 samples/second

133.	How many flip flops are required to construct a mod-128 counter? What is the largest
• 1	decimal number that can be stored in a mode-64 counter?
2	(B) Five flip flops, largest decimal number is 63
	(C) Seven flip flops, largest decimal number is 15
	(D) Five flip flops, largest decimal number is 32
134.	Implementation of Boolean function of n variables with a multiplexer that has n selection inputs for the total number of minterms of
•	(A) $2n$ (B) $4n$ (C) n^2 $(C) 2^n$
•	
135.	Consider the following statements:
•	Assertion (A): A decoder is similar to a demultiplexer, with one exception – there is an data input for the decoder.
	Reason (R) : The inputs of the decoders are data input and control input.
•	Select your answer according to the coding scheme
-	 (A) (A) is false but (R) is true (B) Both (A) and (R) are true (C) (A) is true but (R) is false (B) Both (A) and (R) are false
	(C) (A) is the but (h) is taise Doin (A) and (h) are taise
136.	Match the List-I with List-II as per the codes given below List-I List-II
	List-I List-II (a) $Y = AB + CD$ 1. Not operation
	(b) $Y = (A+B)(C+D)$ 2. Sum of products equation
	(d) $Y = \overline{A}$ 4. Demorgan's first theorem (a) (b) (c) (d)
•	(a) (b) (c) (d) (A) 1 2 3 4
	(B) 4 2 3 1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(D) 3 1 2 4
137.	Match the List-I with List-II, as per the codes given below
	List-I List-II (definitions)
_	(a) A digital circuit designed 1. Active low
	to keep track of a number of events
	(b) A group of flip flops 2. Negation
	used to store a binary
	number (c) A circuit that will invert 3. Register
	a digital level
•	(d) An action occurs when 4. Counter
	the input is low (a) (b) (c) (d) \cdot
	(B) $3 2 4 1$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	•

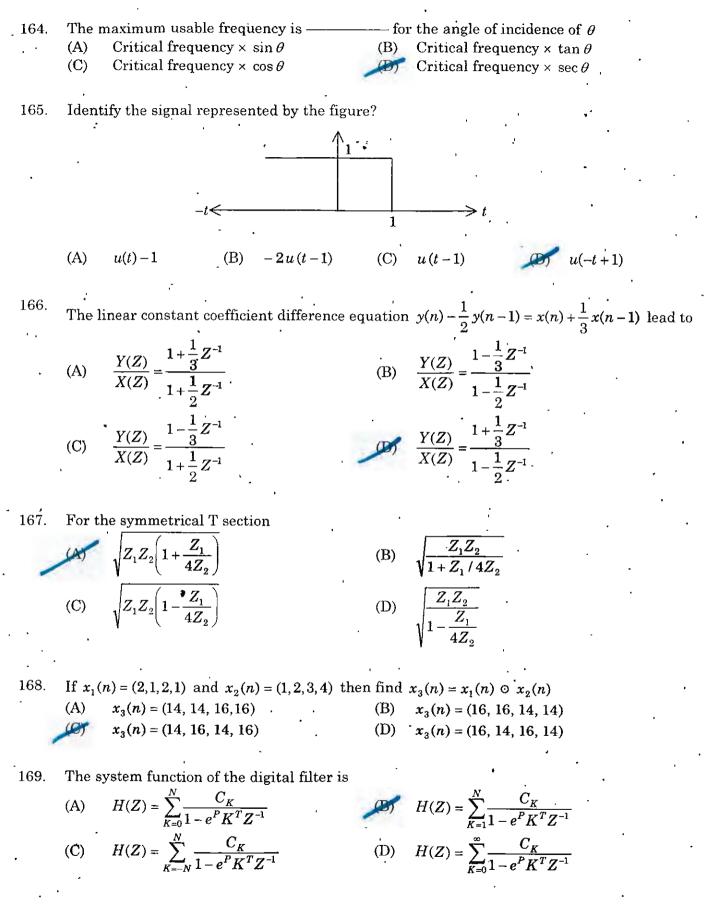
20

138.	Which of the following is not 8-bit microproces	ssor?
		(B) Motorola 6800
	() TI TMS 9900 ()	(D) Zilog Z80
139.	How many number of address lines are require	ed to address 8 KB EPROM memory?
	(A) 8 (B) 12	(D) 16
140.	What is the size of optical compact disk which	is used for recording high quality music?
140.		
		(C) 5.7 inch . (D) 3.5 inch
· 141.	С, С	tics :
	Track size : 10,000 bytes	
	Rotational latency : 10 ms/revolution	
	Block size : 1000 bytes	· .
		measured in bits per second as is conventional
	for this disk unit?	
	(A) 4000 Mbps (D) 8 Mbps (C	C) 6400 Mbps (D) 4250 Mbps
142.		ting of 128 lines with a line size of 64 words.
		d in main memory. The number of bits in the
	TAG, LINE and WORD fields are respectively.	
	(A) 9, 6, 5 (C) 7, 7, 6 (C)	C) 7, 7, 5 (D) 9, 5, 6
143.	Which of the following data structure is used	d by a compiler to manage information about
	variables and their attributes?	
	(A) Abstract syntax tree . (B	B) Linked list
	(C) Parse table	Symbol table
		•
144.	List-I shows some operating system abstractio	one and List-II hardware components. Match
	List-I with List-II and select the correct answer	
	List-I List-II	
	P. Thread 1. Interrupt	
	Q. Virtual address space 2. Memory	· .
	R. File system 3. CPU	
	S. Signal 4. Disk	
		B) P-1; Q-2; R-3; S-4
	P-3; Q-2; R-4; S-1 (D	•
2		-, -, -, -, -, -, -, -, -, -, -, -, -, -

21

χ

ECE08 [Turn over


	as (A)	Reuse	(3)	Output back of	f (C)	Offset	- (D) _,	Framing	•
146.	Precis	sion is defined a	IS				•	•	
	(A)	Repeatability	. ^(B)	Reliability	(C)	Uncertainty	(D)	Accuracy	
147.	-	ermeability of a alled as	ı magr	etic material cha	inges	when it is subj	ected to	a mechanical	stress,
	(A)	Hall effect		. ,	(3)	Villari effect			
Ŧ	(C)	Piezo electric e	effect		(D)	Elastic effect		:	-
148. ,		Calculate the t	ime co	temperature of 2 nstant of the the	rmom	eter, if it take	s 30 sec	to show a rea	
	SAY	$\tau = 10 \sec$	(B)	$ au=15~{ m sec}$,	(C)	$\tau = 5 \text{ sec}$	' (D)	$\tau = 20 \sec$,
149.	Consi	der a strain ga	uge of	$R_g = 350 \ \Omega$ and	gauge	e factor of 2.82	Calcul	ate equivalen	t strain
	•	-		hunted across the	-		<i>γ-</i>	· .	
	U	1236 × 10 ⁻⁶ cm		······································	(B)	1236 × 10 ⁻³ cr	n/cm		
	(C)	1236×10^{-13} cm		• •	• •	1236×10^{-8} cr			•
150.		der a capacitor late the capacit		a 4 cm ² , 0.02 cm	. gap :	and permitivit	•		-12 F/m.
	(A)	17.78 μF	(D)	17.78 pf	(C)	. 17.78 nf	、 ' (D)	17.78 mf	
151.				t measure signal 6. What is the ma				· ·	vith an
	(1)	$\tau = 0.509 \times 10$	⁻³ sec	· ·	(B)	$\tau = 0.905 \times 10^{-10}$	0^{-3} sec	•	
	· (C)	$\tau = 0.050 \times 10$	⁻³ sec	•	(D)	$\tau = 0.950 \times 10^{-10}$	0-3 sec		•
152.				e measured value of measurement.	and	the true value	of the	unknown qua	ntity is
	(A)	Limiting error			(1)	Absolute erro	r		
•	(C)	Relative error	•		(D)	Percentage er	ror		•
153.	The c	avity magnetro	n uses	strapping to	-		•		
	(A)	prevent mode			(B)	prevent catho	de bacl	k heating	
	(C)	ensure bunchi		•	(D)	improve the p		-	

- 154. The pilot carrier in SSB is used for
 - (A) Providing better noise immunity
 - (C) Lower power consumption

Frequency Stability purpose None of the above (D)

Turn over

Pre emphasis deals with 155. (A) Emphasizing low frequency components BY Emphasizing high frequency components Emphasizing a band of mid frequency components (C)(D) Eliminating a band of mid frequency components Fourier analysis shows that a odd signal consists of 156. Fundamental sine waves only (A) (B) Fundamental cosine waves only A Fundamental sine wave and infinite number of harmonics COY (D) None of the above 157. A message signal made of multiple frequency components has a single tone sine wave of 400 Hz and sound of frequency components with lowest value of 800 Hz and highest value of 1600 Hz. What should be the minimum sampling frequency to sense the information present in this signal? 400 Hz 800 Hz ' 3200 Hz (A) . (B) (C)1600 HzFollowing is not the purpose of modulation 158. (A) Multiplexing Effective radiation (\mathbf{B}) (C) Shifting the spectrum Increase in signal power 159. Which of the following modulation is digital in nature? PCM (A) PAM PPM PWM (B) (C)160. The PAM signal can be detected by (A) Band pass filter Band stop filter (B) · (C) High pass filter Low pass filter 161. Flat top sampling leads to Aperture effect (B) . (C) Loss of signal (D) Aliasing Gain of signal Envelope detector is used in the detection of 162. AM wave (B) DSBSC wave SSB wave (C)(D) FM wave 163. In a broadcast superheterodyne receiver having no RF amplifier, the loaded Q of the antenna coupling circuit at the input to the mixer is 100. If the intermediate frequency is 455 KHz, calculate the image frequency at 1000 KHz. (A) 1100 KHz (B) 1200 KHz (C)1455 KHz 1910 KHz 23 ECE08 χ

ECE08

24

·χ

170. In PA (A) (C)	AL-B, the luminance sig Y = 0.59 R + 0.30 G + 0 Y = 0.30 R + 0.11 G + 0).11 <i>B</i>	(B) (D)	Y = 0.30 R + 0.5 $Y = 0.11 R + 0.3$			· .
171. `The (A) (C)	three primary colours a Red, Yellow, Orange Red, Blue, Cyan	re		Red, Blue, Yello Red, Blue, Gree		:	
	the mixer stage in a t ectively is	ransmitters the	beat f	requency of vide	eo sig	nal and au	idio signal
(C)	38.9 MHz, 33.4 MHz 38.9 MHz for both			33.4 MHz, 38.9 33.4 MHz for bo			
173. The l (A) .	bandwidth of a channel 5 MHz (B)	in a TV system i 6 MHz		7 MHz	(D)	8 MHz	
174. The l (A)	horizontal sweep oscilla 625 Hz (B)	tor in a TV opera 1250 Hz	1000	15625 Hz	(D)	50 Hz	
175. The r (A)	naximum range of pulse Pulse peak power Pulse energy	-	(B)	Pulse duration Pulse repetition	, rate		
	e peak transmitted powe e will be increased by a 2 (B)	factor of	•	increased by a f	actor (D)	of 16, the 16	maximum
177. Receirrelati	iver noise temperature ion	is proportional	to no	oise power spec	tral d	lensity th	· · · rough the
(A)	$T = N \cdot KB \cdot $	$T = \frac{N}{KB}$	(C)	$T = \frac{NB}{K}$	(D)	$T = \frac{NK}{B}$	
	definition of fluctuation $L_{fe} = \frac{D_e(n_1, n_e)}{D_0(n)} \qquad .$ $L_{fe} = \frac{D_e(n_e)}{D_0(n)}$		(B)	$L_{fe} = \frac{D_0(n_1, n_e)}{D_e(n)}$		•	
(C)	$L_{fe} = \frac{D_e(n_e)}{D_0(n)}$		(D)	$L_{fe} = \frac{D_0(n)}{D_e(n_e)}$	•		•
179. In CV	V radar, which tracking Doppler tracking	-		primary means Range tracking	of re	solving tar	gets?
(C)	Angle tracking		• •	Line tracking	•		
χ		25				EXT.	ECE08

[Turn over

180. Consider the following statements :

Assertion (A) : In a spin - stabilized satellite, the satellite body is spun at a rate between 30 and 100 rpm about an axis perpendicular to the orbital plane

Reason (R) : To maintain stability, moment of inertia about the desired spin axis should at least 10% greater than the moment of inertia about the transverse axis

Select your answer

(A) Both (A) a	and (R) are false		(B)	(A) is true but (R) is fals
----------------	-------------------	--	-----	-----------------------------

(C) Both (A) and (R) are true (D) (A) is false but (R) is true

- 181. Consider the following statements :
 - Assertion (A) : With reference to satellites, an eclipse is said to occur when the sunlight fails to reach the satellites solar panel
 - Reason (R) : Due to an abstruction from a celestial body
 - (A) (A) is true but (R) is false (B) Both (A) and (R) are false
 - (C) (A) is false but (R) is true (D) Both (A) and (R) are true

182. The orbital parameters are eccentricity e = 0.0011501 and radius $\alpha = 7192.335$ Km. The apogee and perigee heights for a mean earth (R) radius of 6371 Km is

- (A)
- Apogee height = 829.6 Km(B)Apogee height = 7000 KmPerigee height = 813.1 KmPerigee height = 813.1 KmApogee height = 4000 Km(D)Apogee height = 10040 Km
 - (C) Apogee height = 4000 Km
 (D) Apogee height = 10040 Km
 Perigee height = 2000 Km
 Perigee height = 829.6 Km
- 183. A satellite is operated at an EIRP of 56 dBW with an output Back Off (BO) of 6 dB. The transmitter feeder losses amounts to 2 dB and the antenna gain is 50 dB. The power output of the TWTA (Travelling Wave Tube Amplifier) required for full saturated EIRP is

(A)	8 dBW			BI	14 dBW	
(C)	1 dBW			(D)	0 dBW ·	

ECE08

184.	Mat	ch List	– I with	ı List – I	I and se	elect the correct answer as per the codes :
_		List –	I			List – II
•	(a)	The pa	ath follo	wed by a	a 1.	True Anomaly
		satelli	te arou	nd the		•
		prima	ry will b	e an ellip	se	
	(b)	The a	ngle fro	m the	2	Keplerian element set
•		perige	e to the	satellite	•	· · · · · ·
		positic	on, mea	sured at		· _
	(-)		rth's ce:		0	Devizee
-	(c)		– Orbit		<u>3</u> .	· Perigee
				llites are		· -
		eleme		orbital		
	_ (d)		oint of c	lagget	4.	. Kepler's first law
	. (u)		ach to∙e	C.		
		(a)	(b)	(c)	(d)	
	(A)	4	2	3	1	
	(B)	3	$\cdot 2$	4	· ' 1	· · ·
-	(C)	2	3 ,	. 1	4	· · · ·
	(D)	4	1	2.	3	· · · ·
			-			•
	•				ı	,
185.		•		ing state	ements	
- •	Asse	ertion (A	1)		•	Three axis stabilized satellites have the disadvantage that extendible solar arrays used in these satellites are
						unable to provide power when the satellite in transfer
		•	L			orbit.
	Reas	son (R)		•	:	The arrays are in intact during this time.
•	Sele	ct your	answer	· -		
	(A)	(A) is	true bi	ut (R) is f	alse	(B) Both (A) and (R) are false
10	(C)	Both	(R) and	(A) are	true	(D) (A) is false but (R) is true
χ	14			,		27 ECE08
						[Turn over

186. Consider the following statements :

.

	Asse	ertion (A)	:	For the constan		nal – like noise, the spectral density of the noise power is
٩	Reas	son (R)	:	Referre	d to a :	flat spectrum.
	Cho	ose your a	inswer			
	(A)	Both (A	() and	(R) are ti	ue	(B) Both (A) and (R) are false
	(C)	(A) is t	rue bu	t (R) is fa	lse	(D) (A) is false but (R) is true
187.	Mat	ch List –	l with	List – H	and se	elect the correct answer as per the codes :
		List – I				List – II
	(a)	To ensu:			1.	Loop back
		arrive th				
		their cor				
	(b)	Initial po traffic bu			2.	Network synchronization
		informat	ion sin	ilar to		
. '		that carr	ied in t	he		
		reference	e burst			
	(c)	It refers	to the	fact that	t 3	Burst code word
	,	an earth	ı static	n receive	s	· ·
		its own	transn	n is sion,		
		from wh	ich it e	an		••
		determi	ne ran	ge		
	(d)	It is use burst tir			4.	Preamble
	•	(a)	(b)	(c)	(d)	
	(A)	3	2	4	1	
	(B)	2	3	4	$\cdot 1$	
	(C)	2.	4	1	3	•
	(D)	1	2	3	4	
•		•				·
188.	Con	sider the f	followi	ng stater	nents	:
	Asse	ertion (A)	:			ion velocity of the acoustic wave is much higher than that nagnetic wave.
	Rea	son (R)	:	The sur	face ac	coustic wave device exhibits useful delay characteristics.
	(A)	Both (A	() and	(R) are fa		(A) is false but (R) is true
	(C)			t (R) is fa		(D) Both (A) and (R) are true
	x = 7			<u>, , ,</u>	-	

ECE08

.

.

28

- 189. A given silicon avanche photodiode has a quantum efficiency of 65% at a wavelength of 900 nm. Suppose 0.5 μW of optical power produces a multiplied photocurrent of 10 μA . What is the multiplication M?
 - (A) 33 (B) 38 (D) 48

•190. Laser diodes typically having response time of 1 ns and spectral width of 2 nm are capable of coupling luminescent power of

- (A) Less than ten milliwatt
- (B) Tens to hundreds of microwatts
- (C) · Hundreds of watts
- (B)

Tens to hundreds of milliwatts

- 191. The least attenuation of standard single mode optical fibers are at
 - (A)
 1310 nm
 (B)
 810 nm

 (C)
 1500 and 1300 nm
 (B)
 1550 nm

192. The typical core dimensions of single mode step - index fiber is

(A)	$125-140 \ \mu m$	· (B)	$8-50 \mu m$
(0)	$8 - 12 \ \mu m$	(D)	$50-200 \ \mu m$

193. For a silica fiber the refractive index of core layer is 1.56 and that of cladding is 1.35. Calculate numerical aperture

5	0.78			(B)	, 7.8
C)	0.078	.•	•	(D)	78

194. The radiative and non radiative recombination lifetimes of the minority carriers in the active region of a double – hetero junction LED are 60 nsec and 100 nsec respectively. What is the total carrier recombination lifetime?

- (A) 37.5 psec
- (C) 3.75 nsec

χ

(D)

37.5 nsec

3.75 psec

195.	A sou	urce generates 4 messages. The entropy of the source will be	maximum when
	(A)	Two of the probabilities are 1/2 each and other is zero	

(B) All probabilities equal

- (C) One of the probabilities equal to 1 and two others are zero
- (D) The probabilities are unequal

196. Given a channel with an intended capacity of 20 Mbits. The Bandwidth of this channel is 3 MHz. What is S/N ratio required in order to achieve this capacity?

 (A) 200
 (B) 1000

 (C) 10
 (D) 100

197. Which statement is not correct?

٠

- (A) When the probability is zero the information conveyed is zero
- (B) When the probability is one the information conveyed is zero

(C) When the probability are equal the entropy is maximum

(D) When the probability are equal the entropy is minimum

198. A communication channel with AWGN has BW of 4 KHz and an SNR of 15. Its channel capacity is

(B)

(A) . 16 kbps(C) 32 kbps

(D) 456 kbps

1.6 kbps

199. Which code has the highest efficiency?

- (A)Uniqly decodable code(B)Kraft code(C)Huffman code(D)Shannon Fano code
- 200. The maximum number of channel, $C = \frac{125}{2t_e}$; where t_e is the memory cycle time. The expression for C is related to memory switch (B) linear

(C) non linear . (D) digital

ECE08

30