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Vibrational Motion: 

Consider the following restoring force that acts on a stretched spring (Hook’s Law) 

)( 0 xXkF −−= ; where k is the force constant 

and x is the displacement of the spring from the 

equilibrium position. 

The potential energy is, 2
0 )(

2
1

xXkV −= .  

This is the potential energy associated with a 

harmonic oscillator. 

X0 is the equilibrium position of the spring. 

 

Now, consider molecules where real chemical bonds exist.  For simplicity and 

convenience one can assume that the vibrational motion of the chemical bonds to be 

harmonic and thus want to find the energy associated with the vibrational motion of the 

molecular bonds.  Consider, for example, a carbon-carbon bond.  The bond stretched and 

compressed between an equilibrium distance of R0 to R0 ± r, where r is the extent of 

stretching (compression). 

 

 

 

 

One can simplify the equations by setting X0 = 0 (origin of coordinates).   
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One can write the Schrödinger wave equation for the system: 

Υ=Ψ+Ψ− Ekx
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The solution of the above equation is not simple, but well known in mathematics. 

The details of the solutions appear like 
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)( yHv is a Hermite polynomial.  The values for different v are 
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Also, the Hermite polynomials are the solutions of the differential equation 

022 '" =+− vvv vHyHH ; where the primes denote differentiation. 

They Hermite polynomials satisfy the following recursion relation 

022 11 =+− −+ vvv vHyHH  

An important integral related to this is  
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Thus the wavefunction for the ground state is: 
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The wavefunction for the first excited state is 
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In the figures below assume n = v 
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The energy expression for the 

harmonic oscillator is 

ω�)
2
1

( += vvE  

v is the quantum number and 

takes the values of v = 0, 1, 2, 

3,…… 

m
k=ω  

When v = 0, the minimum 

energy is ω�
2
1

. 

This is called zero point energy 

Explanation for zero point energy.  Just like the particle in a box, the oscillator here is 

confined in a potential well.  Hence its position is not completely uncertain (that is its 

position uncertainty is not infinity).  Hence its momentum is not zero.  Thus its kinetic 

energy is not zero.  Hence the zero point energy. 

Normalization of the wavefunction 2
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Nv is not known.  The function needs to be normalized.   
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One can show that for a harmonic oscillator  

 

 

 

 

 

Thus  

 

 

 

Since the total energy is E= T + V 
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