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CHAPTER 1

Tutorial Problems

1.1. Power series and series solutions

Problems.

(1) Find the radius of convergence of the following power series:

Solution. Method used: lim
n→∞

∣

∣

an+1

an

∣

∣ =
1

R

(a)
∑

xn
Solution. R = 1

(b)
∑ xm

m!
Solution. R = ∞

(c)
∑

m!xm
Solution. R = 0

(d)

∞
∑

m=k

m(m− 1) · · · (m− k + 1)xm
Solution. R = 1

(e)
∑ (2n)!

22n(n!)2
xn

Solution. R = 1

(f)

∞
∑

1

xm

m(m+ 1) · · · (m+ k + 1)
Solution. R = 1

(g)

∞
∑

1

nn

n!
xn

Solution. R = e−1

(h)

∞
∑

1

(2n)!

nn
xn

Solution. R = 0

(i)

∞
∑

1

(3n)!

2n(n!)3
xn

Solution. R = 2/27

(2) Determine the radius of convergence of
∑

n!xn2

,
∑

xn! and
∑

p prime

xp.

Solution. (i) Let an = n!xn2

. Then
∣

∣

an+1

an

∣

∣ = (n+ 1)|x|2n+1. Hence

lim
n→∞

∣

∣

an+1

an

∣

∣ =

{

0 if |x| < 1,

∞ if |x| ≥ 1.

1



2 1. TUTORIAL PROBLEMS

Therefore, convergence if |x| < 1 and divergence otherwise. Hence R = 1.
(ii) Let bn = xn!. Then

lim
n→∞

∣

∣

bn+1

bn

∣

∣ = lim
n→∞

|x|n!n =











0 if |x| < 1

1 if |x| = 1

∞ if |x| > 1.

(iii) Let pn denote the nth prime number. Then the series is
∑

xpn . Let
cn = xpn . Then

∣

∣

cn+1

cn

∣

∣ = |x|pn+1−pn .

Since pn+1 − pn ≥ 2, |x|pn+1−pn is greater, less or equal to |x|, according
as |x| is greater, less or equal to 1. Therefore, lim sup |x|pn+1−pn is strictly
smaller than 1 if |x| < 1, lim inf |x|pn+1−pn is strictly greater than 1 if
|x| > 1. Hence, by the refined ratio test, the series converges if |x| < 1
and diverges if |x| > 1, so R = 1. Note the series diverges at |x| = 1 due
to terms not converging to 0.
Aliter: Since pn > n, |x|pn is greater, equal or less than |x|n according
as |x| is greater, equal or less than 1. By comparison test against

∑ |x|n,
∑

xpn converges if |x| < 1 and diverges if |x| ≥ 1. Similar Aliter works
for (ii).

(3) Show that if
∑∞

n=1 anx
n has radius of convergence R, then

∑∞
n=1 anx

2n

has radius of convergence
√
R and

∑∞
n=1 a

2
nx

n has radius of convergence
R2.

Solution. (i) Let x2 = z. Then
∑

anx
2n =

∑

anz
n converges for

|z| < R and diverges for |z| > R. Equivalently,
∑

anx
2n converges for

|x| <
√
R and diverges for |x| >

√
R. Hence the radius of convergence is√

R.
(ii) We know that lim sup |an|1/n = 1/R. So lim sup |a2n|1/n = 1/R2.
Hence the radius of convergence is R2.

(4) Apply the power series method around x = 0 to solve the following differ-
ential equations. What step recursion do you get in each case?
(a) (1− x2)y′ = y

Solution. Let y =
∑

anx
n. Substitution yields a0 = a1 and

(n+ 1)an+1 = (n− 1)an−1 + an, n ≥ 1.

(This is a 3-step recursion.) By induction on k, one can show that

a2k = a2k+1 and 2ka2k = (2k − 1)a2k−2.

Now

a2k =
2k − 1

2k
a2k−2 = · · · = (2k)!

(2kk!)2
a0.

Combining with a2k+1 = a2k,

y = a0

∞
∑

k=0

(2k)!

(2kk!)2
(x2k + x2k+1) = a0(x+ 1)

∑ (2k)!x2k

(2kk!)2
.
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This can be written in closed form as follows.

y = a0

√

1 + x

1− x
= a0(1 + x)(1− x2)−1/2.

(b) y′ = xy, y(0) = 1

Solution. Let y =
∑

anx
n. Then

(n+ 1)an+1 = an−1, n ≥ 0, a−1 = 0,

which is a 3-step recursion. The initial condition y(0) = 1 implies
a0 = 1. Since a−1 = 0, we have aod = 0, and for the even coefficients

a2n =
a0
2nn!

=
1

2nn!
.

Therefore,

y =
∑ x2n

2nn!
= ex

2/2.

(c) (1− x2)y′ = 2xy

Solution. Let y =
∑

anx
n. Then a1 = 0 and the recursion is

an+1 = an−1. (This is a 3-step recursion.) Hence aod = 0 and
a2n = a0 and

y = a0
∑

x2n =
a0

1− x2
.

(d) y′ − 2xy = 1, y(0) = 0. Use the solution to deduce the Taylor series

for ex
2 ∫ x

0
e−t2 dt.

Solution. Let y =
∑

anx
n. The initial condition y(0) = 0 implies

a0 = 0. Further a1 − 2a0 = 1 which implies a1 = 1. The general
recursion is

(n+ 1)an+1 = 2an−1, n ≥ 1.

(This is a 3-step recursion.) Hence a2n = 0 and

a2n+1 =
2a2n−1

2n+ 1
= · · · = 2na1

(2n+ 1)(2n− 1) . . . 3
=

22nn!

(2n+ 1)!

since a1 = 1. Hence

y =
∑ 22nn!x2n+1

(2n+ 1)!
.

Using integrating factor e−x2

, the differential equation can be written
in an exact form to yield the solution

y = ex
2

∫ x

0

e−t2dt.

By uniqueness of solutions, we conclude that the above power series
is the Taylor series of this function.

(5) Find the power series solutions for the following differential equations
around x = 1, that is in powers of (x− 1).
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(a) y′′ + y = 0

Solution. Let y =
∑

anx
n. Then

n(n− 1)an + an−2 = 0, n ≥ 2

with a0, a1 arbitrary. This gives

y = a0
∑ (−1)k(x− 1)2k

(2k)!
+ a1

∑ (−1)k(x− 1)2k+1

(2k + 1)!

= a0 cos(x− 1) + a1 sin(x− 1).

(b) y′′ − y = 0

Solution. Let y =
∑

anx
n. Then

n(n− 1)an − an−2 = 0, n ≥ 2

with a0, a1 arbitrary. This gives

y = a0
∑ (x− 1)2k

(2k)!
+ a1

∑ (x− 1)2k+1

(2k + 1)!
= a0 cosh(x − 1) + a1 sinh(x − 1).

(6) Find the power series solutions for the following differential equations
around x = 0. What step recursion do you get in each case?
(a) Legendre equation:

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0.

When do we have polynomial solutions?

Solution. Let y =
∑

anx
n. Then

an+2 =
(n− p)(n+ p+ 1)

(n+ 2)(n+ 1)
an, n ≥ 0,

which is a 3-step recursion. This implies a0 and a1 are arbitrary.
Further,

a2 = −p(p+ 1)

2!
a0, a4 = +

[(p(p− 2)][(p+ 1)(p+ 3)]

4!
a0,

a6 = − [p(p− 2)(p− 4)][(p+ 1)(p+ 3)(p+ 5)]

6!
a0, . . .

and

a3 = − (p− 1)(p+ 2)

3!
a1, a5 = +

[(p− 1)(p− 3)][(p+ 2)(p+ 4)]

5!
a1,

a7 = − [(p− 1)(p− 3)(p− 5)][(p+ 2)(p+ 4)(p+ 6)]

7!
a1, . . .

Write y(x) = a0y0(x)+a1y1(x) where the notation is self-explanatory,
y0 is an even function while y1 is an odd function.

We have polynomial solutions if and only if p is an integer: The
coefficients of the power series are zero only for integer values of p,
so this is a necessary condition to have a polynomial solution. It is
also sufficient since in this case either the series y0 or the series y1
terminates,
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(b) Tchebychev equation:

(1− x2)y′′ − xy′ + p2y = 0.

When do we have polynomial solutions?

Solution. Let y =
∑

anx
n. Then

an+2 =
n2 − p2

(n+ 2)(n+ 1)
an, n ≥ 0,

which is a 3-step recursion. This implies a0 and a1 are arbitrary.
Explicitly,

a2 = −p2

2!
a0, a4 = +

p2(p2 − 22)

4!
a0, a6 = −p2(p2 − 22)(p2 − 42)

6!
a0, . . .

and

a3 = −p2 − 12

3!
a1, a5 =

(p2 − 12)(p2 − 32)

5!
a1, a7 = − (p2 − 12)(p2 − 32)

7!
a1, . . .

Write y = a0y0 + a1y1, with

y0(x) = 1− p2

2!
x2 +

p2(p2 − 22)

4!
x4 − . . .

and

y1(x) = x− p2 − 12

3!
x3 +

(p2 − 12)(p2 − 32)

5!
x5 − . . . .

We have polynomial solutions if and only if p is an integer. (Suppose
p is an integer. Then either the series y0 or the series y1 terminates,
according as p is even or odd. Accordingly, on setting either a1 = 0
or a0 = 0, we get a polynomial solution of degree p.)

(c) Airy equation:
y′′ − xy = 0.

Solution. Let y =
∑

anx
n. Then

an+2 =
an−1

(n+ 1)(n+ 2)
, n ≥ 0,

which is a 4-step recursion. This implies a0 and a1 are arbitrary.
Further, since a−1 = 0, a2 = a5 = · · · = a3n−1 = · · · = 0. The
remaining coefficients are

a3n =
1.4.7 . . . (3n− 2)

(3n)!
a0 and a3n+1 =

2.5.8 . . . (3n− 1)

(3n+ 1)!
a1.

Hence

y(x) = a0

[

1 +
1

3!
x3 +

1.4

6!
x6 +

1.4.7

9!
x9 + . . .

]

+

a1

[

x+
2

4!
x4 +

2.5

7!
x7 +

2.5.8

10!
x10 + . . .

]

.

Note:

an =
(n− 2)(n− 5) . . . (0 or 1 or 2)a−1 or 0 or 1

n!

according as n ≡ (−1 or 0 or 1) mod 3.
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(d) Hermite equation :

y′′ − x2y = 0.

Solution. Let y =
∑

anx
n. Then

an+2 =
an−2

(n+ 1)(n+ 2)
, n ≥ 0

which is a 5-step recursion. This implies a0 and a1 are arbitrary. Fur-
ther, since a−1 = 0 = a−2, an = 0 for n ≡ 2, 3 mod 4. The remaining
coefficients are

a4n =
[1.5.9 . . . (4n− 3)][2.6.10 . . . (4n− 2)]

(4n)!
a0

and

a4n+1 =
[2.6.10 . . . (4n− 2)][3.7.11 . . . (4n− 1)]

(4n+ 1)!
a1.

(7) Show that the function (sin−1 x)2 satisfies the initial value problem (IVP):

(1− x2)y′′ − xy′ = 2, y(0) = 0, y′(0) = 0.

Hence find the Taylor series for (sin−1 x)2 around 0. What is its radius of
convergence ?

Solution. Direct substitution gives the first part. To fing the Taylor
series, let us apply the power series method. Accordingly let y =

∑

anx
n

be a solution of the IVP. Then a0 = a1 = 0 due to the initial conditions,
and a2 = 1 and

an+2 =
n2an

(n+ 1)(n+ 2)
, n ≥ 1.

This implies aod = 0 and

a2n =
22.42 . . . (2n− 2)2

(2n)!
a2 =

22n−1((n− 1)!)2

(2n)!

on substituting a2 = 2. For the radius of convergence, let a2n = bn and
x2 = z. The radius of convergence of

∑

bnz
n is

lim
bn

bn+1
= lim

(2n+ 2)(2n+ 1)

4n2
= 1.

Hence radius of convergence is unity for both the series since |z| < 1 is
equivalent to |x| < 1.

(8) Show that the even and odd parts of the binomial series of (1− x)−m are
two linearly independent power series solutions of

(1− x2)y′′ − 2(m+ 1)xy′ −m(m+ 1)y = 0

around x = 0. Hence deduce that {(1 − x)−m, (1 + x)−m} is another
linearly independent set of solutions.
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Solution. Let y =
∑

n≥0

anx
n be a power series solution. Substitution

in the equation gives the recursion

an+2 =
(m+ n+ 1)(m+ n)

(n+ 2)(n+ 1)
an, n ≥ 0,

with a0, a1 arbitrary. For n ≥ 2,

an =
(m+ n− 1)(m+ n− 2)

n(n− 1)
an−2

=
(m+ n− 1)(m+ n− 2)(m+ n− 3)(m+ n− 4)

n(n− 1)(n− 2)(n− 3)
an−4 = . . .

=











(m+ n− 1)(m+ n− 2) . . . (m+ 1)m

n!
a0 if n is even,

(m+ n− 1)(m+ n− 2) . . . (m+ 2)(m+ 1)

n!
a1 if n is odd.

=















(

m+ n− 1

n

)

a0 if n is even
(

m+ n− 1

n

)

a1
m

if n is odd.

Replace a1/m by a new constant a1 to conclude that

an =















(

m+ n− 1

n

)

a0 if n is even,
(

m+ n− 1

n

)

a1 if n is odd.

The general solution therefore, is

y(x) = a0
∑

n even

(

m+ n− 1

n

)

xn + a1
∑

n odd

(

m+ n− 1

n

)

xn.

The n-th coefficient of (1− x)−m equals

(−1)n
−m(−m− 1) . . . (−m− n+ 1)

n!

=
m(m+ 1) . . . (m+ n− 1)

n!
=

(

m+ n− 1

n

)

.

This proves the first part. Setting a0 = 1 = a1, we get (1 − x)−m as a
solution, while on letting a0 = 1 = −a1, we get (1 + x)−m as another
independent solution. This proves the last statement.
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1.2. Legendre equation and Legendre polynomials

Problems.

(1) Express x2, x3, and x4 as a linear combination of the Legendre polynomi-
als. (This is possible since the Legendre polynomials form a basis for the
vector space of polynomials.)

Solution. We first express x2 and x4 using the Legendre polynomials
of even degree. Since P0 = 1 and P2 = 3

2x
2 − 1

2 ,

x2 =
2

3
P2 +

1

3
P0.

Substituting this,

P4 =
35

8
x4 − 15

4
x2 +

3

8
=

35

8
x4 − 15

4
(
2

3
P2 +

1

3
P0) +

3

8
P0 =

35

8
x4 − 5

2
P2 −

7

8
P0.

Therefore

x4 =
8

35
P4 +

4

7
P2 +

1

5
P0.

Similarly, x3 can be expressed in terms of the Legendre polynomials of
odd degree. Since P1 = x and P3 = 1

2 (5x
3 − 3x),

x3 =
2

5
P3 +

3

5
P1.

(2) Show that

1

2nn!

dn

dxn
(x2 − 1)n =

[n/2]
∑

m=0

(−1)m
(2n− 2m)!

2nm!(n−m)!(n− 2m)!
xn−2m

where [n/2] denotes the greatest integer less than or equal to n/2.
Both expressions equal Pn(x), the n-th Legendre polynomial. The

expression in the lhs is known as the Rodrigues formula.

Solution. Start with the lhs. The binomial expansion gives

(x2 − 1)n =

n
∑

m=0

(

n

m

)

(−1)mx2n−2m.

Differentiating n times,

dn

dxn
(x2 − 1)n =

[n/2]
∑

m=0

(

n

m

)

(−1)m(2n− 2m)(2n− 2m− 1) . . . (n− 2m+ 1)xn−2m

=

[n/2]
∑

m=0

n!

m!(n−m)!
(−1)m

(2n− 2m)!

(n− 2m)!
xn−2m.

Dividing both sides by 2nn! yields the required identity.

(3) Show that if f(x) is a polynomial with double roots at a and b then f ′′(x)
vanishes at least twice in (a, b). (This is also true if f(x) is a smooth
function.)

Generalize this and show (using Rodrigues’ formula) that Pn(x) has
n distinct roots in (−1, 1).



1.2. LEGENDRE EQUATION AND LEGENDRE POLYNOMIALS 9

Solution. Let f(a) = f ′(a) = 0 = f(b) = f ′(b). By Rolle’s theorem,
there is a c ∈ (a, b) such that f ′(c) = 0. Applying Rolle’s theorem to f ′|[a,c]
and f ′|[c,b], we get c1 ∈ (a, c) and c2 ∈ (c, b) where f ′′ vanishes. More
generally: If f(x) is a smooth function with roots of multiplicity n at both
a and b, then f (n) vanishes at least n times in (a, b). (The hypothesis says
f(a) = f ′(a) = · · · = f (n−1)(a) = 0 = f(b) = f ′(b) = · · · = f (n−1)(b).)
We prove this result by induction. Assuming the result for n − 1, there
are n− 1 points a < t1 < · · · < tn−1 < b where f (n−1)(ti) = 0. Applying
Rolle’s theorem to f (n−1)|[ti−1,ti], we get n distinct zeroes of f (n) in the
intervals (ti−1, ti). (Here t0 = a and tn = b is implicit.) This completes
the induction step.
Now consider

f(x) =
(x2 − 1)n

2nn!
.

This polynomial has roots of multiplicity n at x = ±1, Therefore, by the
above result Pn(x) = f (n)(x) has at least n distinct zeroes in (−1, 1).
Being a polynomial of degree n, these can be the only zeroes and each of
them must be simple.

(4) Take the Rodrigues formula as the definition for Pn(x), and show the
following relations.
(a) Pn(−x) = (−1)nPn(x)

Solution. Note that Pn(x) is an even or an odd function according
as n is even or odd. Hence Pn(−x) = (−1)nPn(x).

(b) P ′
n(−x) = (−1)n+1P ′

n(x)

Solution. Note that P ′
n(x) is an even or an odd function according

as n is odd or even. Hence P ′
n(−x) = (−1)n+1P ′

n(x).

(c) Pn(1) = 1 and Pn(−1) = (−1)n

Solution.

Pn(x) =
1

2nn!
Dn(x2 − 1)n =

1

2nn!

n
∑

r=0

(

n

r

)

Dr(x− 1)nDn−r(x+ 1)n.

Now,

Dr(x− 1)n
∣

∣

x=1
=

{

0 if r < n,

n! if r = n.

Hence evaluating at x = 1,

Pn(1) =
1

2nn!
n!(1 + 1)n = 1.

Similarly, or by part (a), Pn(−1) = (−1)n.

(d) P2n+1(0) = 0 and P2n(0) = (−1)n (2n)!
22n(n!)2

Solution. P2n+1(0) = 0 since it is an odd function, while

P2n(0) =
1

4n(2n)!
D2n(x2−1)2n

∣

∣

∣

∣

x=0

=
1

4n(2n)!
× the constant term in D2n(x2−1)2n.
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The constant term in D2n(x2 − 1)2n is

(2n)!× the coefficient of x2n in (x2 − 1)2n = (2n)!

(

2n

n

)

(−1)n.

Hence

P2n(0) =
1

4n(2n)!
(2n)!

(2n)!

n!n!
(−1)n = (−1)n

(2n)!

22n(n!)2
.

(e) P ′
n(1) =

1
2n(n+ 1) and P ′

n(−1) = (−1)n−1 1
2n(n+ 1)

Solution.

P ′
n(1) =

1

2nn!
Dn+1(x2 − 1)2

∣

∣

x=1

=
1

2nn!

[

n+1
∑

r=0

(

n+ 1

r

)

Dr(x− 1)n ·Dn+1−r(x+ 1)n

]

x=1

=
1

2nn!

(

n+ 1

n

)

n! ·D(x+ 1)n
∣

∣

x=1

=
n+ 1

2n
· n(1 + 1)n =

n(n+ 1)

2

The main point to note is that only the n-th term in the summation
survives when we substitute x = 1.
Similarly, or by part (b),

P ′
n(−1) = (−1)n+1P ′

n(1) = (−1)n+1n(n+ 1)

2
.

(f) P ′
2n(0) = 0 and P ′

2n+1(0) = (−1)n
(2n+ 1)!

22n(n!)2
.

Solution. Since P ′
2n is an odd function, P ′

2n(0) = 0.

P ′
2n+1(0) =

1

22n+1(2n+ 1)!
D2n+2(x2 − 1)2n+1

∣

∣

x=0

=
1

22n+1(2n+ 1)!

(

2n+ 1

n+ 1

)

(2n+ 2)!(−1)n

= (−1)n
(2n+ 1)!

22n(n!)2

(5) Show that

∫ 1

−1

(1− x2)P ′
m(x)P ′

n(x) dx =







2n(n+ 1)

2n+ 1
if m = n,

0 otherwise.

Solution. Recall the self-adjoint form of the Legendre equation

[(1− x2)P ′
n]

′ + n(n+ 1)Pn = 0.

Multiplying by Pm and integrating over [−1, 1],
∫ 1

−1

Pm[(1− x2)P ′
n]

′ + n(n+ 1)PmPn = 0.
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Integrating the first term by parts,

−
∫ 1

−1

P ′
m[(1− x2)P ′

n]dx+ n(n+ 1)

∫ 1

−1

PmPndx = 0.

Now use
∫ 1

−1

PmPndx =

{

2
2n+1 if m = n,

0 otherwise.

(6) Show the following relations when n−m is even and nonnegative.

(a)

∫ 1

−1

P ′
mP ′

ndx = m(m+ 1)

Solution.

∫ 1

−1

P ′
mP ′

ndx = P ′
mPn

∣

∣

∣

1

−1
−
∫ 1

−1

P ′′
mPndx

= 2P ′
m(1)−

∫ 1

−1

P ′′
mPndx

since n−m being even makes P ′
mPn odd and Pn(1) = 1

= m(m+ 1)−
∫ 1

−1

P ′′
mPndx.

To evaluate the integral, we repeatedly integrate by parts

∫ 1

−1

P ′′
mDn(x2 − 1)ndx

to get

(−1)n
∫ 1

−1

(Dn+2Pm)(x2 − 1)ndx.

Now n−m ≥ 0 implies n+2 > m so that Dn+2Pm ≡ 0. This makes
the integral vanish.

(b)

∫ 1

−1

xmP ′
n(x)dx = 0. What is the value of the integral if n−m is odd

(instead of even)?

Solution. (i) Since n−m is even, xmP ′
n is an odd function. So the

integral is zero. (ii) If n − m is odd, then n > m and xmP ′
n is an even

function. Now

∫ 1

−1

xmP ′
n(x)dx = 2

∫ 1

0

xmP ′
ndx = 2

[

xmPn

∣

∣

∣

1

0
−m

∫ 1

0

xm−1Pndx
]

= 2− 2m

∫ 1

0

xm−1Pndx = 2.
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In the last step, we used that xm−1 belongs to the span of P0,. . . ,Pm−1,
and hence is orthogonal to Pn. Alternatively,

2nn!

∫ 1

−1

xm−1Pndx =

∫ 1

−1

xm−1Dn(x2 − 1)ndx

= (−1)m−1(m− 1)!

∫ 1

−1

Dn−m+1(x2 − 1)ndx

= (−1)m−1(m− 1)!Dn−m(x2 − 1)n
∣

∣

1

−1
= 0.

(7) If xn =

n
∑

r=0

arPr(x), then show that an =
2n(n!)2

(2n)!
.

Solution.

an =
2n+ 1

2

1

2nn!

∫ 1

−1

xnDn(x2 − 1)ndx

= (−1)n
2n+ 1

2
· 1

2nn!
· n!
∫ 1

−1

(x2 − 1)ndx

=
2n+ 1

2n+1

∫ 1

−1

(1− x)n(1 + x)ndx

=
2n+ 1

2n+1

n(n− 1) . . . 1

(n+ 1)(n+ 2) . . . (2n)

∫ 1

−1

(1 + x)2ndx

=
2n+ 1

2n+1

n(n− 1) . . . 1

(n+ 1)(n+ 2) . . . (2n)

22n+1

2n+ 1

=
2n(n!)2

(2n)!

(8) Expand the following functions f(x) in a series of Legendre polynomials:

f(x) ≈
∑

n≥0

cnPn with cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx.

The Rodrigues formula is useful to evaluate these integrals. The Legendre
expansion theorem (stated in the lecture notes) applies in each case.
(a)

f(x) =

{

−1 if − 1 < x < 0

1 if 0 < x < 1.

Solution. Since f(x) =: sgn(x) is an odd function, ceven = 0. The
odd coefficients are computed below.

c2k+1 =
4k + 3

2

∫ 1

−1

sgn(x)P2k+1(x)dx = (4k + 3)

∫ 1

0

P2k+1(x)dx

= (4k + 3)
D2k(x2 − 1)2k+1

22k+1(2k + 1)!

∣

∣

∣

∣

1

0

=
2k + 1

22k+1(2k + 1)!
[−D2k(x2 − 1)2k+1

∣

∣

x=0
]
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=
2k + 1

22k+1(2k + 1)!
[−(2k)!

(

2k + 1

k

)

(−1)k+1]

=
(−1)k(4k + 3)

22k+1(k + 1)

(

2k

k

)

.

(b)

f(x) =

{

0 if − 1 < x < 0

1 if 0 < x < 1.

Solution. Note that

f(x) =
1

2
(sgn(x) + 1) =

1

2
(sgn(x) + P0).

Hence, using part (a),

f(x) =
1

2
P0 +

1

2

∑

k≥0

c2k+1P2k+1, where c2k+1 =
(−1)k(4k + 3)

22k+1(k + 1)

(

2k

k

)

.

(c)

f(x) =

{

−x if − 1 < x < 0

x if 0 < x < 1.

Solution. Since f(x) = |x| is an even function, cod = 0. Now

c2k = (4k + 1)

∫ 1

0

xP2k(x)dx.

Clearly, c0 = 1/2. For k ≥ 1,

c2k = − 4k + 1

22k(2k)!
[−D2k−2(x2 − 1)2k]

∣

∣

x=0
= (−1)k−1 4k + 1

4kk(k + 1)

(

2k − 2

k − 1

)

.

Explicitly, for k = 1,

c2 = 5

∫ 1

0

1

2
x(3x2 − 1)dx = 5/8.

(d)

f(x) =

{

0 if − 1 < x < 0

x if 0 < x < 1

Solution. Using

f(x) = x/2 + |x|/2 =
1

2
P1 +

1

2
|x|,

we obtain from part (c),

f(x) =
1

2
P0 +

1

2
P1 +

1

2

∑

k≥1

(−1)k−1(4k + 1)

4kk(k + 1)

(

2k − 2

k − 1

)

P2k.
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(9) Establish the following recursion relations for Pn(x) using the generating
function

(1− 2xt+ t2)−1/2 =
∞
∑

n=0

Pn(x)t
n.

Solution. Put

(A) ϕ(x, t) := (1− 2xt+ t2)−1/2 =
∑

Pn(x)t
n.

Differentiating (A) wrt t,

(B) (x− t)ϕ3 =
∑

nPn(x)t
n−1 =

∑

(n+ 1)Pn+1(x)t
n.

and differentiating (A) wrt x,

(C) tϕ3 =
∑

P ′
nt

n.

These calculations will be used in all problems below.

(a) (n+ 1)Pn+1 − (2n+ 1)xPn + nPn−1 = 0

Solution. Using (B),

(x− t)ϕ = ϕ−2
∑

nPn(x)t
n−1 = (1− 2xt+ t2)

∑

nPn(x)t
n−1.

Hence

(x− t)
∑

Pn(x)t
n = (1− 2xt+ t2)

∑

nPn(x)t
n−1.

Equating coefficients of tn for n ≥ 0, on both sides,

xPn(x)− Pn−1(x) = (n+ 1)Pn+1(x)− 2nxPn(x) + (n− 1)Pn−1(x).

Now simplify.

(b) P ′
n+1 − xP ′

n − (n+ 1)Pn = 0

Solution. Multiply (A) by t and differentiate wrt t to get

ϕ+ t(x− t)ϕ3 =
∑

(n+ 1)Pn(x)t
n.

Hence

(1) ϕ3(1− 2xt+ t2 + t(x− t)) = ϕ3(1− xt) =
∑

(n+ 1)Pn(x)t
n.

Multiply (C) by 1−xt
t to get

(2) ϕ3(1− xt) = (1− xt)
∑

P ′
n+1t

n.

Comparing the coefficients of tn in the series occurring on the rhs of
(1) and (2),

(n+ 1)Pn = P ′
n+1 − xP ′

n.

(c) xP ′
n − P ′

n−1 − nPn = 0

Solution. Adding (B) and (C),

(1) xϕ3 =
∑

[(n+ 1)Pn+1 + P ′
n]t

n.

Also multiply (C) by x/t to get

(2) xϕ3 =
∑

xP ′
n(x)t

n−1 =
∑

xP ′
n+1(x)t

n.



1.2. LEGENDRE EQUATION AND LEGENDRE POLYNOMIALS 15

Comparing (1) and (2),

(n+ 1)Pn+1 + P ′
n = xP ′

n+1, n ≥ 0

as required.

(d) P ′
n+1 − P ′

n−1 − (2n+ 1)Pn = 0

Solution. Successively multiply (C) by t and 1/t and take their
difference to obtain

(1) (1− t2)ϕ3 =
∑

(P ′
n+1 − P ′

n−1))t
n.

Also, multiply (B) by 2t and add to (A) to get

ϕ+ 2t(x− t)ϕ3 =
∑

(2n+ 1)Pnt
n.

The lhs of the above is

ϕ3[1− 2xt+ t2 + 2tx− 2t2] = (1− t2)ϕ3

which is the lhs of (1). Hence comparing,

(2n+ 1)Pn = P ′
n+1 − P ′

n−1.

(e) (x2 − 1)P ′
n − nxPn + nPn−1 = 0

Solution. Multiply (A) by t and then differentiate wrt t to obtain

(1) ϕ+ t(x− t)ϕ3 =
∑

(n+ 1)Pnt
n.

Finally multiply (C) by (x2 − 1), (B) by −xt and (1) by t and add
the resulting equations to get

(x2 − 1)tϕ3 − tx(x− t)ϕ3 + tϕ+ t2(x− t)ϕ3 =
∑

Int
n

where In is the lhs of the identity to be proved. Now the lhs of the
above equation is

ϕ3(t(x2 − 1)− tx(x− t) + t(1− 2tx+ t2) + t2(x− t)) ≡ 0

Hence In = 0 for all n ≥ 0.

(10) Consider the associated Legendre equation

(1) (1− x2)y′′ − 2xy′ +

[

n(n+ 1)− m2

1− x2

]

y = 0

which occurs in quantum physics. Substituting

y(x) = (1− x2)m/2v(x),

show that v satisfies

(2m) (1− x2)v′′ − 2(m+ 1)xv′ + [n(n+ 1)−m(m+ 1)]v = 0

Show that v = DmPn satisfies (2m). Thus

y(x) = (1− x2)m/2DmPn(x)

is the bounded solution of (1) and is called an associated Legendre function.

Solution. Given y(x) = (1− x2)m/2v(x). Then

y′(x) = −mx(1− x2)m/2−1v(x) + (1− x2)m/2v′(x),
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y′′(x) = −m(1− x2)m/2−1v(x) +m(m− 2)x2(1− x2)m/2−2v(x)

−mx(1− x2)m/2−1v′(x)−mx(1− x2)m/2−1v′(x)

+ (1− x2)m/2v′′(x).

Therefore,

(1− x2)y′′(x)− 2xy′(x)

= (1− x2)m/2+1v′′(x)− 2(m+ 1)x(1− x2)m/2v′(x)

+ (1− x2)m/2−1
[

m(m− 2)x2 −m(1− x2) + 2mx2
]

v(x).

The lhs is
[ m2

1− x2
− n(n+ 1)

]

(1− x2)m/2v(x).

Now simplify to obtain (2m). Let n be a fixed natural number. That (2m)
is satisfied by DmPn is obviously true for m = 0. Assume for m and check
for m+1 by substituting DmPn in (2m) and differentiating once to check
the validity of (2m+1).

Remark : By applying the solution to the last problem of Section 1.1, one
can show that

(

1− x

1 + x

)±m/2

form a basis of the solution of equation (1) in the special case when n = 0.
Clearly, the only bounded solution DmP0 is identically zero, if m > 0.

Optional problems.

(1) Show that the substitution y = u/
√
sinϕ, with 0 ≤ ϕ ≤ π transforms the

spherical form of the Legendre equation

d2y

dϕ2
+ cotϕ

dy

dϕ
+ n(n+ 1)y = 0

into

d2u

dϕ2
+

[

(

n+
1

2

)2

+
1

4 sin2 ϕ

]

u = 0.

Solution. y(ϕ) =
u(ϕ)√
sinϕ

implies

y′ =
u′

√
sinϕ

− u cotϕ

2
√
sinϕ

=
u′

√
sinϕ

− 1

2
y cotϕ

and

y′′(ϕ) =
u′′

√
sinϕ

− u′ cotϕ

2
√
sinϕ

− 1

2
y′ cotϕ+

1

2
y csc2 ϕ.

Now substitute and simplify.
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(2) (a) Show that for large integral values of n and ϕ close to π/2 (the center
of the interval),

Pn(cosϕ) ≈ An cos

[

(n+
1

2
)ϕ+ αn

]

.

[Hint: Use previous exercise.]

Solution. For n >> 0 and ϕ ≈ π/2,

(n+ 1/2)2 + 1/(4 sin2 ϕ) ≈ (n+ 1/2)2.

Therefore,

u(ϕ) ≈ An cos[(n+ 1/2)ϕ+ αn] (phase-amplitude form)

Finally, since sinϕ ≈ 1, for ϕ close to π/2, hence y ≈ u. But y =
Pn(cosϕ) is a solution of the Legendre equation,

Pn(cosϕ) ≈ u ≈ An cos[(n+ 1/2)ϕ+ αn]

for ϕ close to π/2.

(b) By considering parity under the reflection ϕ 7→ π − ϕ show that the

phase αn is −π

4
.

[Hint: Pn(− cosϕ) = (−1)nPn(cosϕ).]

Solution.

Pn(cos(π − ϕ) = (−1)nPn(cosϕ)

allows us to choose the phase αn so that the approximate solution
also has this property, that is,

cos
[(

n+
1

2

)(

π − ϕ
)

+ αn

]

= (−1)n cos
[(

n+
1

2

)

ϕ+ αn

]

.

This is equivalent to
[(

n+
1

2

)(

π − ϕ
)

+ αn

]

+
[(

n+
1

2

)

ϕ+ αn

]

=
(2n+ 1)π

2
+ 2αn

being an odd multiple of π for n odd and an even multiple of π for n

even. Choosing αn = −π

4
makes this dream come true.

(c) Show that An approaches

√

2

nπ
as n approaches infinity,

[Hint: Consider y(π/2) = Pn(0) for n even, and y′(π/2) = −P ′
n(0)

for n odd. Invoke the estimate (without proof)

(2m)!

(2mm!)2
≈ 1√

mπ
, m >> 0.]

Solution. For n even,

Pn(0) = (−1)n/2
n!

2n((n/2)!)2
and y(π/2) = (−1)n/2An.

Therefore

An =
n!

2n((n/2)!)2
≈
√

2

nπ
for n >> 0.
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On the other hand for n odd, first we note that

dPn(cosϕ)

dϕ
= − sinϕP ′

n(cosϕ).

At ϕ = π/2, this reads

y′(π/2) = −P ′
n(0) = − (−1)(n−1)/2n!

[

2(n−1)/2
(

(n− 1)/2
)

!
]2 .

Also

y′(π/2) = −
(

n+
1

2

)

An(−1)(n−1)/2.

Therefore,
(

n+
1

2

)

An =
n!

[

2(n−1)/2
(

(n− 1)/2
)

!
]2

or

An =
n

n+ 1/2

(n− 1)!
[

2(n−1)/2
(

(n− 1)/2
)

!
]2 ≈

√

2

(n− 1)π
≈
√

2

nπ

when n is very large.
Remark : In the computations above, notice that u(π/2) = y(π/2)
and u′(π/2) = y′(π/2). An cos[(n+1/2)ϕ+αn] agree with the actual
solution y(ϕ) = Pn(cosϕ) to a similar extent.
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1.3. Frobenius method for regular singular equations

Problems.

(1) Attempt a power series solution around x = 0 for

x2y′′ − (1 + x)y = 0.

Explain why the procedure does not give any nontrivial solutions.

Solution. Write y =
∑

n≥0 anx
n. Hence

n(n− 1)an = an + an−1,

or

an =
1

n2 − n− 1
an−1.

This holds for all n ≥ 0 with the convention a−1 = 0. This implies

a0 = 0, a1 = 0, . . . , an = 0, . . . .

Reason: The differential equation can be written as y′′ − 1 + x

x2
y = 0 and

the coefficient −1 + x

x2
does not have a power series around x = 0. In fact

0 is a regular singular point.

(2) Attempt a Frobenius series solution for the differential equation

x2y′′ + (3x− 1)y′ + y = 0.

Why does the method fail?

Solution. Write

y(x) = xr
∞
∑

n=0

anx
n, a0 6= 0.

This implies ra0 = 0 and hence r = 0 since a0 6= 0. Further with r = 0,
we get

an+1 = (n+ 1)an.

The radius of convergence of the resulting power series is 0. The method
fails because x = 0 is a not a regular singular point.

(3) Locate and classify the singular points for the following differential equa-
tions. (All letters other than x and y such as p, λ, etc are constants.)
(a) Bessel equation:

x2y′′ + xy′ + (x2 − p2)y = 0.

Solution. x = 0 is the only singular point and it is regular singular.
We can write

y′′ +
1

x
y′ +

x2 − p2

x2
y = 0

and both 1 and (x2 − p2) are real analytic everywhere, in fact poly-
nomials.
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(b) Laguerre equation:

xy′′ + (1− x)y′ + λy = 0.

Solution. x = 0 is the only singular point and it is regular singular.

(c) Jacobi equation:

x(1− x)y′′ + (γ − (α+ 1)x)y′ + n(n+ α)y = 0.

Solution. x = 0 and x = 1 are the only singular points and both
are regular singular.

(d) Hypergeometric equation:

x(1− x)y′′ + [c− (a+ b+ 1)x)]y′ − aby = 0.

Solution. x = 0 and x = 1 are the only singular points and both
are regular singular.

(e) Associated Legendre equation:

(1− x2)y′′ − 2xy′ +

[

n(n+ 1)− m2

1− x2

]

y = 0

Solution. x = ±1 are the singular points and both are regular sin-
gular.

(f)

xy′′ + (cotx)y′ + xy = 0.

Solution. x = 0 is the only singular point and it is not regular
singular. We can write

y′′ +
cotx

x
y′ +

x2

x2
y = 0.

Though the second coefficient x2 is a polynomial, the first coefficient
cotx cannot be expanded as a power series about x = 0.

(4) In Problem (3) above find the indicial equations corresponding to all the
regular singular points.

Solution. The basic method is as follows: If x0 is a regular singular
point of a second order linear ODE, first write it in the form

y′′ +
b(x)

(x− x0)
y′ +

c(x)

(x− x0)2
y = 0.

Now the indicial equation for the purpose of expanding in fractional pow-
ers of (x− x0) is

r(r − 1) + b(x0)r + c(x0) = 0.

(a) x0 = 0 is the only singular point which is regular. b(x) = 1, c(x) =
x2 − p2. The indicial equation is r2 − p2 = 0.

(b) x0 = 0 is the only singular point which is regular. b(x) = 1−x, c(x) =
λx. The indicial equation is r2 = 0.



1.3. FROBENIUS METHOD FOR REGULAR SINGULAR EQUATIONS 21

(c) x0 = 0 and x0 = 1 are both regular singular points. For x0 = 0,

b(x) =
γ − (α+ 1)x

1− x
and c(x) = n(n+ α)x2.

The indicial equation is r(r − 1) + γr = 0.
For x0 = 1,

b(x) =
γ − (α+ 1)x

−x
and c(x) = n(n+ α)(x− 1)2.

The indicial equation is r(r − 1) + (α+ 1− γ)r = 0.

(d) Again x0 = 0 and x0 = 1 are both regular singular points. For
x0 = 0,

b(x) =
c− (a+ b+ 1)x

1− x
and c(x) = −abx2.

The indicial equation is r(r − 1) + cr = 0.
For x0 = 1,

b(x) =
c− (a+ b+ 1)x

−x
and c(x) = −ab(x− 1)2.

The indicial equation is r(r − 1) + (a+ b+ 1− c)r = 0.

(e) x0 = ±1 are regular singular. For x0 = 1,

b(x) =
2x

x+ 1
and c(x) =

[n(n+ 1)(1− x2)−m2

(1 + x)2
.

The indicial equation is r(r− 1) + r−m2/4 = 0, that is, r2 = m2/4.
By symmetry, the same is true for x0 = −1.

(f) x0 = 0 is the only singular point. It is not regular, so no indicial
equation.

(5) Find two linearly independent solutions of the following differential equa-
tions.
(a) x(x− 1)y′′ + (4x− 2)y′ + 2y = 0.

Solution. Observe that

x(x− 1)y′′ + (4x− 2)y′ + 2y = D2[x(x− 1)y].

Hence

x(x− 1)y = Ax+B

is the general solution with A and B arbitrary constants, and

y =
1

x− 1
and y =

1

x(x− 1)

are two linearly independent solutions. The first one has a singularity
at 1, while the second has a singularity at both 1 and −1.
(One may also attempt a Frobenius series solution.)
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(b) (1− x2)y′′ − 2xy′ + 2y = 0.

Solution. This is the Legendre equation for p = 1 which was solved
in class.
Aliter: Guess that y1(x) = x is a solution. Employing the method
of variation of parameters, let the second solution be y2(x) = xu(x).
Substituting in the ODE and simplifying, we get

x(1− x2)u′′ = (4x2 − 2)u′.

So
u′′

u′ =
1

1− x
− 2

x
− 1

1 + x
.

So

u′ =
1

x2(1 + x)(1− x)
=

1

x2
+

1

2(1− x)
+

1

2(1 + x)
.

So

u(x) = − 1

x
+

1

2
log

1 + x

1− x
.

So

y2(x) = −1 +
1

2
x log

1 + x

1− x
.

(c) x2y′′ + x3y′ + (x2 − 2)y = 0.

Solution. Applying the Frobenius method, gives the indicial equa-
tion r(r − 1) − 2 = 0, which implies r2 = −1 and r1 = 2. The
recursion is

[(n+ r)(n+ r − 1)− 2]an = −(n+ r − 1)an−2.

For r = −1,

an = − (n− 2)

n(n− 3)
an−2 for n ≥ 0, n 6= 0, 3

and with a−1 = a−2 = 0. Now n = 1, 2 yield a1 = 0 = a2. Thus we
see that along with a2, a4 = a6 = · · · = a2k = · · · = 0. Further,

a2k+1 = (−1)k−1 3a3
(2k + 1)2k−1(k − 1)!

for k ≥ 1.

Thus

y1(x) = a0/x+ a3x
2 × an even power series

is the form of the solution with a0, a3 arbitrary. Thus we already
get the general solution. If we try r = 2 now we will get

x2
∑

k≥0

A2kx
2k, A2k = (−1)k

3A0

(2k + 3)2kk!

which is aready present in y1 if we take a0 = 0, a3 = A0.
Aliter: Guess that y1(x) = 1/x is a solution. By the method of

variation of parameters, let the second solution be y2(x) = u(x)/x.



1.3. FROBENIUS METHOD FOR REGULAR SINGULAR EQUATIONS 23

On substitution, we find that u satisfies xu′′+(x2− 2)u′ = 0 whence

u′ = x2e−x2/2. Therefore,

y2(x) =
1

x

∫

x2e−x2/2dx.

On expanding we see that it matches the power series part of the
solution obtained above.

(d) xy′′ + 2y′ + xy = 0.

Solution. 0 = xy′′ + 2y′ + xy = (xy)′′ + (xy). Hence two linearly
independent solutions are

cosx

x
and

sinx

x
.

Optional problems.

(1) Show that the hypergeometric equation has a regular singular point at
infinity1, but that the point of infinity is an irregular singular point for
the Airy equation.

Solution.

(a) The hypergeometric equation is (essentially)

x(1− x)y′′ + (c− ax)y′ + by = 0.

Let t = 1/x, u(t) = y(x). y′(x) = u̇(t)t′(x) = −t2u̇ and y′′(x) =
−t2(−t2)ü− 2t(−t2)u̇ = t4ü+ 2t3u̇.

0 = x(1− x)y′′ + (c− ax)y′ + by

=
1

t

(

1− 1

t

)

(

t4ü+ 2t3u̇
)

+
(

c− a

t

)

(−t2u) + bu

This gives ü+
[(a− 2) + (2− c)t]

t− 1

u̇

t
+

b

t− 1

u

t2
= 0. Clearly, t = 0 is

a regular singular point of this equation.
(b) The Airy equation is y′′ − xy = 0. Letting t = 1/x, y(x) = u(t) as

before, we come across

ü+ 2
u̇

t
+ (− 1

t3
)
y

t2
= 0.

Clearly the third coefficient = 1/t3 cannot be a power series in t.
Hence irregular singularity at x = ∞.

1 The differential equation y′′ + p(x)y′ + q(x)y = 0 has a regular singular point at infinity, if
after substitution of x = 1/t in the ODE, the resulting ODE has a regular singular point at the

origin.
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1.4. Bessel equation and Bessel functions

Problems.

(1) Using the indicated substitutions, reduce the following differential equa-
tions to the Bessel equation and find the general solution in term of the
Bessel functions.
(a) x2y′′ + xy′ + (λ2x2 − p2)y = 0, (λx = z)

Solution. Let λx = z and u(z) = y(x). Then

du

dz
=

1

λ
· dy
dx

and
d2u

dz2
=

1

λ2

d2y

dx2
.

Hence

z
du

dz
=

x

d
ydx and z2

d2u

dz2
= x2 dy

dz2
.

The given equation transforms to

z2
d2u

dz2
+ z

du

dz
+ (z2 − p2)u = 0.

The general solution is u(z) = c1Jp(z) + c2Yp(z) which gives

y(x) = c1Jp(λx) + c2Yp(λx).

(b) xy′′ − 5y′ + xy = 0, (y = x3u).

Solution. y = x3u(x). Therefore,

y′ = 3x2u+ x3u′ and y′′ = x3u′′ + 6x2u′ + 6xu.

So

0 = xy′′ − 5y′ + xy = (x4u′′ + 6x3u′ + 6x2u)− 5(3x2u+ x3u′) + x4u

= x4u′′ + x3u′ + (x4 − 9x2)u.

This implies x2u′′ + xu′ + (x2 − 32)u = 0. The general solution
therefore, is u(x) = c1J3(x) + c2Y3(x), or equivalently,

y(x) = x3[c1J3(x) + c2Y3(x)].

(c) y′′ + k2xy = 0, (y = u
√
x,

2

3
kx3/2 = z).

Solution. y(x) = x1/2u(z), z = (2k/3)x2/3. Let us write D ≡ d

dx

and ′ ≡ d

dz
. Then

D2y = k2x3/2u′′ +
3k

2
u′ − u

4x3/2
.

So

0 = D2y + k2xy = k2x3/2u′′ +
3k

2
u′ − u

4x3/2
+ k2x3/2u.

On simplification,

z2u′′ + zu′ + (z2 − 1

32
)u = 0.
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Therefore, u(z) = AJ1/3(z) +BJ−1/3(z), or equivalently,

y(x) = AJ1/3(
2k

3
x2/3) +BJ−1/3(

2k

3
x2/3).

(d) x2y′′ + (1− 2p)xy′ + p2(x2p + 1− p2)y = 0, (y = xpu, xp = z).

Solution. Let us write D ≡ d

dx
and ′ ≡ d

dz
as before. Then

Dy = pxp−1u+ xpu′(pxp−1).

This implies xDy = pzu+ pz2u′. Similarly,

x2D2y = p(p− 1)zu+ 2p2z2u′ + x2+pD2u

= p(p− 1)zu+ 2p2z2u′ + x2z(u′pxp−1)′pxp−1 (since D = pxp−1 d

dz
)

= p(p− 1)zu+ 2p2z2u′ + p2xz2(u′′xp−1 + u′(p− 1)xp−2x′

= p(p− 1)zu+ 2p2z2u′ + p2z2(u′′z + (p− 1)u′/p)

= p2z3u′′ + p(3p− 1)z2u′ + p(p− 1)zu.

Now the given equation is

0 = x2D2y + (1− 2p)xDy + p2(x2p + 1− p2)y

= (p(p− 1)zu+ 2p2z2u′ + p2z2(u′′z + (p− 1)u′/p)

+ (1− 2p)(pzu+ pz2u′) + p2(z2 + 1− p2)zu.

On dividing by p2z, this simplifies to z2u′′ + zu′ + (z2 − p2)u = 0.
The general solution is u(z) = AJp(z) +BYp(z) which gives

y(x) = xp[AJp(x
p) +BYp(x

p)].

(2) Show that

(a) J1/2 =
√

2
πx sinx

Solution. From the expression for Jp,

J1/2(x) =

√

x

2

∑

m≥0

(ix/2)2m

m!(m+ 1
2 )!

.

Also,

m!(m+
1

2
)! = m!(m+

1

2
)(m− 1

2
) . . .

1

2
Γ(1/2) =

(2m+ 1)!

22m+1

√
π.

This implies,

J1/2(x) =

√

x

2

∑

m≥0

(ix/2)2m22m+1

(2m+ 1)!
√
π

=

√

2

πx
sinx.
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(b) J−1/2 =
√

2
πx cosx

Solution. Similarly, using

m!(m− 1

2
)! =

(2m− 1)!
√
π

22m
,

one can see that

J−1/2(x) =

√

2

πx
cosx.

(c) J3/2 =
√

2
πx

(

sin x
x − cosx

)

Solution. From 2(a),

[x−1/2J1/2(x)]
′ = −x−1/2J3/2(x).

Therefore
√

2

π

[

sinx

x

]′
= −x−1/2J3/2(x).

This implies

J3/2(x) = −
√

2x

π

(

cosx

x
− sinx

x2

)

=

√

2

πx

(

sinx

x
− cosx

)

.

(d) J−3/2 = −
√

2
πx

(

cos x
x + sinx

)

Solution. Similarly from 2(a) again,

[x−1/2J−1/2(x)]
′ = x−1/2J−3/2(x).

Therefore

J−3/2(x) =

√

2x

π

[cosx

x

]′
=

√

2x

π

[

− sinx

x
− cosx

x2

]

= −
√

2

πx

(cosx

x
+ sinx

)

.

(3) For an integer n show that Jn(x) is an even (resp. odd) function if n is
even (resp. odd).

Solution. It is clear for nonnegative integers directly from

Jn(x) =
(x

2

)n ∑

m≥0

(ix/2)2m

m!(m+ n)!
.

We only have to observe that for n < 0, the terms corresponding to
0 ≤ m ≤ |n| − 1 will vanish due to the presence of the factorials of
negative integers in the denominators.

(4) Show that between any two consecutive positive zeros of Jn(x) there is
precisely one zero of Jn+1(x) and one zero of Jn−1(x).

Solution. Let Jn(a) = Jn(b) = 0, where 0 < a < b are consecu-
tive zeroes of Jn. Then x±nJn(x) = 0 for x = a, b. By Rolles’ theo-
rem there exist c± ∈ (a, b) such that [x±nJn(x)]

′(c±) = 0. This implies
±x±nJn∓1(c±) = 0. (We take corresponding signs only.) In other words,
Jn−1(c+) = 0 and Jn+1(c−) = 0. If possible let there be c < d in (a, b)
such that Jn+1(c) = 0 = Jn+1(d). Then there is another k ∈ (c, d) where
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J[(n+1)−1](k) = 0. This contradicts that a and b are consecutive zeroes
of Jn. Therefore, Jn+1 vanishes exactly once in (a, b). Similarly, Jn−1

vanishes exactly once in (a, b).
Remark : n need not be an integer in this problem.

(5) Show the following.

(a) J3 + 3J ′
0 + 4J

′′′

0 = 0.

Solution. The relation J ′
0 =

1

2
(J−1 − J1) = −J1 implies that

J3 + 3J ′
0 + 4J

′′′

0 = J3 − 3J1 − 4J ′′
1 = J3 − 3J1 − 2(J0 − J2)

′

= J3 − 3J1 + 2J1 + (J1 − J3) = 0.

(b) J2 − J0 = aJ ′′
c find a and c.

Solution. J2 − J0 = −2J ′
1 = +2J ′′

0 . Thus a = 2 and c = 0.

(c)
∫

Jp+1dx =
∫

Jp−1dx− 2Jp.

Solution. 2J ′
p = Jp−1 − Jp+1. This implies 2Jp =

∫

Jp−1 −
∫

Jp+1

(indefinite integrals) and the result follows.

(6) If y1 and y2 are any two solutions of the Bessel equation of order p, then
show that y1y

′
2 − y′1y2 = c/x for a suitable constant c.

Solution. LetW (y1, y2) = y1y
′
2−y′1y2. This is called the Wronskian.

Then

W ′ = y1y
′′
2 − y′′1 y2

= −y1(y
′
2/x+ (x2 − p2)y22/x

2) + (y′1/x+ (x2 − p2)y21/x
2)y2 = −W

x
.

Integrating, logW = − log x+ log c or W = c/x.

(7) Show that
∫

xµJp(x)dx = xµJp+1(x)− (µ− p− 1)

∫

xµ−1Jp+1(x)dx.

Solution.

∫

xµJp(x)dx =

∫

xµ−p−1(xp+1Jp(x))dx =

∫

xµ−p−1(xp+1Jp+1(x))
′dx

= xµ−p−1xp+1Jp+1 −
∫

(µ− p− 1)xµ−p−2xp+1Jp+1dx

= xµJp+1 − (µ− p− 1)

∫

xµ−1Jp+1dx.

In one of the steps, we used integration by parts.

(8) Expand the indicated function in Fourier-Bessel series over the given in-
terval and in terms of the Bessel function of given order. (The Bessel
expansion theorem applies in each case.)
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(a) f(x) = 1 over [0, 3], p = 0.

Solution.

f(x) =
∑

z∈Z(0)

czJ0(zx/3), 0 ≤ x ≤ 3,

where

cz =
2

9J1(z)2

∫ 3

0

f(x)J0(zx/3)xdx

=
2

z2J1(z)2

∫ z

0

tJ0(t)dt (on setting x = 3t/z, f(x) = 1)

=
2

z2J1(z)2
zJ1(z) =

2

zJ1(z)
(since xJ0(x) = [xJ1(x)]

′).

Sample values from the tables

z ∈ Z(0) 2.405 5.52 8.65 11.79 14.93

J1(z) 0.52 −0.34 0.27 −0.23 0.21

cz 1.60 −1.07 0.86 −0.74 0.64

Explicitly, substituting the first few values, the Bessel series is

1 ≈ 1.60J0(0.80x)− 1.07J0(1.84x) + 0.86J0(2.88x)− . . .

for 0 ≤ x ≤ 3.

(b) f(x) = x over [0, 1], p = 1.

Solution.

f(x) =
∑

z∈Z(1)

czJ1(zx), 0 ≤ x ≤ 1,

where

cz =
2

J0(z)2

∫ 1

0

f(x)J1(zx)xdx

On setting x = t/z = f(x)

=
2

z3J0(z)2

∫ z

0

t2J1(t)dt

Integrating by parts using J1 = −J ′
0

=
2

z3J0(z)2
[−z2J0(z) +

∫ z

0

2tJ0(t)dt]

=
2

z3J0(z)2
[−z2J0(z) + 2zJ1(z)] (since xJ0(x) = [xJ1(x)]

′)

=
−2

zJ0(z)
, z ∈ Z(1).

Sample values from the tables

z ∈ Z(1) 3.83 7.02 10.17 13.32

J0(z) −0.40 0.30 −0.25 0.22

cz 1.31 −0.95 0.79 −0.68
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Explicitly, substituting the first few values, the Bessel series is

x ≈ 1.31J1(3.83x)− 0.95J1(7.02x) + 0.79J1(10.17x)− 0.68J1(13.32x) + . . .

for 0 ≤ x ≤ 1.

(c) f(x) = x3 over [0, 3], p = 1.

Solution.

f(x) =
∑

z∈Z(1)

czJ1(zx/3), 0 ≤ x ≤ 3,

where

cz =
2

9J0(z)2

∫ 3

0

f(x)J1(zx/3)xdx

On setting x = 3t/z, f(x) = x3 = 27t3/z3

=
18

z4J0(z)2

∫ z

0

t4J1(t)dt

Integrating by parts using x2J1 = [x2J2]
′

=
18

z4J0(z)2
[−z2(z2J2(z))−

∫ z

0

2t.t2J2(t)dt]

=
18

z4J0(z)2
[−z4J0(z)− 2z3J3(z)]

since x3J2(x) = [x3J3(x)]
′ and J2(z) = −J0(z); z ∈ Z(1)

=
−18

J0(z)
− 36J3(z)

zJ0(z)2
, z ∈ Z(1).

Further,

J1(z) + J3(z) =
4

z
J2(z) = −4

z
J0(z).

Hence J3(z) = −4J0(z)/z and

cz =
18

J0(z)

[

8

z2
− 1

]

; z ∈ Z(1).

Sample values from the tables

z ∈ Z(1) 3.83 7.02 10.17 13.32

J0(z) −0.40 0.30 −0.25 0.22

cz ?? ?? ?? ??

(d) f(x) = x2 over [0, 2], p = 2.

Solution.

f(x) =
∑

z∈Z(2)

czJ1(zx/2), 0 ≤ x ≤ 2,
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where

cz =
2

4J1(z)2

∫ 2

0

f(x)J2(zx/2)xdx

On setting x = 2t/z, f(x) = x2 = 4t2/z2

=
8

z4J1(z)2

∫ z

0

t3J2(t)dt

=
8

z4J1(z)2
z3J3(z) (Since x3J2 = [x3J3]

′)

=
8J3(z)

zJ1(z)2
=

−8

zJ1(z)
, z ∈ Z(2).

The last equality is due to

J3(z) + J1(z) =
4

z
J2(z) = 0.

Sample values from the tables

z ∈ Z(2) 5.1356 8.4172 11.6198 14.7960

J1(z) −0.3397 0.2713 −0.2324 0.2065

cz 4.5857 −3.5033 2.9625 −2.6183

Explicitly, substituting the first few values, the Bessel series is

x2 ≈ 4.5857J1(2.5678x)−3.5033J1(4.2086x)+2.9625J1(5.8099x)−2.6183J1(7.3980x)+. . .

for 0 ≤ x ≤ 2.

(e) f(x) =
√
x over [0, π], p = 1

2 .

Solution.

f(x) =
∑

z∈Z(1/2)

czJ1/2(zx/π), 0 ≤ x ≤ π,

where

cz =
2

π2J−1/2(z)2

∫ π

0

f(x)J1/2(zx/π)xdx.

Now

J1/2(x) =

√

2

πx
sinx and Z(1/2) = {π, 2π, 3π, . . . }.

Hence writing cn for z = nπ, we have

cn =
2

π2J−1/2(nπ)2

∫ π

0

√
x

√

2

nπx
sinnx.xdx =

2nπ2

π2.2

∫ π

0

√

2

nπ
x sinnxdx.

In the last equality we have evaluated [J−1/2(x)]
2 =

2

πx
cos2 x at

x = nπ.
Thus

cn =

√

2n

π

∫ π

0

x sinxdx =

√

2n

π

(∣

∣

∣

∣

x
− cosx

n

∣

∣

∣

∣

π

0

+

∫ π

0

cosnx

n
dx

)

=
2

nπ
(−1)n+1.
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Hence

√
x =

√
2π
∑

n≥1

(−1)n+1

n
J1/2(nx).

Remark : Putting J1/2(nx) =

√

2

nπx
sinnx and simplifying, we get

x = 2
∑

n≥1

(−1)n+1

n
sinnx,

the Fourier sine series of x over [0, π].

(9) Show Schlömilch’s formula

exp

(

tx

2
− x

2t

)

=
∞
∑

−∞
Jn(x)t

n.

Use this formula to show that

J2
0 + 2

∞
∑

n=1

J2
n = 1.

Deduce that |J0| ≤ 1 and |Jn| ≤ 1√
2
.

Solution.

etx/2−x/2t = etx/2e−x/2t =
[

∑

k≥0

(tx)k

2kk!

][

∑

j≥0

(−1)jxj

2jtjj!

]

.

For n ∈ Z, the coefficient of tn in the above is

∑

k−j=n

(−1)jxj+k

2j+kj!k!
=
∑

j≥0

(−1)jx2j+n

22j+n(j + n)!j!
=
(x

2

)n∑

j≥0

(ix/2)j

j!(j + n)!
= Jn(x).

This proves Schlömilch’s formula. Now replace t by −t and take product
to get

1 =

[ ∞
∑

−∞
Jn(x)t

n

][ ∞
∑

−∞
(−1)mJm(x)tm

]

=

[ ∞
∑

−∞
Jn(x)t

n

][ ∞
∑

−∞
J−m(x)tm

]

.

This shows that J2
0 + 2

∞
∑

n=1

J2
n = 1, along with a sequence of identities:

∑

j∈Z

Jm+jJm = 0 for m ∈ Z \ {0}.

(Just look at the coefficients of various powers of t.) The bounds on |Jn|
are now obvious.

(10) Show that

cos(x sin θ) = J0(x) + 2
∞
∑

1

cos 2nθJ2n(x)

sin(x sin θ) = 2

∞
∑

1

sin(2n+ 1)θJ2n+1(x).
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Solution. In Schlömilch’s formula, set t = eiθ. This gives

eix sin θ =
∑

n∈Z

Jn(x)e
inθ

= J0(x) +
∑

n≥1

[J−n(x)e
−inθ + Jn(x)e

inθ]

= J0(x) +
∑

n≥1

[(−1)ne−inθ + einθ]Jn(x)

= J0(x) + 2
∑

n even

Jn(x) cosnθ + 2i
∑

n odd

Jn(x) sinnθ.

Now equating the real and imaginary parts, we get the required identities.

(11) Show that
∫

J0(x)dx = J1(x) +

∫

J1(x)dx

x

= J1(x) +
J2(x)

x
+ 1.3

∫

J2(x)dx

x2

= J1(x) +
J2(x)

x
+

1.3J3(x)

x2
+ 1.3.5

∫

J3(x)dx

x3

.

.

.

= J1(x) +
J2(x)

x
+

1.3J3(x)

x2
+ · · ·+ 1.3.5 . . . (2n− 3)Jn(x)

xn−1

+ 1.3.5 . . . (2n− 1)

∫

Jn(x)dx

xn

Solution. We use induction on n.
∫

Jn(x)dx

xn
=

∫

xn+1Jn(x)dx

x2n+1
=

∫

[xn+1Jn+1(x)]
′dx

x2n+1

= x−2n−1[xn+1Jn+1(x)]−
∫

(−2n− 1)x−2n−2[xn+1Jn+1(x)]dx

=
Jn+1(x)

xn
+ (2n+ 1)

∫

Jn+1dx

xn+1
.

Substituting in the n-th step, assumed to be valid by induction hypothesis,
we get the validity of the (n+ 1)-th step.

Optional problems.

(1) Show that

1

2

d

dx
[J2

n + J2
n+1] =

n

x
J2
n − n+ 1

x
J2
n+1,

d

dx
[xJnJn+1] = x(J2

n − J2
n+1),
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and deduce that

J2
0 + 2

∞
∑

n=1

J2
n = 1 and

∞
∑

0

(2n+ 1)JnJn+1 =
x

2
.

Hint for the second identity: Look at

d

dx

[

x

∞
∑

n=0

(2n+ 1)JnJn+1

]

Solution. Recall that Jn−1 ± Jn+1 =
2nJn
x

, 2J ′
n respectively, and

[x±nJn]
′ = ±x±nJn∓1.

(a)

1

2

d

dx

[

J2
n + J2

n−1

]

= JnJ
′
n + Jn+1J

′
n+1

= Jn

[Jn−1 − Jn+1

2

]

− Jn+1

[Jn − Jn+2

2

]

=
JnJn−1 − Jn+1Jn+2

2

=
1

2

[

Jn

(2n

x
Jn − Jn+1

)

− Jn+1

(2n+ 2

x
Jn+1 − Jn

)]

=
n

x
J2
n − n+ 1

x
J2
n+1.

(b)

1

2

d

dx

[

xJnJn+1

]

=
1

2

d

dx

[

xn+1Jn.x
−nJn+1

]

= [xn+1Jn+1]
′x−nJn + xn+1Jn+1[x

−nJn]
′

= xn+1Jn.x
−nJn − xn+1Jn+1.x

−nJn+1

= x[J2
n − J2

n+1].

(c)

J2
0 + 2

∑

n≥1

J2
n = (J2

0 + J2
1 )(J

2
1 + J2

2 )(J
2
2 + J2

3 ) + · · · =
∑

n≥1

(J2
n−1 + J2

n).

Therefore,

d

dx
(J2

0 + 2

∞
∑

n=1

J2
n) =

∑

n≥1

d

dx

[

(J2
n−1 + J2

n)
]

=
∑

n≥1

[2n− 2

x
J2
n−1 −

2n

x
J2
n

]

(a telescopic sum)

= 0.

Therefore, J2
0 + 2

∑

n≥1

J2
n is a constant which is 1, at x = 0.
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(d)

d

dx

(

x

∞
∑

n=0

(2n+ 1)JnJn+1

)

=

∞
∑

n=0

(2n+ 1)[x(JnJn+1)]
′

=

∞
∑

n=0

(2n+ 1)x[J2
n − J2

n+1] (from (b))

= x
[

∞
∑

n=0

(2n+ 1)J2
n −

∞
∑

n=0

(2n+ 1)J2
n+1

]

= x
[

∞
∑

n=0

(2n+ 1)J2
n −

∞
∑

n=1

(2n− 1)J2
n

]

= x[J2
0 + 2

∑

n≥1

J2
n] = x (form (c)).

(2) (i) Use the method of variation of parameters to find a solution to the
Bessel equation of integral order n that is linearly independent of Jn.
(ii) Use the theory of regular singular equations to show that this solution
will be of the form

K(log x)Jn(x) + x−nh(x), K 6= 0

and h(x) being entire and h(0) 6= 0.

Solution. (i) For convenience we will write J for Jn. Let Y (x) =
v(x)J(x) be a second solution. Then

Y ′ = vJ ′ + v′J and Y ′′ = vJ ′′ + 2v′J ′ + v′′J.

Substitution in x2y′′ + xy′ + (x2 − n2)y = 0, gives

2v′x2J ′ + (x2v′′ + xv′)J = 0.

On simplifying we get,

J ′

J
= −xv′′ + v′

2v′x
= − [xv′]′

2xv′
.

Now integration gives xv′ = J−2 so that v =

∫

dx

xJ2
. Thus Y = J

∫

dx

xJ2
.

Remark : From the theory of infinite products applied to the entire func-
tion J , we can conclude the claims of part (ii) now.
(ii) From the theory of differential equations, which are regular singular at
0, and whose indicial equation has roots differing by an integer, we have
the following: Let the first solution corresponding to the ’larger’ root r1
be

y(x) = xr1
∑

n≥0

anx
n.

Then the second solution is of the form

Ky(x) log x+ xr2
∑

m≥0

Amxm.

Further, (i) K 6= 0 if r1 − r2 = 0 and (ii) A0 6= 0 if r1 − r2 is a positive
integer.
In the case of the Bessel equation of order n, the indicial equation has
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roots ±n and therefore r1 − r2 = 2n. For n = 0, the logarithmic term
has to be there. Any solution which is linearly independent of J0 is of the
form

KJ0(x) log x+
∑

m≥0

Amxm = KJ0(x) log x+ h(x).

The radius of convergence of h(x) is infinite and so it is an entire function.
h(0) = A0 may be zero. If so, to make it nonzero, just add J0(x). When
n > 0, suppose K = 0. Then the second solution will be

Y (x) = x−n
∑

m≥0

Amxm, A0 6= 0.

Substitution in the Bessel equation of order n, gives the recursions Am =
(m+2)(m+2−2n)Am+2. However, A2n−2 = 2n[(2n−2)+2−2n]A2n = 0.
Clearly, then A2n−4 = A2n−6 = · · · = A0 = 0 which is a contradiction.

Finally, h(x) =
∑

Amxm also has infinite radius of convergence and so

is an entire function. h(0) = A0 6= 0.

Remark : For m odd, the recursions Am =
Am−2

m(m− 2n)
go right down to

A−1 = 0, since the denominator never becomes 0. Therefore, only A2m

can be nonzero. In fact if K = 0, then Y is just a constant multiple of
Jn.
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1.5. Fourier series

Problems.

(1) Show that

∞
∑

n=1

1

n
sinnx sin2 nα =

{

constant (0 < x < 2α)

0 (2α < x < π)

Solution. Let

f(x) =

{

c if 0 < x < 2α,

0 if 2α < x < π.

The Fourier sine series is

f(x) =
∑

n≥1

bn sinnx, with bn =
2

π

∫ π

0

f(x) sinnxdx.

Thus

bn =
2

π

∫ 2α

0

c sinnxdx =
4c sin2 nα

nπ
.

Therefore,
4c

π

∑ 1

n
sin2 nα sinnx = f(x).

or equivalently,

∑ 1

n
sin2 nα sinnx =

πf

4c
=

{

π/4 if 0 < x < 2α,

0 if 2α < x < π.

Thus in fact the constant is π/4.

(2) Show that
∞
∑

n=1

(−1)n−1 cosnx

n2
=

π2

12
− x2

4
, (−π ≤ x ≤ π).

Solution. Let

π2

2
− x2

4
= a0 +

∑

n≥1

[an cosnx+ bn sinnx], −π < x < π.

Then bn = 0 for all n ≥ 1.

a0 =
1

π

∫ π

0

(

π2

12
− x2

4

)

dx = 0.

For n ≥ 1,

an =
2

π

∫ π

0

(

π2

12
− x2

4

)

cosnxdx = − 2

π

∫ π

0

(−x/2)
sinnx

n
dx

=
1

π

[
∣

∣

∣

∣

x
− cosnx

n2

∣

∣

∣

∣

π

0

+

∫ π

0

cosnx

n2
dx

]

=
(−1)n−1

n2
.

Hence
π2

12
− x2

4
=
∑

n≥1

(−1)n−1 cosnx

n2
.
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(3) Show that
∞
∑

n=0

sin(2n+ 1)x

(2n+ 1)3
=

1

8
πx(π − x), (0 ≤ x ≤ π).

Solution. We have to find the Fourier sine series of the given func-
tion. For n ≥ 1,

bn =
2

π

∫ π

0

πx(π − x)

8
sinnxdx

=
1

4

[∣

∣

∣
x(π − x)

cosnx

n

∣

∣

∣

π

0

]

+

∫ π

0

(π − 2x)
cosnx

n

=
1− (−1)n

2n3

=

{

0 if n is even,
1
n3 if n is odd.

(4) Use the Fourier expansions given in problems (1), (2) and (3) along with
Fourier’s Theorem to deduce the following results.

(a) 1 +
1

2
− 1

4
− 1

5
+

1

7
+

1

8
− 1

10
− 1

11
+ . . . =

2π

3
√
3

Solution. In Problem (1) take α = π/3. Then x = π/3 is a point
of continuity of f . Hence evaluating at x = π/3,

∑ 1

n
sin3

nπ

3
= π/4.

Further

sin
nπ

3
=











√
3/2 if n ≡ 1, 2(mod6)

−
√
3/2 if n ≡ 4, 5(mod6)

0 if n ≡ 3, 6(mod6).

Hence

π

4
=

3
√
3

8

[

1 +
1

2
− 1

4
− 1

5
+

1

7
+

1

8
− 1

10
− 1

11
+ . . .

]

which is equivalent to the given identity.

(b) 1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+

1

10
− 1

11
+ . . . =

π

3
√
3

Solution. In Problem (1) again, take α = π/3 but this time evaluate
at x = 2π/3 which is a simple jump discontinuity.

f+(2π/3) + f−(2π/3)

2
=

0 + π/4

2
=

π

8
.

Hence
π

8
=
∑ 1

n
sin

2nπ

3
sin2

nπ

3
.

Since

sin2
nπ

3
=

{

3/4 if n ≡ 1, 2, 4, 5(mod6)

0 if n ≡ 3, 6(mod6)
,
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and

sin
2nπ

3
=











√
3/2 if n ≡ 1, 4(mod6)

−
√
3/2 if n ≡ 2, 5(mod6)

0 if n ≡ 3, 6(mod6)

,

we have

sin2
nπ

3
sin

2nπ

3
=











3
√
3/8 if n ≡ 1, 4(mod6)

−3
√
3/8 if n ≡ 2, 5(mod6)

0 if n ≡ 3, 6(mod6).

Hence

3
√
3

8

[

1− 1

2
+

1

4
− 1

5
+

1

7
− 1

8
+

1

10
− 1

11
+ . . .

]

=
π

8
.

(c) 1− 1

22
+

1

32
− 1

42
+ . . . =

π2

12
Solution. In Problem (2) take x = 0. Then

∑

n≥1

(−1)n−1

n2
=

π2

12
= 1− 1

22
+

1

32
− 1

42
+ . . . .

(d) 1 +
1

22
+

1

32
+

1

42
+ . . . =

π2

6
(Euler’s formula)

Solution. In Problem (2) again, take x = π which is a point of
continuity on periodic extension of f . Then

∑ (−1)n−1(−1)n

n2
=

π2

12
− π2

4
= −π2

6
which implies

∑ 1

n2
=

π2

6
.

(e) 1− 1

33
+

1

53
− 1

73
+

1

93
−+ . . . =

π3

32
Solution. In Problem (3), set x = π/2 which is a point of continuity.
Then

∑

n≥0

sin(nπ + π
2 )

(2n+ 1)3
=

π

8
· π
2
· π
2
.

Since sin(nπ +
π

2
) = (−1)n, we obtain the necessary identity.

(f) 1 +
1

32
+

1

52
+

1

72
. . . =

π2

8
Solution. From Problems (4(c)) and (4(d)) (that is essentially using
Problem (2)),

1

12
− 1

22
+

1

32
− 1

42
+ · · · = π2

12
and

1

12
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
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Taking their average gives

1

12
+

1

32
+

1

52
+

1

72
+ · · · = π2

8
.

(g)
1

1.3
− 1

3.5
+

1

5.7
− 1

7.9
+ . . . =

π

4
− 1

2
Solution. In Problem (1), take α = π/2 and evaluate at x = π/2,
to obtain

∑

n≥0

(−1)n

2n+ 1
=

π

4
.

Now in the given equation, the lhs is

1

1.3
− 1

3.5
+

1

5.7
− 1

7.9
+ . . . =

1

2
(1− 1

3
)− 1

2
(
1

3
− 1

5
) +

1

2
(
1

5
− 1

7
)− 1

2
(
1

7
− 1

9
) + . . .

=
1

2
− 1

3
+

1

5
− 1

7
+

1

9
− . . .

= −1

2
+ (1− 1

3
+

1

5
− 1

7
+

1

9
− . . . ) = −1

2
+

π

4
.

(5) Using the Parseval identity, show that

1 +
1

34
+

1

54
+

1

74
+ . . . =

π4

96
.

Hint: Use

f(x) =

{

x if − π/2 < x < π/2,

π − x if π/2 < x < 3π/2.

or problem (2).

Solution. The given periodic function is equivalent to an odd 2π-
periodic extension of

f(x) =
π

2
−
∣

∣

∣

π

2
− x
∣

∣

∣
, 0 ≤ x ≤ π.

Hence in the Fourier series all an = 0 and

bn =
2

π

∫ π

0

(π

2
−
∣

∣

∣

π

2
− x
∣

∣

∣

)

sinnxdx =
4

πn2
sin

nπ

2
.

This implies

b2n =







0 if n is even,
16

π2n4
if n is odd.

Further
1

π

∫ π

−π

f2dx =
2

π

∫ π

0

f2dx =
π2

2
.

Hence etc.

Aliter: In Problem (2), f(x) =
π2

12
− x2

4
. The Fourier cefficients are
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an =
(−1)n−1

n2
, n ≥ 1 and the remaining Fourier coefficients are zero. By

the Parseval identity,

∑

n≥1

1

n4
=

1

π

∫ π

−π

f(x)2dx =
1

72π

∫ π

0

(π2 − 3x2)2dx.

Hence
∑

n≥1

1

n4
=

π4

90
. Now the sum of the even terms

∑ 1

(2n)4
=

1

24

∑ 1

n4
=

π4

24.90
.

Hence
∑

n odd

1

n4
=

π4

90
− π4

24.90
=

π4

96
.

(6) Find the Fourier series of the function f(x) which is assumed to have the
period 2π, where
(a) f(x) = x, 0 < x < 2π.

Solution.

a0 =
1

2π

∫ 2π

0

xdx = π and an =
1

π

∫ 2π

0

x cosnxdx = 0, n ≥ 1.

Next

bn =
1

π

∫ 2π

0

x sinnxdx = − 2

n
.

Thus

f(x) = x = π − 2
∑ sinnx

n
, 0 < x < π.

(b) f(x) =

{

−x −π ≤ x < 0

x 0 ≤ x < π

Solution. Since f(x) = |x| is an even function, all bn = 0. Also

a0 =
1

π

∫ π

0

xdx =
π

2
.

For n ≥ 1,

an =
2

π

∫ π

0

x cosnxdx =

{

0 if n is even,

−4/πn2 if n is odd.

Hence

f(x) =
π

2
− 4

π

∑

n≥0

cos(2n+ 1)x

(2n+ 1)2
.
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(c) f(x) = x+ |x|, −π < x < π.

Solution. x has a sine series and |x| has a cosine series. Hence
combining,

x+ |x| = π

2
− 4

π

∑

n odd

cosnx

n2
+

2

π

∑

n≥1

sinnx

n
.

(7) Find the Fourier series of the periodic function f(x) of period p = 2 where

f(x) =

{

0 −1 < x < 0,

x 0 < x < 1.

Solution.

a0 =

∫ 1

−1

f(x)dx/2 =

∫ 1

0

xdx = 1/4.

For n ≥ 1,

an =

∫ 1

0

x cosnπxdx =

{

0 if n is even,
−2

n2π2 if n is odd.

Further,

bn =

∫ 1

0

x sinnπxdx =
(−1)n+1

nπ
.

Therefore,

f(x) =
1

4
− 2

π2

∑

n≥0

cos(2n+ 1)πx

(2n+ 1)2
+

1

π

∑

n≥1

((−1)n+1 sinnπx

n
.

(8) State whether the given function is even or odd. Find its Fourier series.
(a)

f(x) =

{

k −π/2 < x < π/2,

0 π/2 < x < 3π/2.

Solution. By 2π-periodicity, the function on (−π, π) reads

f(x) =

{

k if 0 ≤ |x| ≤ π
2 ,

0 if π
2 ≤ |x| ≤ π.

Thus f is an even function. Hence bn = 0 for all n. Also a0 =

(1/π)

∫ π

0

f(x)dx = k/2. For n ≥ 1,

an = (2/π)

∫ π/2

0

k cosnxdx =
2k

π
sin

nπ

2
=

{

± 2k
nπ if n is odd,

0 if n is even.

As for the sign, if n = 2m + 1, then ± = (−1)m. The Fourier series
is

f(x) =
k

2
+

2k

π

∑

m≥0

(−1)m cos(2m+ 1)x

2m+ 1
.
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(b)
f(x) = 3x(π2 − x2), −π < x < π.

Solution. Clearly, f(x) is an odd function. Hence an = 0 for all

n while bn =
2

π

∫ π

0

f(x) sinnxdx. (The calculation is a third degree

torture.)

bn =
2

π

∫ π

0

3x(π2 − x2) sinnxdx

=
6

π

[∣

∣

∣

∣

x(π2 − x2)
− cosnx

n

∣

∣

∣

∣

π

0

+

∫ π

0

(π2 − 3x2)
cosnx

n
dx

]

=
6

π

[

0 +

∣

∣

∣

∣

(π2 − 3x2)
sinnx

n2

∣

∣

∣

∣

π

0

+

∫ π

0

6x
sinnx

n2
dx

]

=
36

πn2

[∣

∣

∣

∣

x
− cosnx

n

∣

∣

∣

∣

π

0

+

∫ π

0

cosnx

n
dx

]

=
(−1)n+136

n3
.

Hence

3x(π2 − x2) = 36
∑

n≥1

(−1)n+1 sinnx

n3
.

(9) Find the Fourier series for the given functions f on the prescribed interval.
(a)

f(x) =

{

−1 if − 1 ≤ x < 0

1 if 0 ≤ x ≤ 1

for |x| ≤ 1.

Solution. f is an odd function. Hence an = 0 for all n while

bn = 2

∫ 1

0

1. sinnπxdx =

{

0 if n even,

4/nπ if n odd.

Hence

f(x) = sgn(x) =
4

π

∑

n≥0

sin(2n+ 1)πx

2n+ 1
,−1 < x < 1.

(b)

f(x) =

{

−x, −1 ≤ x < 0

x, 0 ≤ x ≤ 1

for |x| ≤ 1.

Solution. In short f(x) = |x|. So it is an even function. Hence
bn = 0 for all n ≥ 1. Also

a0 =

∫ 1

0

xdx = 1/2.

Further,

an = 2

∫ 1

0

x cosnπxdx =

{

0 if n even,

−4/n2π2 if n odd.
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Hence

|x| = 1

2
− 4

π2

∑

k≥0

cos(2k + 1)πx

(2k + 1)2
, 1 ≤ x ≤ 1.

(c)

f(x) =

{

0, −2 ≤ x < 1

3, 1 ≤ x ≤ 2

for |x| ≤ 2.

Solution. Observe that
2

3
f(x)−1 is just the signum function sgn(x).

The Fourier cefficients of the latter are

bn =
2

2

∫ 2

0

sin
nπx

2
=

{

0 if n even,

4/nπ if n odd,

and an = 0. Hence

f(x) =
3

2
+

6

π

∑

n≥0

1

2n+ 1
sin

(2n+ 1)πx

2
, −2 < x < 2.

(d)

f(x) = ex/a, |x| ≤ l.

Solution. We have

a0 =
1

2l

∫ l

−l

ex/adx =
a sinh(l/a)

l
.

For n ≥ 1,

an =
1

l

∫ l

−l

cos
nπx

l
· ex/adx

=
1

l

[

∣

∣

∣
cos

nπx

l
· aex/a

∣

∣

∣

l

−l
+

nπa

l

∫ l

−l

sin
nπx

l
· ex/adx

]

=
2a(−1)n

l
· sinh(l/a) + nπa

l
bn.

Similarly, bn = −nπa

l
an. These imply

an = (−1)n
2al sinh(l/a)

l2 + n2π2
and bn = (−1)n+1 2nπa

2 sinh(l/a)

l2 + n2π2
, n ≥ 1.

(e)

f(x) = sin2 x, |x| ≤ π.

Solution. sin2 x =
1

2
− 1

2
cos 2x is already the required Fourier se-

ries.

(10) Expand each of the following functions in a Fourier cosine series on the
prescribed interval.
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(a)

f(x) = e−x, 0 ≤ x ≤ 1.

Solution.

e−x = (1− 1/e) +
∑

n≥1

2
(

1− (−1)n

e

)

n2π2 + 1
cosnπx, 0 ≤ x ≤ 1.

(b)

f(x) =

{

0, 0 ≤ x ≤ 1

1, 1 ≤ x ≤ 2

for 0 ≤ x ≤ 2.

Solution. We have

a0 =
1

2

∫ 2

0

f(x)dx =
1

2

∫ 2

1

dx =
1

2
.

Next for n ≥ 1,

an =

∫ 2

1

cos
nπx

2
dx− 2

nπ
sin

nπ

2
=







0 if n even,

2(−1)
n+1
2

nπ
if n odd.

Hence

f(x) =
1

2
− 2

π

∑

k≥0

(−1)k

2k + 1
cos

(2k + 1)πx

2
, 0 ≤ x ≤ 2.

(c)

f(x) = 2 sinx cosx, 0 ≤ x ≤ π.

Solution. f(x) = sin 2x. For cosine series,

a0 =
1

π

∫ π

0

sin 2xdx = 0.

For n ≥ 1,

an =
2

π

∫ π

0

sin 2x cosnxdx =
1

π

∫ π

0

[sin(n+ 2)x− sin(n− 2)x]dx = 0.

This is 0 if n = 2. For n 6= 2, the calculation continues as follows.

an =
1

π

[

cos(n− 2)x

n− 2
− cos(n+ 2)x

n+ 2

]π

0

=
1

π

[

(−1)n − 1

n− 2
− (−1)n − 1

n+ 2

]

=







0 if n even (including n = 0, 2),
−8

π(n2 − 4)
if n odd.

Hence

sin 2x =
−8

π

∑

k≥0

cos(2k + 1)x

(2k + 1)2 − 4
, 0 ≤ x ≤ π.
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Remark : We can similarly show that

sinx =
2

π
− 4

π

∑

k≥1

cos 2kx

4k2 − 1
, 0 ≤ x ≤ π.

(11) Expand each of the following functions in a Fourier sine series on the
prescribed interval.
(a)

f(x) = e−x, 0 < x < 1.

Solution.

bn = 2

∫ 1

0

e−x sinnπxdx =
2nπ

n2π2 + 1

(

1− (−1)n

e

)

.

(b)

f(x) =

{

x, 0 < x < a

a, a ≤ x ≤ 2a

for 0 < x < 2a.

Solution.

bn =
2

2a

∫ 2a

0

f(x) sin
nπx

2a
dx =

1

a

[
∫ a

0

x sin
nπx

2a
dx+

∫ 2a

a

a sin
nπx

2a
dx

]

=
4a

n2π2
sin

nπ

2
− (−1)n

2a

nπ
=











−2a

nπ
if n even,

2a

nπ
+

(−1)
n−1
2 4a

n2π2
if n odd.

.

(c)
f(x) = 2 sinx cosx, 0 < x < π.

Solution. f(x) = sin 2x is already a Fourier sine series over (0, π).
Here,

bn = δ2,n =

{

0 if n 6= 2

1 if n = 2.

(d)
f(x) = cosx, 0 < x < π.

Solution.

bn =
2

π

∫ π

0

cosx sinnxdx

=
1

π

∫ π

0

[sin(n+ 1)x+ sin(n− 1)x]dx =







0 if n odd,
4n

(n2 − 1)π
if n even.

Hence

cosx =
4

π

∑

n even

n sinnx

n2 − 1
=

8

π

∑

k≥1

k sin 2kx

4k2 − 1
.
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1.6. Heat equation by separation of variables

For the two-dimensional heat equation, the following are relevant.

(a) The Laplacian in polar coordinates in the plane is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

(b) The Laplacian in spherical polar coordinates for the sphere of radius b is

∆ =
1

b2

( ∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

)

.

Problems.

(1) Which of the following PDEs can be reduced to two or more ODEs by the
method of separation of variables?
(a) auxy + bu = 0

Solution. Yes. Let u(x, y) = X(x)Y (y). Then,

a
X ′(x)

X(x)
= −b

Y (y)

Y ′(y)
.

(b) auxx + 2buxy + cuyy = 0

Solution. No, if abc 6= 0. Let u(x, y) = X(x)Y (y). Then,

aX ′′(x)Y (y) + 2bX ′(x)Y ′(y) + cX(x)Y ′′(y) = 0

does not separate.

(c) auxx + 2buxy + cuy = 0

Solution. Yes. Let u(x, y) = X(x)Y (y). Then,

aX ′′(x)

2bX ′(x) + c
= −Y ′(y)

Y (y)
.

(d) zxx + xyzy = 0

Solution. Yes. Let z(x, y) = X(x)Y (y). Then,

X ′′(x)

xX(x)
= −yY ′(y)

Y (y)
.

(e) f(x)θtt = a2[f(x)θx]x

Solution. Yes. Let θ(x, t) = X(x)Y (t). Then,

Y ′′(t)

Y (t)
= a2

[

f ′(x)X ′′(x)

f(x)X(x)
+

X ′′(x)

X(x)

]

.

(2) The curved surface of a thin rod of length ℓ is insulated. The temperature
throughout the rod is 100. If at each end of the rod the temperature is
suddenly reduced to 0 at time t = 0, find the temperature subsequently.
What is the explicit temperature at the mid-point of the rod and how
does it behave with respect to the time variable t?

Solution. The homogeneous heat equation is

ut = kuxx, 0 < x < ℓ.
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We are given Dirichlet boundary conditions and initial condition u0(x) =
u(x, 0) = 100. So

u(x, t) =
∑

n≥1

Yn(t) sin
nπx

ℓ
,

where Yn(t) solves the ODE

Ẏn(t) + n2(π/ℓ)2kYn(t) = 0, Yn(0) = bn,

with

bn =
2

ℓ

∫ ℓ

0

100 sin
nπx

ℓ
dx =







0 if n even,
400

nπ
if n odd.

Explicitly,

Yn(t) = bne
−n2(π/ℓ)2kt.

Substituting,

u(x, t) =
400

π

∑

n odd

1

n
sin

nπx

ℓ
e−n2(π/ℓ)2kt.

At the midpoint x = ℓ/2 and

u(ℓ/2, t) =
400

π

∑

n odd

(−1)
n−1
2

e−n2(π/ℓ)2kt

n
.

u(ℓ/2, t) → 0 exponentially fast as t → ∞. For a rigorous proof, note that

|u(x, t)| <
∑

n odd

(e−(π/ℓ)2kt)n (termwise)

=
e−(π/ℓ)2kt

1− e−2(π/ℓ)2kt

< 2e−(π/ℓ)2kt for t >
ℓ2 log 2

2π2k
.

The last expression is of the form Ce−kt showing exponential decay.

(3) Solve the following nonhomogeneous differential equation

ut − uxx = 8e−t sin 3x

with boundary and initial conditions:

u(0, t) = 0 = u(π, t) and u(x, 0) = 2 sin 2x.

Solution. Expanding in the Fourier sine series over (0, π),

f(x, t) = 8e−t sin 3x =
∑

Bn(t) sinnx.

Hence
Bn(t) = 0, n 6= 3 and B3(t) = 8e−t.

Similarly,

u0(x) := u(x, 0) = 2 sin 2x =
∑

n≥1

bn sinnx

implies
bn = 0, n 6= 2 and b2 = 2.
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Writing

u(x, t) =
∑

n≥1

Yn(t) sinnx

yields the ODE

Ẏn(t) + n2Yn(t) = Bn(t), Yn(0) = bn.

Substituting, we obtain Yn(t) = 0, n 6= 2, 3, while

Ẏ2(t) + 4Y2(t) = 0, Y2(0) = 2 and Ẏ3(t) + 9Y3(t) = 8e−t, Y3(0) = 0.

Thus Y2(t) = 2e−4t. By the method of undetermined coefficients, Y3(t) =
Ce−9t +De−t. This implies C +D = 0 and D = 1 on substituting in the
equations for Y3(t). Thus Y3(t) = e−t − e−9t and

u(x, t) = 2e−4t sin 2x+ (e−t − e−9t) sin 3x.

(4) Solve

ut − uxx = e−t cos 2x

with boundary and initial conditions:

ux(0, t) = e−t, ux(π, t) = −e−t and u(x, 0) = sinx.

Hint: Start with z(x, t) = e−t sinx to homogenize the boundary condi-
tions.

Solution. Observe that z(x, t) = e−t sinx solves the homogeneous
heat equation with the given boundary and initial conditions. Put

v(x, t) := u(x, t)− z(x, t).

Then v(x, t) solves the equation

vt − vxx = [ut − uxx]− [zt − zxx] = e−t cos 2x,

with boundary and initial conditions

vx(0, t) = 0 = vx(π, t) and v(x, 0) = 0.

Due to the Neumann boundary conditions, let

v(x, t) = Y0(t) +
∑

n≥1

Yn(t) cosnx.

Since f(x, t) = e−t cos 2x has only the second Fourier cosine coefficient
nonzero, and v(x, 0) = 0 has all Fourier cosine coefficients zero, we obtain
Yn(t) = 0, for n 6= 2, and

Ẏ2(t) + 4Y2(t) = e−t, Y2(0) = 0.

Solving, Y2(t) = 1/3(e−t − e−4t). Hence

u(x, t) = v(x, t) + z(x, t) =
e−t − e−4t

3
cos 2x+ e−t sinx.
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(5) For the heat equation:

ut − kuxx = 0, 0 < x < ℓ, t > 0

with initial condition u(x, 0) = u0(x), and Neumann boundary conditions
ux(0, t) = ux(ℓ, t) = 0, show that

∫ ℓ

0

u(x, t) dx = C,

where C is a constant. In other words, the average temperature stays
constant. Further, show that

lim
t 7→∞

u(x, t) =
1

ℓ

∫ ℓ

0

u0(x) dx.

Compute the solution, when u0 is:

(i)u0(x) = x and (ii)u0(x) = sin2(
πx

ℓ
).

Solution.

d

dt

∫ ℓ

0

u(x, t) dx =

∫ ℓ

0

ut(x, t) dx =

∫ ℓ

0

kuxx(x, t) dx = [kux(x, t)]
ℓ
0 = 0

The solution to the homogeneous heat equation with Neumann boundary
conditions is

u(x, t) = a0 +
∑

n≥1

ane
−n2(π/ℓ)2kt cos

nπx

ℓ

where an are computed by expanding the initial condition

u(x, 0) = u0(x) = a0 +
∑

n≥1

an cos
nπx

ℓ
.

In particular, a0 =
1

ℓ

∫ ℓ

0

u0(x)dx. Now evidently,

lim
t 7→∞

u(x, t) = a0 =
1

ℓ

∫ ℓ

0

u0(x) dx.

assuming that the limit can be taken, term by term, inside the summation.
(i) For u0(x) = x, we have a0 = ℓ/2 and

an =

{

0 if n is even,

4ℓ/n2π2 if n is odd.

u(x, t) =
ℓ

2
+

4ℓ

π2

∑

n odd

e−n2(π/ℓ)2kt

n2
cos

nπx

ℓ
.

(ii) For

u0(x) = sin2
πx

ℓ
=

1

2

(

1− cos
2πx

ℓ

)

,

we have a0 = 1/2, a2 = −1/2 and an = 0, for n 6= 0, 2. Hence

u(x, t) =
1

2
− 1

2
e−4(π/ℓ)2kt cos

2πx

ℓ
.
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(6) Show that in a thin rod with insulated ends, the average temperature

ū =
1

ℓ

∫ ℓ

0

u(x, t)dx

remains constant. Show that the temperature distribution coverges to
this constant at all points uniformly and exponentially fast as t → ∞.
For convenience, assume that u(x, 0) = u0(x) is a Riemann integrable
function on [0, ℓ].

Solution. Since there is no external source, ut = kuxx. Insulated
ends means that no heat can flow across the end points, so that the tem-
perature gradient vanishes at both ends for all time that is ux(0, t) =
0 = ux(ℓ, t) and we have (homogeneous) Neumann boundary conditions.

Hence the total heat content Q =

∫ ℓ

0

u(x, t)dx as also the average tem-

perature ū = Q/ℓ remains constant. See previous problem for a proof.
If

u0(x) = a0 +
∑

n≥1

an cos
nπx

ℓ

is the Fourier cosine series of the initial temperature distribution, then

u(x, t) = a0 +
∑

n≥1

ane
−n2(π/ℓ)2kt cos

nπx

ℓ
.

Here a0 =
1

ℓ

∫ ℓ

0

u0(x)dx = ū. Hence

u− ū =
∑

n≥1

ane
−n2(π/ℓ)2kt cos

nπx

ℓ
.

Since u0 is Riemann integrable, it is bounded, say |u0| ≤ M . Employing
this bound on

an =
2

ℓ

∫ ℓ

0

u0(x) cos
nπx

ℓ
dx

implies |an| ≤ 2M . Therefore

|u− ū| ≤ 2M
∑

n≥1

e−n2(π/ℓ)2kt ≤ 2M
∑

n≥1

(e−(π/ℓ)2kt)n =
2Me−(π/ℓ)2kt

1− e−(π/ℓ)2kt
.

The last expression is independent of x and tends to zero as t → ∞. Hence
u(x, t) → ū uniformly as t → ∞.

(7) Compute the solution of

ut − kuxx + a2u = 0, 0 < x < ℓ, t > 0

with initial condition u(x, 0) = u0(x), and Dirichlet boundary conditions
u(0, t) = u(ℓ, t) = 0. Find limt 7→∞ u(x, t).

Solution. Put u(x, t) = e−a2tv(x, t). Then v satisfies the homoge-
neous heat equation with Dirichlet boundary conditions. Hence

u(x, t) = e−a2t
∑

n≥1

bne
−n2(π/ℓ)2kt sin

nπx

ℓ
,
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where bn are the coefficients of the Fourier sine series of u0(x) on (0, ℓ),
that is

bn =
2

ℓ

∫ ℓ

0

u0(x) sin
nπx

ℓ
.

This gives as before that

|u(x, t)| ≤ 2M

ℓ

e−a2t.e−(π/ℓ)2kt

1− e−(π/ℓ)2kt
,

and so u(x, t) → 0 as t → ∞, uniformly in x.
Aliter: Let u(x, t) = X(x)T (t). Substituting in the given equation, we get

X(x)T ′(t)− kX ′′(x)T (t) + a2X(x)T (t) = 0, or
T ′(t)

T (t)
= −a2 +

X ′′(x)

X(x)
.

So the variables separate. Therefore,

T ′(t)

T (t)
+ a2 = k

X ′′(x)

X(x)
= const.

If we try a nonnegative constant, then due to Dirichlet boundary condi-
tions, we get only the trivial solution. So let the constant be −µ2;µ > 0.

The Dirichlet boundary conditions imply
µ

c
=

nπ

ℓ
and

un(x, t) = bne
−(n2(π/ℓ)2k+a2)t sin

nπx

ℓ
, n = 1, 2, 3, . . . .

Summing over all n yields the general solution given earlier.

(8) Solve the following heat equation:

ut − kuxx = 0, 0 < x < ℓ, t > 0

(a) with zero initial condition u(x, 0) = 0 and Dirichlet boundary condi-
tions: u(0, t) = 0, and u(ℓ, t) = e−t. Assume ℓ/πc is not an integer.

Solution. Note that the boundary conditions are nonhomogeneous.
Consider the function

z(x, t) =
xe−t

ℓ
which satisfies these boundary conditions. Set v := u − z. Then
v(x, t) is the solution to

vt − kvxx =
xe−t

ℓ

with Dirchlet boundary conditions v(0, t) = 0 = v(ℓ, t) and the initial
condition v(x, 0) = −x/ℓ. Expanding everything in Fourier sine series
on (0, ℓ),

f(x, t) :=
xe−t

ℓ
=
∑

n≥1

Bn(t) sin
nπx

ℓ
, with Bn(t) = (−1)n+1 2e

−t

nπ
,

v0(x) := −x/ℓ =
∑

n≥1

bn sin
nπx

ℓ
, with bn = (−1)n

2

nπ
,

and
v(x, t) =

∑

n≥1

Yn(t) sin
nπx

ℓ
.
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The functions Yn(t) solve the IVP

Ẏn(t) + n2(π/ℓ)2kYn(t) = (−1)n+1 2e
−t

nπ
, Yn(0) = (−1)n

2

nπ
.

A particular integral is of the form Kne
−t. Substitution gives

Kn = (−1)n+1 2

nπ
· ℓ2

kn2π2 − ℓ2
.

(Here we use the assumption that ℓ/πc is not an integer. Else for
one particular n, a different formula will be needed.) The general
solution of the ODE now is

Yn(t) = Cne
−n2(π/ℓ)2kt +Kn.

The initial condition Yn(0) = (−1)n 2
nπ implies

Cn = (−1)n
2knπ

kn2π2 − ℓ2
.

Thus Yn(t) and hence v(x, t) are now explicit. Finally

u(x, t) = v(x, t) +
xe−t

ℓ

is the required solution.

(b) with zero initial condition u(x, 0) = 0 and Neumann boundary con-

ditions: ux(0, t) = 0 and ux(ℓ, t) = e−t. Assume ℓ/π
√
k is not an

integer.

Solution. To homogenize the boundary conditions, let

z(x, t) =
x2e−t

2ℓ
.

Let v := u− z. Then v satisfies the nonhomogeneous heat equation

vt − kvxx = f(x, t),

with

f(x, t) = −
(

x2

2
+ k

)

e−t

ℓ
,

the initial condition v(x, 0) = −x2

2ℓ
, and homogeneous Neumann

boundary conditions

vx(0, t) = 0 = vx(ℓ, t).

We expand everything in a Fourier cosine series. Let

v(x, 0) = −x2

2ℓ
= a0 +

∑

n≥1

an cos
nπx

ℓ
,

where

a0 =
1

ℓ

∫ ℓ

0

v(x, 0)dx = −1

ℓ

∫ ℓ

0

x2

2ℓ
dx = −ℓ/6,

and for n ≥ 1,

an =
2

ℓ

∫ ℓ

0

−x2

2ℓ
cos

nπx

ℓ
dx = (−1)n+1 2ℓ

n2π2
.
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Since

f(x, t) = e−t

(

v(x, 0)− k

ℓ

)

,

we have

f(x, t) = A0(t) +
∑

n≥1

An(t) cos
nπx

ℓ
,

with

A0(t) = (a0 − k/ℓ)e−t and An(t) = ane
−t for n ≥ 1.

Write

v(x, t) = Y0(t) +
∑

n≥1

Yn(t) cos
nπx

ℓ
.

So Y0(t) satisfies

Ẏ0(t) = (a0 − k/ℓ)e−t, Y0(0) = a0,

yielding

Y0(t) = (k/ℓ− a0)e
−t + (2a0 − k/ℓ)

while for n ≥ 1, Yn(t) satisfies

Ẏn(t) + n2(π/ℓ)2kYn(t) = ane
−t, Yn(0) = an.

yielding

Yn(t) =
n2π2kan

n2π2k − ℓ2
e−n2(π/ℓ)2kt − ℓ2ane

−t

n2π2k − ℓ2
,

This makes v(x, t) and hence u(x, t) explicit. Also note that

lim
t→∞

u(x, t) = 2a0 − k/ℓ = −
(

ℓ

3
+

k

ℓ

)

,

and hence

u(x, 0) = 0 > −
(

ℓ

3
+

k

ℓ

)

= u(x,∞).

This reflects the fact that the right end of the rod is uninsulated, and
heat is escaping through it since ux(ℓ, t) = e−t > 0.

(c) with initial condition u(x, 0) = u0(x) and Dirichlet boundary con-
ditions: u(0, t) = 0 and u(ℓ, t) = t. Discuss the behaviour of the
solution for large t.

Solution. Once again to homogenize the boundary conditions, let

z(x, t) =
xt

ℓ

and v = u− z. Then v solves the heat equation

vt − kvxx = −x/ℓ =
2

π

∑

n≥1

(−1)n

n
sin

nπx

ℓ
,

with

v(0, t) = 0 = v(ℓ, t),



54 1. TUTORIAL PROBLEMS

and initial condition

v(x, 0) = u0(x) =
∑

n≥1

bn sin
nπx

ℓ
.

Writing

v(x, t) =
∑

n≥1

Yn(t) sin
nπx

ℓ
.

yields the ODE

Ẏn(t) + n2(π/ℓ)2kYn(t) =
2(−1)n

nπ
, Yn(0) = bn.

This gives

Yn(t) =

[(

bn − (−1)n
2ℓ2

n3π3k

)

e−n2(π/ℓ)2kt + (−1)n
2ℓ2

n3π3k

]

As t → ∞, Yn(t) approaches (−1)n 2ℓ2

n3π3k . This implies that

v(x,∞) =
∑

n≥1

(−1)n
2ℓ2

n3π3k
sin

nπx

ℓ

is a continuous and hence a bounded function on [0, ℓ]. Hence due to
the xt factor, u(x,∞) = ∞ for all x > 0.

(9) A thin circular disc of radius R whose upper and lower faces are insulated
is initially at the temperature u(r, θ) = f(r).
(a) If the temperature along the circumference of the disc is suddenly

reduced to 0 and maintained at that value, find the temperature in
the disc as a function of (r, t).

Solution. The heat equation in a region is ut = k∆u when there
are no sources or sinks inside the region. For a circular disc (centered
at origin) we use polar coordintes. In these coordinates,

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

Since the initial temperature only depends on r, the solution u will
depend on r and t only. In this situation, the heat equation, the
(Dirichlet) boundary condition and initial condition read:

ut = k(urr + r−1ur), u(R, t) = 0, u(r, 0) = f(r).

We employ the method of separation of variables. Accordingly, let
u = X(r)T (t) be a separated solution of the above system without the
initial condition. Substituting and separating variables, we obtain

X ′′(r)

X(r)
+

1

r

X ′(r)

X(r)
=

T ′(t)

kT (t)
.

Since lhs is a function of r and rhs that of t only, both must have a
common constant value, say λ. For λ > 0, write λ = µ2, µ > 0. The
equation for X reads

r2X ′′(r) + rX ′(r)− µ2X(r) = 0, X(R) = 0.
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It is a scaled Bessel equation of order n = 0 scaled by the imaginary

number iµ. The general solution is AJ0(iµr) + BY0(iµr). Since u
must be bounded as r → 0, B must vanish. Further, since

J0(iµr) =
∑

m≥0

(µr)2m

4m(m!)2

is a series of positive terms only, it cannot satisfy X(R) = 0. Hence
A = 0 too. Hence we look for nontrivial solutions when λ ≤ 0. So
let now λ = 0. Then r2X ′′ + rX ′ = 0. The general solution is
A log r+B and again we get A = B = 0. So finally let λ = −µ2, µ >
0. The general solution is X(r) = AJ0(µr) + BY0(µr) and due to
boundedness at r = 0, B = 0. Moreover, the condition X(R) = 0

implies µ =
z

R
for z ∈ Z(0). For these values of µ, we have

T (t) = De−µ2kt.

Therefore, the general solution of the system sans the initial condition
is

u(r, t) =
∑

z∈Z(0)

cze
−(z/R)2ktJ0

(zr

R

)

.

We now invoke the initial condition to find that

f(r) =
∑

z∈Z(0)

czJ0

(zr

R

)

is the Fourier-Bessel expansion of f(r) over the interval [0, R] in terms
of J0. This allows us to compute the coefficients

cz =
2

R2J1(z)2

∫ R

0

f(r)J0

(zr

R

)

rdr =
2

z2J1(z)2

∫ z

0

f

(

Rt

z

)

J0(t).tdt.

(b) For f(r) = 100(1−r2/R2), if the temperature along the circumference
of the disc is suddenly raised to 100 and maintained at that value,
then find the temperature in the disc subsequently.

Solution. Let the temperature distribution be

U(r, t) = 100u(r, t) + 100.

Then u must solve the equations

ut = k(urr + r−1ur), (Heat equation),

u(R, t) = 0 (Homogeneous boundary condition),

u(r, 0) = −r2/R2 (Initial condition).

From part (a), it only remains to find cz, z ∈ Z(0). We know that

∫ z

0

t2J0(t).tdt = z2.zJ1(z)−
∫ z

0

2t.tJ1(t)dt = z3J1(z)− 2z2J2(z)

= z3J1(z)− 2z2
2

z
J1(z) = (z3 − 4z)J1(z).
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On substitution,

cz =
2

z2J1(z)2

∫ z

0

(−t2/z2)J0(t).tdt =
8− 2z2

z3J1(z)
, z ∈ Z(0).

Thus

U(r, t) = 100 + 100
∑

z∈Z(0)

8− 2z2

z3J1(z)
e−z2kR−2tJ0

(zr

R

)

.

(10) A thin upper hemisphere of radius R whose outer and inner surfaces are
insulated, is initially at temperature u(θ, ϕ) = f(ϕ), with ϕ being the
polar angle. If the temperature around the boundary of the shell (the
equator) is suddenly reduced to 0 and maintained at that value, find the
subsequent temperature in the hemisphere as a function of (ϕ, t).

Solution. The Laplacian on the sphere of radius R in terms of spher-
ical polar coordinates is

∆ =
1

R2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

Let the given hemisphere be described by x2 + y2 + z2 = R2, z ≥ 0 Then
in the spherical polar coordinates, it is the ‘rectangle’ 0 ≤ ϕ ≤ π/2, 0 ≤
θ ≤ 2π. The heat equation on the sphere, or on any subregion thereof is,
ut = k∆u. Since the region is hemispherical, and the boundary and the
initial conditions are independent of the azimuthal angle θ, we expect the
solution too to be independent of θ. Accordingly, let u = u(ϕ, t) be the
temperature distribution at time t. Then u will solve

ut =
1

R2
[uϕϕ + cotϕuϕ] (Heat equation),

u(ϕ, t)|ϕ=π
2
= 0 (Homogeneous boundary condition),

u(ϕ, 0) = f(ϕ) (Initial condition).

Ignoring the initial condition we seek solutions of the form u = X(ϕ)T (t).
On substitution in the heat equation, we get

X ′′(ϕ)

X(ϕ)
+ cotϕ

X ′(ϕ)

X(ϕ)
=

R2T ′(t)

kT (t)
(Variables separated).

Both the sides must now be equal to a common constant and it can be
seen that it must be nonpositive, else for example, T (t) will blow up ex-
ponentially as time t increases. (Mathematical reasoning is more tedious.
The Legendre’s equation with λ = n(n + 1) < 0, has all nontrivial solu-
tions unbounded at ±1.) Let the common nonpositive constant be written
as −n(n+ 1), n ≥ 0. Then

X ′′(ϕ) + cotϕX ′(ϕ) + n(n+ 1)X(ϕ) = 0, X(π/2) = 0,

and

T (t) = Cne
−n(n+1)kR−2t.

Now the differential equation for X(ϕ) is the Legendre equation if the
change of variables ϕ = cos−1 z is used. The general solution then is

X(ϕ) = Ay0(z) +By1(z), ϕ ∈ [0, π/2] ≡ z ∈ [0, 1],
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where y0 = a0+a2z
2+. . . is an even power series while y1 = a1z+a3z

3+. . .
is odd. Since it is known that a0 6= 0, and X(π/2) = 0, we deduce
A = 0. Therefore, X(ϕ) = By1(z) is an odd Legendre function on (−1, 1)
restricted to [0, 1). Now it is implicit that X(ϕ) remains bounded as
ϕ → 0, that is the temperature at the north pole is finite at all time t > 0.
This means that y1 remains bounded as z → ±1. This forces n to be
an odd integer and y1 = Pn(z) is the Legendre polynomial. Hence the
separated solutions are of the form

u(ϕ, t) = CnPn(cosϕ)e
−n(n+1)kR−2t, n = 1, 3, 5, . . . .

The general solution then is

u(ϕ, t) =
∑

n odd

Cne
−n(n+1)kR−2tPn(cosϕ).

Finally, we use the initial condition to see that

f(ϕ) =
∑

n odd

CnPn(cosϕ)

is the Fourier-Legendre series of f thought of as an odd function on (0, π).
(f(ϕ) = −f(π − ϕ).) Thus

Cn = 2 · 2n+ 1

2

∫ 1

0

f(cos−1 z)Pn(z)dz

for odd integers n.

Find the explicit solution if
(a) f(ϕ) = cos 3ϕ

Solution. Since P1(z) = z, P3(z) =
5z3 − 3z

2
,

f(ϕ) = cos 3ϕ = 4 cos3 ϕ− 3 cosϕ = −0.2P1(cosϕ) + 1.6P3(cosϕ).

Hence

u(ϕ, t) = −0.2e−2kR−2tP1(cosϕ) + 1.6e−12kR−2tP3(cosϕ).

At the topmost point the polar angle ϕ = 0, so

u(0, t) = −1

5
e−2kR−2t +

8

5
e−12kR−2t.

(b) f(ϕ) = cos 2ϕ.
What is the temperature at its topmost point as a function of t?

Solution. This case is harder since cos 2ϕ is an even function on
[0, π]. We must consider the odd extension of cosϕ, 0 ≤ ϕ ≤ π/2. Thus
we get an infinite series unlike in (a). Since cos 2ϕ = 2 cos2 ϕ − 1, we
need to expand 2z2 − 1 in terms of P1, P3, P5, . . . over [0, 1]. For any odd
integer n,

Cn = (2n+ 1)

∫ 1

0

(2z2 − 1)Pn(z)dz =
(2n+ 1)

2nn!

∫ 1

0

(2z2 − 1)Dn(z2 − 1)ndz.
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It can be seen on integration by parts that
∫ 1

0

(2z2 − 1)Dn(z2 − 1)ndz = [Dn−1 − 4Dn−3](z2 − 1)n|z=0

for n = 3, 5, 7, . . . . For n = 1 we have
∫ 1

0

(2z2 − 1)D(z2 − 1)dz = 0

which implies C1 = 0. Further,

Cn =
2n+ 1

2nn!

[

(n− 1)!(−1)
n+1
2

(

n
n−1
2

)

− 4(n− 3)!(−1)
n+3
2

(

n
n−3
2

)]

= (−1)
n+1
2

2n+ 1

2nn!

[

(n− 1)!

(

n
n−1
2

)

+ 4(n− 3)!

(

n
n−3
2

)]

for n = 3, 5, 7, . . . . At the topmost point

u(0, t) =
∑

n odd

Cne
−n(n+1)kR−2t,

since Pn(cos 0) = Pn(1) = 1.
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1.7. Wave equation by separation of variables

Problems.

(1) Consider the wave equation

utt − c2uxx = 0, 0 < x < ℓ, t > 0

with initial position f(x), initial velocity g(x) and Neumann boundary
conditions ux(0, t) = ux(ℓ, t) = 0. Compute the solution for:
(a) f(x) = x2(x− ℓ), g(x) = 0

Solution. The solution is of the form

u(x, t) = Y0(t) +
∑

n≥1

Yn(t) cos
nπx

ℓ
,

and Yn(t) are the unique solutions to the IVP

Ÿn + n2(π/ℓ)2c2Yn = 0, Yn(0) = an, Ẏn(0) = 0.

The an are the coefficients of the Fourier cosine series of f(x):

x2(x− ℓ) = a0 +
∑

n≥1

an cos
nπx

ℓ
, 0 < x < ℓ.

Thus

Yn(t) = an cos
nπct

ℓ
and u(x, t) = a0 +

∑

n≥1

an cos
nπct

ℓ
cos

nπx

ℓ
.

Now routine calculations show that

a0 = ℓ−1

∫ ℓ

0

f(x)dx = −l3/12,

and

an = 2ℓ−1

∫ ℓ

0

f(x) cos
nπx

ℓ
dx = (−1)n

2ℓ3

n4π4
[n2π2 + 6(1 + (−1)n)].

(b) f(x) = sin2(πxℓ ), g(x) = 0

Solution. As above

u(x, t) = a0 +
∑

n≥1

an cos
nπct

ℓ
cos

nπx

ℓ
,

where

sin2
πx

ℓ
= a0 +

∑

n≥1

an cos
nπx

ℓ
=

1

2
− 1

2
cos

2πx

ℓ
.

Thus

a0 = 1/2, a2 = −1/2 and an = 0, n 6= 0, 2.

Hence

u(x, t) =
1

2

[

1− cos
2πct

ℓ
cos

2πx

ℓ

]

.
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(c) f(x) = 0, g(x) = 1.

Solution. Here all an = 0 and a10 = 1, a1n = 0, n ≥ 1. Con-
sequently, Yn(t) = 0, n ≥ 1 and Y0(t) = t. Therefore, u(x, t) = t.

(2) Solve the wave equation

utt − c2uxx = 0, 0 < x < ℓ, t > 0

with zero initial conditions and inhomogeneous Neumann boundary con-
ditions: ux(0, t) = t and ux(ℓ, t) = 0.

Solution. We have to homogenize the Neumann boundary condi-
tions at the cost of making the PDE and initial conditions inhomogeneous.
So set z(x, t) = tx(1− x/2ℓ), and put

v(x, t) = u(x, t)− z(x, t).

Then v(x, t) solves the equation

vtt − c2vxx = −c2t

ℓ

with boundary conditions

vx(0, t) = 0 = vx(ℓ, t)

and initial conditions

v(x, 0) = 0, vt(x, 0) = −x
(

1− x

2ℓ

)

.

Assuming

v(x, t) = X0(t) +
∑

n≥1

Xn(t) cos
nπx

ℓ
,

the Xn(t) solve the IVP

Ẍ0(t) = −c2t

ℓ
, X0(0) = 0, Ẋ0(0) = a10

and for n ≥ 1,

Ẍn(t) + n2(π/ℓ)2c2Xn(t) = 0, Xn(0) = 0, Ẋn(0) = a1n.

This is because f(x, t) = − c2t
ℓ is a one-term cosine series of the rhs of the

PDE for v.

a10 +
∑

n≥1

a1n cos
nπx

ℓ
= −x

(

1− x

2ℓ

)

is the cosine series which gives the constants a1n, n ≥ 0. Now for n ≥ 1,

Xn(t) =
a1nℓ

nπc
sin

nπct

ℓ

while

X0(t) = a10t−
c2t3

6ℓ
.

Except for explicitly determining a1n, we get

u(x, t) = tx
(

1− x

2ℓ

)

+

(

a10t−
c2t3

6ℓ

)

+
∑

n≥1

a1nℓ

nπc
sin

nπct

ℓ
cos

nπx

ℓ
.
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Finally, you can check that

a10 = −1

ℓ

∫ ℓ

0

x
(

1− x

2ℓ

)

dx = − ℓ

6

and for n ≥ 1,

a1n = −2

ℓ

∫ ℓ

0

x
(

1− x

2ℓ

)

cos
nπx

ℓ
dx =

2ℓ

n2π2
.

(3) Solve the wave equation

utt − c2uxx = −xe−t/ℓ, 0 < x < ℓ, t > 0

with initial conditions: u(x, 0) = ut(x, 0) = 0 and boundary conditions:
u(0, t) = e−t, u(ℓ, t) = 1.

Solution. To homogenize the Dirichlet boundary conditions, let

z(x, t) =
x+ (ℓ− x)e−t

ℓ
,

and put
v(x, t) = u(x, t)− z(x, t).

Then v(x, t) solves the equation

vxx − c2vtt = −e−t,

with initial conditions

v(x, 0) = −1, vt(x, 0) = 1− x

ℓ
and homogeneous Dirichlet boundary conditions

v(0, t) = 0 = v(ℓ, t).

So the function v(x, t) will have an expansion

v(x, t) =
∑

n≥1

Yn(t) sin
nπx

ℓ
.

The other Fourier sine expansions are

f(x, t) := −e−t =
∑

n≥1

Bn(t) sin
nπx

ℓ
= −4e−t

π

∑

n odd

1

n
sin

nπx

ℓ
.

v(x, 0) = −1 =
∑

n≥1

bn sin
nπx

ℓ
= − 4

π

∑

n odd

1

n
sin

nπx

ℓ
.

vt(x, 0) = 1− x

ℓ
=
∑

n≥1

b1n sin
nπx

ℓ
=
∑

n≥1

2

nπ
sin

nπx

ℓ
.

Therefore, for even n,

Ÿn(t) + n2(π/ℓ)2c2Yn(t) = 0, Yn(0) = 0, Ẏn(0) = 2/nπ

which implies

Yn(t) =
2ℓ

n2π2c
sin

nπct

ℓ
.

The case of odd n is complicated.

Ÿn(t) + n2(π/ℓ)2c2Yn(t) = −4e−t

nπ
, Yn(0) = − 4

nπ
, Ẏn(0) = 2/nπ.
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Let Kne
−t be a particular solution of this ODE.Direct substitution gives

Kn =
−4ℓ2

nπ(ℓ2 + n2π2c2)
. The general solution, therefore, is

Yn(t) = Cn cos
nπct

ℓ
+Dn sin

nπct

ℓ
− 4ℓ2e−t

nπ(ℓ2 + n2π2c2)
.

Using the initial values, we get

Cn =
2ℓ(n2π2c2 − 2ℓ2)

n2π2c2 + ℓ2
and Dn =

2ℓ(n2π2c2 − ℓ2)

n2π2c(n2π2c2 + ℓ2)
.

This determines the Fourier sine series of v(x, t) completely. Finally,

u(x, t) = v(x, t) +
x+ (ℓ− x)e−t

ℓ
.

(4) Use separation of variables to solve the telegrapher equation

utt − γ2uxx + 2α2ut = 0, 0 < x < ℓ, t > 0

with initial condition u(x, 0) = f(x), ut(x, 0) = g(x) and Dirichlet bound-
ary conditions u(0, t) = u(ℓ, t) = 0. Show that the solution u(x, t) tends
to zero as t 7→ ∞.

Solution. Let u(x, t) = X(x)T (t) be an elementary solution of the
linear PDE. Substitution and simplification separates the variables:

1

γ2

T ′′(t)

T (t)
+ 2

α2

γ2

T ′(t)

T (t)
=

X ′′(x)

X(x)
.

Using the, by now standard arguments, both the sides equal a common
constant which due to the homogeneous Dirichlet boundary conditions

must of the form −n2π2

ℓ2
, n = 1, 2, 3, . . . . Then

X(x) = constt. sin
nπx

ℓ

while T (t) satisfies

T ′′(t) + 2α2T ′(t) +
n2π2γ2

ℓ2
T (t) = 0.

This is a constant coefficient linear second-order ODE. The auxillary equa-
tion has the roots

m± = −α2 ±
√

α4 − n2π2γ2

ℓ2
, n = 1, 2, 3, . . . .

The general solution then is

u(x, t) =

∞
∑

n=1

(

Cne

(

−α2+
√

α4−n2π2γ2

ℓ2

)

t +Dne

(

−α2−
√

α4−n2π2γ2

ℓ2

)

t

)

sin
nπx

ℓ

=

∞
∑

n=1

(

Cne

√

α4−n2π2γ2

ℓ2
t +Dne

−
√

α4−n2π2γ2

ℓ2
t

)

e−α2t sin
nπx

ℓ
.

The coefficients Cn and Dn can be determined using the Fourier sine series
of f(x) and g(x).
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We observe that if α4 ≥ n2π2γ2

ℓ2
, then both the roots will be negative,

and if α4 <
n2π2γ2

ℓ2
, then the real part of both the roots will be negative.

Hence it follows that each elementary solution and thus u also decays to
0 as t → ∞. Note that for each n,

ℜ(m±) ≤ −α2 + ℜ
(
√

α4 − π2γ2

ℓ2

)

which is a fixed negative constant. So u will decay to 0 exponentially fast.

(5) An elastic string whose linear density is ρ(x) = ρ0(1+αx), where x is the
distance from one end of the string, is stretched under tension T between
two points at a distance ℓ apart. What are the natural frequencies of
the string? More precisely, write down the equation whose solutions are
the natural frequencies of the string. (This equation is known as the
characteristic equation of the vibration problem.)

Solution. The equation governing the vibrations is

ρ(x)utt = Tuxx, u(0, t) = 0 = u(ℓ, t),

where ρ(x) is the, possibly nonconstant, linear density of the string at x,
and T is the tension. In the given problem, ρ(x) = ρ0(1 + αx). In the
fundamental modes of vibrations, u(x, t) = X(x)Y (t). On substitution in
the given wave equation, the variables separate:

Y ′′(t)

Y (t)
=

T

ρ0(1 + αx)
· X

′′(x)

X(x)
= −µ2 < 0

(If the common constant is ≥ 0, no nontrivial solution will be possible due
to the homogeneous Dirichlet boundary conditions.) Clearly,

Y (t) = Cµ cosµt+Dµ sinµt.

The differential equation for X(x) is

X ′′(x) + 2.25c2µ2(α−1 + x)X(x) = 0,

where we have, for convenience set c =

√

4ρ0α

9T
. Now make a change of

variables

z = c(α−1 + x)3/2 and (α−1 + x)1/2v(z) = X(x).

(Compare with Problem 1(c) in Section 1.4.) This yields

z2v′′ + zv′ + (z2 − 1

32
) = 0.

The general solution is

v(z) = AµJ1/3(z) +BµJ−1/3(z).

It is interesting to note that for x = 0, z = cµα−1 > 0, so that the J−1/3

term is also allowed. Now the Dirichlet boundary conditions imply that
v(z(0)) = 0 = v(z(ℓ)). This gives two linear equations for Aµ, Bµ namely

J1/3(z(0))Aµ + J−1/3(z(0))Bµ = 0,
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and

J1/3(z(ℓ))Aµ + J−1/3(z(ℓ))Bµ = 0.

For a nontrivial mode of vibrations to exist, at least one of the Aµ, Bµ

must be nonzero. This can happen if and only if the determinant
∣

∣

∣

∣

J1/3(z(0)) J−1/3(z(0))
J1/3(z(ℓ)) J−1/3(z(ℓ))

∣

∣

∣

∣

= 0.

Going back to the original variables, the characteristic equation is
∣

∣

∣

∣

J1/3(
2kµ
3α3/2 ) J−1/3(

2kµ
3α3/2 )

J1/3(
2kµ
3α3/2 [1 + αℓ]3/2) J−1/3(

2kµ
3α3/2 [1 + αℓ]3/2)

∣

∣

∣

∣

= 0.

Here k2 =
ρ0α

T
. The above equation must be solved for µ. The solution

set is precisely the set of fundamental frequencies and the corresponding
X(x) are the associated amplitudes. The abstract Sturm-Liouville theory
shows that there is a sequence of values of µ increasing to infinity and
which tend to be regularly spaced, that is, µn+1 − µn → const. > 0 as
n → ∞.

(6) Work the previous exercise if the linear density is ρ(x) = ρ0e
αx.

Solution. Repeating the method of separation of variables as in the
previous problem, this time we get for u(x, t) = X(x)Y (t),

X ′′(x) +
ρ0αµ

2

T
eαxX(x) = 0.

For convenience again, we let k2 =
ρ0α

T
. Then

X ′′(x) + k2µ2eαxX(x) = 0.

Letting z = eαx/2, X(x) = v(z), we obtain after rearranging

z2v′′ + zv′ +

[

4k2µ2

α2
z2
]

v = 0.

The general solution is

v(z) = AµJ0

(

2kµz

α

)

+BµY0

(

2kµz

α

)

.

Again Y0 term will remain bounded as z = 1 when x = 0. The character-
istic equation this time will be

∣

∣

∣

∣

J0(
2kµ
α ) Y0(

2kµ
α )

J0(
2kµ
α eℓα/2) Y0(

2kµ
α eℓα/2)

∣

∣

∣

∣

= 0.

(7) Find the characteristic equation to determine the frequencies of the pure
harmonics of an annulus {0 < a ≤ r ≤ b} which do not depend on the
angle θ in polar coordinates.

Solution. This time we have u = u(r, t) = X(r)T (t). The wave
equation ∆u = urr + r−1ur = utt yields on separation of variables,

X ′′(r) + r−1X ′(r)

X(r)
=

T ′′(t)

T (t)
.
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Again we assume the that the common constant is negative say, −µ2.
T (t) = A cos(µt + α) and so µ are the frequencies of the fundamental
modes. Now the differential equation for X(r) is r2X ′′+rX ′+µ2r2X = 0
which is a scaled Bessel equation of order 0. The general solution is
X(r) = AJ0(µr) + BY0(µr). The boundary conditions are X(a) = 0 =
X(b). Note that we cannot eliminate Y0 since it is smooth on [a, b]. The
boundary conditions mean that the equations

AJ0(µa) +BY0(µa) = 0 and AJ0(µb) +BY0(µb) = 0

must have (A,B) 6= (0, 0) as a solution, the condition for which is
∣

∣

∣

∣

J0(µa) Y0(µa)
J0(µb) Y0(µb)

∣

∣

∣

∣

= 0.

The above equation determines the frequencies µk, k = 1, 2, 3, . . . increas-
ing to infinity by the theory of regular Sturm-Liouville equations.

(8) An elastic membrane in the shape of a plane circular sector of radius R
and angle β is clamped along its boundary. Find the fundamental modes
of vibrations.

Solution. Let the vertex of the sector (that is, the center of the
circle) as origin, and the plane of the membrane as xy-plane. We assume
that one arm of the sector is along the +ve x-axis, and so the other arm
is along the ray θ = β. In polar coordinates in the plane, the Laplacian is

∆R2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

The wave equation is

utt = urr + r−1ur + r−2uθθ

in the domain (r, θ, t) ∈ [0, R]× [0, β]× R. The boundary conditions are

(i) u(r, 0, t) = 0 = u(r, β, t)

(ii) u(R, θ, t) = 0, u(0, θ, t) is finite.

We solve for u(r, θ, t) = X(r)Y (θ)Z(t). Substituting in the wave equation
and separating variables, we obtain

Y ′′(θ)

Y (θ)
= −r2X ′′(r) + rX ′(r)

X(r)
+

r2Z ′′(t)

Z(t)
.

Due to the boundary conditions (i), the common constant has to be

−n2π2

β2
for n = 1, 2, 3, . . . and correspondingly,

Y (θ) = B sin
nπθ

β
.

Now the rhs gives

Z ′′(t)

Z(t)
=

X ′′(r) + r−1X ′(r)

X(r)
− n2π2

r2β2
,
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with variables again separated. Let the common constant be −µ2. Then
Z(t) = A cos(µt + ϕ). Thus µ is a fundamental frequency which is to be
precisely determined. The ODE for X(r) is

r2X ′′(r) + rX ′(r) +
(

µ2r2 − n2π2

β2

)

X(r) = 0.

The only solution which is bounded at r = 0 is the scaled Bessel function
Jnπ/β(µr). The final condition u(R, θ, t) = 0 forces µR ∈ Z(nπ/β), the set
of positive zeroes of Jnπ/β . Thus the fundamental frequencies form the
set

R−1
∞
⋃

n=1

Z(nπ/β).

The associated pure harmonics (waves) are

Jnπ/β

(zr

R

)

sin
nπθ

β
cos

(

zt

R
+ ϕ

)

for z ∈ Z(nπ/β), n = 1, 2, 3, . . . .

(9) The portion of the cone x2 + y2 = z2 tan2 α between its vertex O and
the rim z = R cosα is clamped along its rim. Find the fundamental
harmonics. What are the orders of the Bessel equations that you get?
What is the connection with the previous question?

Solution. The cone in question is a right circular cone of semi-
vertical angle α and slant height R. If we take a plane circular sector
of radius R and angle β = 2π sinα and join together its boundary arms,
we get this cone. So to find its fundamental modes of vibrations, all
we have to do is to replace the Dirichlet boundarry conditions (i) in the
previous problem by the periodic boundary conditions

(i′)u(r, 0, t) = u(r, β, t) uθ(r, 0, t) = uθ(r, β, t).

This finally gives the frequency set as

R−1
∞
⋃

k=0

Z(2kπ/β).

Thus the frequency set is ’halved’ since only even n occur. However, for
each frequency, except from R−1Z(0), there are now two linearly indepen-
dent amplitudes, namely

Jnπ/β

(zr

R

)

sin
nπθ

β
and Jnπ/β

(zr

R

)

cos
nπθ

β
, n = 0, 2, 4, 6, . . . .

(10) Find all the pure harmonics and their associated frequencies of the unit
sphere.

Solution. We have to find the solutions of the wave equation

utt = ∆S2u

which are of the form

u(θ, ϕ; t) = X(θ)Y (ϕ)Z(t).
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As usual on substituting in

∆S2u = uϕϕ + cotϕuϕ + csc2 ϕuθθ = utt,

we get

X ′′(θ)

X(θ)
= sin2 ϕ

Z ′′(t)

Z(t)
− sin2 ϕ

(

Y ′′(ϕ)

Y (ϕ)
+ cotϕ

Y ′(ϕ)

Y (ϕ)

)

.

Since lhs is depending only on θ while rhs only on (ϕ, t), the two sides
must be equal to a common constant. Further due to the implicit periodic
boundary conditions X(0) = X(2π) and X ′(0) = X ′(2π), the common
constant must be −m2, m = 0, 1, 2, . . . and

X(θ) = A cosmθ +B sinmθ.

Next from rhs we also have a further separation of variables

Z ′′(t)

Z(t)
=

Y ′′(ϕ)

Y (ϕ)
+ cotϕ

Y ′(ϕ)

Y (ϕ)
− m2

1− cos2 ϕ
.

Again both the sides equal a common constant µ, say. This gives an associ-
ated Legendre equation for Y (ϕ) in polar form and nontrivial bounded so-
lutions can exist if and only if µ = −n(n+1) with n = m,m+1,m+2, . . . .
Recall that these solutions are (1−x2)m/2DmPn(x) in the standard form.
In polar form they give

Y (ϕ) = sinm ϕP (m)
n (cosϕ).

Now

Z(t) = C cos(
√

n(n+ 1)t+ α),

which shows that u will have period
2π

√

n(n+ 1)
in time. Thus frequencies

which can occur are ωn =
√

n(n+ 1) for n = 1, 2, 3, . . . . (n = 0 does not
give oscillations in time.) For each fundamental frequency ωn, the possible
amplitudes are

(A cosmθ +B sinmθ) sinm ϕP (m)
n (cosϕ),m = 0, 1, 2, . . . n.

These are 2n+ 1 linearly independent amplitudes with a basis

cosmθ sinm ϕP (m)
n (cosϕ); m = 0, 1, 2, . . . n

sinmθ sinm ϕP (m)
n (cosϕ); m = 1, 2, . . . n.

Another more useful (but complex) basis is

{eimθ sinm ϕP (m)
n (cosϕ) : m = 0,±1,±2, · · · ± n}.

The pure harmonics (waves) are

u = A cos(
√

n(n+ 1)t+ α)eimθ sinm ϕP (m)
n (cosϕ).

Remark : The integer n corresponding to the frequency ωn is known as the
principal quantum number. The numbers m ∈ {−n,−n+ 1, . . . , 0, . . . , n}
which describe the (complex) amplitudes are known as the magnetic quan-

tum numbers underlying the corresponding principal quantum number n.
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(11) Find the azimuthal angle independent pure harmonics and their associated
frequencies of a thin hemisphere of unit radius whose equator is clamped.

Solution. Since the vibrations are independent of azimuthal angle,
we write u = u(ϕ, t). It satisfies

utt = uϕϕ + cotϕuϕ

over the region [0, π/2] × R with boundary conditions u(0, t) finite and
u(π/2, t) = 0. For pure harmonics, we need to find solutions of the form
u = Y (ϕ)Z(t). Substitution gives

Z ′′(t)

Z(t)
=

Y ′′(ϕ)

Y (ϕ)
+ cotϕ

Y ′(ϕ)

Y (ϕ)
.

Let both the sides be equal to −µ. We first look at Y (ϕ). It satisfies the
polar form of the Legendre equation

Y ′′(ϕ) + cotϕY ′(ϕ) + µY (ϕ) = 0.

Also Y (0) is finite and Y (π/2) = 0. The corresponding system in the
standard form will be

(1− z2)y′′ − 2zy′ + µy = 0, |y(1)| < ∞, y(0) = 0.

The general solution is y = a0y0 + a1y1, where y0 and y1 are respectively
even and odd power series in z with y0(0) 6= 0. Therefore, y(0) = 0 implies
a0 = 0. y(z) is thus an odd power series so that the condition |y(1)| finite
forces |y(−1)| finite too. Consequently, y must be a Legendre polynomial
of odd degree n and µ = n(n+ 1), n = 1, 3, 5, . . . . Then

Y (ϕ) = Pn(cosϕ) and Z(t) = A cos(
√

n(n+ 1)t+ α).

The frequencies of the pure harmonics are therefore, of the form
√

n(n+ 1)
for n = 1, 3, 5, . . . , and each frequency has a unique θ-independent ampli-
tude Pn(cosϕ).
Remark : If we allow θ dependency, then we have all fundamental harmon-
ics of the full sphere which vanish along the equator z = 0 or equivalently
ϕ = π/2. Thus the frequencies are {

√

n(n+ 1) : n = 1, 2, 3, . . . }, and the
amplitudes are

{eimθ sinm ϕP (m)
n (cosϕ) | |m| ≤ n and n−m odd.}.

(12) A polar cap of the standard sphere S
2 between the polar angles ϕ = 0

and ϕ = ϕ0 is clamped along its rim. Find the characteristic equation
to determine the frequencies of its fundamental modes (pure harmonics)
which do not depend on the azimuthal angle θ.

Solution. The fundamental modes of vibrations are of the form
u(θ, ϕ, t) = Y (θ)X(ϕ)T (t) which satisfy the wave equation utt = ∆S2u.
In this problem we look for u independent of θ. Hence u = X(ϕ)T (t) and

∆S2u = uϕϕ + (cotϕ)uϕ = XT ′′ + cotϕX ′T = utt = XT ′′.

The variables separate to give

T ′′(t)

T (t)
=

X ′′(ϕ)

X(ϕ)
+ cotϕ

X ′(ϕ)

X(ϕ)
.



1.7. WAVE EQUATION BY SEPARATION OF VARIABLES 69

As usual we loosely argue that the common constant must be negative
−µ2, say. So T (µ, t) = A cos(µt + α). Now X(ϕ), 0 ≤ ϕ ≤ ϕ0 must
satisfy X(ϕ0) = 0 as the polar cap is clamped along its rim. Further, we
must have X(0) to be finite. X(ϕ) satisfies the polar form of the Legendre
equation X ′′(ϕ)+cotϕX ′(ϕ)+µ2X(ϕ) = 0 over the interval [0, ϕ0]. ϕ = 0
corresponds to x = 1 in the standard Legendre equation, and it is a regular
singular point with indicial equation being r2 = 0. Hence there is a unique
nonzero solution X0(µ, ϕ) which is finite at ϕ = 0. All others will have a
logϕ term. Now the characteristic equation determining the frequencies
µ is

X0(µ, ϕ0) = 0.

Remark : In the special case of a hemisphere (ϕ0 = π/2) by a clever
argument one can show that X0 = Pod- odd degree Legendre polynomials,
so that µ ∈ {

√

n(n+ 1);n = 1, 3, 5, . . . }.
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1.8. Laplace equation by separation of variables

Problems.

(1) Assuming that term-wise differentiation is permissible, show that a solu-
tion of Laplace equation: ∆u = 0 in the disc of radius 1 with the boundary
condition : u(1, θ) = f(θ) is given by

u(r, θ) = a0 +
∞
∑

n=1

rn(an cosnθ + bn sinnθ)

where an, bn are the Fourier coefficients of f .

Solution. In the plane, the Laplacian in polar coordinates is given
by

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

For each n ≥ 0,

∆[rn(an cosnθ + bn sinnθ)]

= n(n− 1)rn−2(an cosnθ + bn sinnθ) + nrn−2(an cosnθ + bn sinnθ)

− n2rn−2(an cosnθ + bn sinnθ) = 0.

This implies that ∆u = 0 and

u(1, θ) = a0 +
∑

n≥1

(an cosnθ + bn sinnθ) = f(θ).

(2) Using separation of variables, solve the Neumann problem for the Laplace
equation: ∆u = 0 in the disc of radius 1 with the boundary condition :
∂u
∂r (1, θ) = sin3 θ.

Solution. Neumann boundary conditions mean that ur(1, θ) = g(θ).
If u(r, θ) = X(r)Y (θ) in polar coordinates, then ∆u = 0 gives

X ′′Y + (1/r)X ′Y + (1/r2)XY ′′ = 0 or r2X ′′/X + rX ′/X = −Y ′′/Y

with variables separated. Now u(r, θ) = u(r, θ + 2π) (implicit Periodic
boundary conditions). Therefore, the common constant can only be of
the type

n2, n = 0, 1, 2, . . . .

Then

Y (θ) = an cosnθ + bn sinnθ,

and at the same time

r2X ′′ + rX ′ − n2X = 0

whose general solution is

X(r) =

{

A0 +B0 log r if n = 0,

Anr
n +Bn/r

n+1 if n ≥ 1.

Now another unstated boundary condition is u(r, 0) remains bounded as
r → 0. So Bn = 0, for all n. The general solution now is

u(r, θ) = A0 +
∑

rn(an cosnθ + bn sinnθ).
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The given Neumann boundary conditions means that

g(θ) =
∑

n≥1

n(an cosnθ + bn sinnθ).

In particular for the solution to exist,
∫ 2π

0
g(θ)dθ = 0 and the coefficients

an, bn, n ≥ are determined from the Fourier coefficients of g. a0 remains
arbitrary. Thus for example, in the given problem

g(θ) = sin3 θ =
3 sin θ − sin 3θ

4
,

so an = 0 for all n ≥ 0, b1 = 3/4, b3 = −1/12, while the rest of the bn’s
vanish. Hence

u(r, θ) =
3r

4
sin θ − r3

12
sin 3θ + C.

(3) A thin sheet of metal bounded by x-axis and the lines x = 0 and x = 1 and
extending to infinity in the y direction has its vertical edges maintained
at the constant temperature u = 0. Over its lower edge the temperature
distribution u(x, 0) = 100 is maintained. Find the steady-state tempera-
ture distribution. Solve the problem when the vertical edges are insulated
and the lower edge is maintained at u(x, 0) = sinπx.

Solution. (i) We need to solve the Laplace equation uxx + uyy = 0.
The boundary conditions u(0, y) = u(1, y) = 0 imply that

u(x, y) =
∑

Yn(y) sinnπx,

where

Y ′′
n (y) = n2π2Yn(y).

Now

u(x, 0) = 100 =
∑

Yn(0) sinnπx

implies

Yn(0) =







400

nπ
if n is odd,

0 if n is even.

Therefore, Yn = 0 for n even. For odd n, we have

Yn(y) = Cne
nπy +Dne

−nπy

subject to Cn + Dn = 400/nπ. Physical reality forces Cn = 0 else the
temperature will grow exponentially as y → ∞. So the steady state is

u(x, t) =
400

π

∑

n odd

1

n
e−nπy sinnπx.

(ii) In this case, the vertical edges have Neumann boundary conditions
ux(0, y) = 0 = ux(1, y). Hence

u(x, y) = Y0(y) +
∑

Yn(y) cosnπx,

where

Y ′′
n = n2π2Yn
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Yn(y) =

{

C0y +D0 if n = 0,

Cne
nπy +Dne

−nπy if n ≥ 1.

=

{

D0 if n = 0,

Dne
−nπy if n ≥ 1.

(Physical reality)

= Dne
−nπy

for all n ≥ 0. Hence

u(x, y) =
∑

n≥0

Dne
−nπy cosnπx.

Finally

u(x, 0) = sinπx =
∑

n≥0

Dn cosnπx, 0 < x < 1

allows us to see that D0 = 2/π, while

Dn =

{

0 for odd n,

−4/π(n2 − 1) for even n,

for n ≥ 1. Finally,

u(x, y) =
2

π
− 4

π

∑

n even

e−nπy cosnπx

n2 − 1
.

(4) Use separation of variables to solve the Laplace equation uxx + uyy = 0,
subject to the homogeneous boundary conditions u(x, 0) = ux(π, y) =
ux(0, y) = 0 and the nonhomogeneous boundary condition u(x, 2) = 4 +
3 cosx− 2 cos 2x.

Solution. uxx + uyy = 0 and ux(0, y) = 0 = ux(π, y) implies that

u(x, y) = (C0y +D0) +
∑

n≥1

(Cne
ny +Dne

−ny) cosnx.

Next u(x, 0) = 0 implies

D0 = 0, Cn +Dn = 0, n ≥ 1.

Hence

u(x, y) = C0y +
∑

2Cn sinhny cosnx.

Finally,

u(x, 2) = 4 + 3 cosx− 2 cos 2x = 2C0 +
∑

2Cn sinh 2n cosnx

implies

C0 = 2, 2C1 =
3

sinh 2
, 2C2 =

−2

sinh 4
,

while the remaining Cn’s are zero. Hence

u(x, y) = 2y +
3

sinh 2
cosx sinh y − 2

sinh 4
cos 2x sinh 2y

≈ 2y + 0.82716 cos x sinh y − 0.073287 cos 2x sinh 2y.
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(5) A right circular solid cylinder of radius b and height h has its lower base
maintained at the constant temperature u = 100 and its upper base at
u = 0. If the curved surface is insulated, then find the steady state
temperature distribution in the cylinder. What if the curved surface is
maintained at u = 50 instead of being insulated?

Solution. Let the cylinder be

{x2 + y2 ≤ b2, 0 ≤ z ≤ h}.
Then in cylidrical polar coordinates (ρ, θ, z), the cylinder is

{0 ≤ ρ ≤ b, 0 ≤ z ≤ h}.
The steady state equation is ∆T = 0. In cylindrical polar coordinates,

∆ =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
+

∂2

∂z2
.

We can expect the temperature distribution T = T (ρ, z) to be independent
of the azimuthal angle θ. The boundary conditions are

Tρ(b, z) = 0 (insulated lateral surface) and T (ρ, 0) = 100, T (ρ, h) = 0.

By separation of variables method, let T (ρ, z) = R(ρ)Z(z). Then

∆T = R′′Z + ρ−1R′Z +RZ ′′ = 0 or
ρR′′

R
+

R′

ρR
= −Z ′′

Z
.

The lateral Neumann boundary conditions implies that R′(b) = 0. First
we try the common constant to be 0. Then R(ρ) = A0 and Z(z) =

C0z+D0 or equivalently T = C0z+D0. If we take C0 = −100

h
,D0 = 100,

we note that T (ρ, z) = 100 − 100z/h already satisfies all the boundary
conditions and hence must the solution to the problem. This is an example

of mixed boundary conditions: Neumann along the curved surface and

Dirichlet along the flat ends.

T = 100
[

1− z

h

]

.

Second part: In this case let us homogenize the Dirichlet boundary con-
ditions in the variable z by letting T0 = 100 − 100z/h and S = T − T0.
Then S satisfies

Sρρ +
1

ρ
Sρ + Szz = 0,

with boundary conditions

S(ρ, 0) = 0 = S(ρ, h) and S(b, z) = 100z/h− 50.

By separation of variables method we see in this case that the elementary
solutions are of the type

Sn = Rn(ρ) sin
nπz

h
, n = 1, 2, 3, . . . .,

and Rn(ρ) is a ’bounded near 0’ solution of the scaled Bessel equation of
order 0:

ρ2R′′(ρ) + ρR′(ρ)− n2π2h−2ρ2R(ρ) = 0.
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However, the scaling is by the imaginary number
inπ

h
. Thus

Rn = J0(inπρ/h) =: I0(nπρ/h).

Note that I0 is an even power series with positive coefficients;

I0(x) =
∑

m≥0

x2m

4m(m!)2

and hence can never vanish along the real line. I0 is called the modified

Bessel function of the first kind. (J0 viewed as a function of a complex
variable is entire. On the real part, it behaves like cosine, and on the
imaginary part, it behaves like exponential. The latter is what we are
calling I0.) So now

S(ρ, z) =
∑

CnI0(
nπρ

h
) sin

nπz

h
.

Using the curved boundary condition,

100z/h− 50 =
∑

CnI0(
nπb

h
) sin

nπz

h
.

This implies

CnI0(
nπb

h
) =

2

h

∫ h

0

[

100
z

h
− 50

]

sin
nπz

h
dz =







0 for odd n,

−200

nπ
for even n.

Thus

S(ρ, z) = −200

π

∑

n even

I0(nπh
−1ρ)

nI0(nπh−1b)
sin

nπz

h
,

and finally

T = S(ρ, z) + 100− 100z

h
.

(6) The upper half of the sphere of radius b is maintained at a temperature
u = 100, and the lower half is maintained at u = 0. Find the steady-state
temperature distribution in the solid enclosed by the sphere.

Solution. Let in the spherical polar coordinates (r, θ, ϕ) the upper
half of the sphere be r = b, 0 ≤ ϕ ≤ π/2 and the lower half be r =
b, π/2 ≤ ϕ ≤ π. The enclosed solid is r ≤ b. The 3-dimensional Laplacian
in the solid ball is

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

.

In steady state ∆u(r, θ, ϕ) = 0. From the symmetry of the data, we expect
that the temperature distribution is independent of θ. Thus u = u(r, ϕ)
satisfies the PDE

urr +
2

r
ur +

1

r2
(uϕϕ + cotϕuϕ) = 0,

along with the Dirichlet boundary conditions

u(b, ϕ) =

{

100 if 0 < ϕ < π/2,

0 if π/2 < ϕ < π,
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and the implicit boundary conditions u(r, 0), u(r, π), u(0, ϕ) are bounded.
By separation of variables method, let us find the elementary solutions
u(r, ϕ) = Y (r)X(ϕ). Substitution in the PDE and separating variables

r2Y ′′(r) + 2rY ′(r)

Y (r)
= −X ′′(ϕ) + cotϕX ′(ϕ)

X(ϕ)

If the common constant is λ, then X(ϕ) satisfies the Legendre equation in
polar form and hence for X(0), X(π) to be bounded, λ = n(n+ 1), n =
0, 1, 2, . . . , and

X(ϕ) = Pn(cosϕ).

Further, for this constant, (solving a Cauchy-Euler equation),

Y (r) = Arn +B/rn+1

and for Y (0) to be bounded, B = 0. Thus the elementary solutions are
Cnr

nPn(cosϕ). So

u(r, ϕ) =
∑

n≥0

Cnr
nPn(cosϕ).

Finally the stated boundary conditions implies
∑

n≥0

CnPn(z) = 100χ[0,1](z), −1 ≤ z ≤ 1,

where z = cosϕ. The above is the Fourier-Legendre series and so

Cn = 50(2n+ 1)

∫ 1

0

Pn(z)dz =

{

0 for even n,
(−1)(n−1)/250

2nn!

(

n
(n−1)/2

)

for odd n.

(7) Previous problem if the upper half is maintained at u = 50 cosϕ and the
lower half at u = −50 cosϕ.

Solution. Identical to above. Except in the end
∑

n≥0

CnPn(z) = 50|z|, −1 ≤ z ≤ 1.

Cn = 25(2n+ 1)

∫ 1

−1

|z|Pn(z)dz =

{

0 for odd n,
50(2n+1)

2nn!

∫ 1

0
zDn(z2 − 1)ndz for even n.

On computing for even n,

Cn =

{

1
2 for n = 0,
(−1)n/2−150(2n+1)

2nn(n−1)

(

n
n/2−1

)

for even n ≥ 2.

(8) What is the gravitational potential of a thin circular disc of radius a and
mass M if the potential on the perpendicular axis of the disc at a distance

r from the centre of the disc is
2M

a2

(

√

r2 + a2 − r
)

?

Solution. Assume the disc to to be in the centre of the xy-plane,
so that the z-axis is the perpendicular axis of the disc. From symmetry
we expect the gravitational potential to be independent of the azimuthal
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angle θ. So u = u(r, ϕ). In spherical polar coordinates in R
3, the Laplacian

is

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

.

Therefore, for u = u(r, ϕ),

∆u = urr + 2r−1ur + r−2[uϕϕ + cotϕuϕ].

To solve ∆u = 0 by separation of variables, u = X(r)Y (ϕ) gives,

r2X ′′(r) + 2rX ′(r)

X(r)
= −

[

Y ′′(ϕ)

Y (ϕ)
+ cotϕ

Y ′(ϕ)

Y (ϕ)

]

.

The common constant must be nonnegative and of the form n(n+1), n =
0, 1, 2, 3, . . . for Y (ϕ) to be bounded near 0, π. (Y (ϕ) must satisfy the
Legendre equation in polar form.) Thus

Y (ϕ) = Pn(cosϕ)

and correspondingly,

X(r) = Arn +
B

rn+1
.

Hence the general solution is of the form

u(r, ϕ) =
∑

n≥0

(

Anr
n +

Bn

rn+1

)

Pn(cosϕ).

To determine An, Bn, first we consider the case r > a. In this case, u → 0
as r → ∞ along the z-axis, forces An = 0. For Bn, we have

u(r, ϕ)
∣

∣

∣

ϕ=0,π
=

2M

a2

(

√

r2 + a2 − r
)

,

so that Bodd = 0. Finally, at ϕ = 0,

u(r, 0) =
∑

m≥0

B2m

r2m+1
=

2Mr

a2

[(

1 +
a2

r2

)1/2

− 1
]

.

Now by binomial expansion in the powers of
a

r
, we get

B2m = (−1)mM
(2m)!a2m

4mm!(m+ 1)!
,

and

u(r, ϕ) =
M

a

∑

m≥0

(−1)m
(2m)!P2m(cosϕ)

4mm!(m+ 1)!

(a

r

)2m+1

.

Next we look at the case r < a. This case is tricky due to a discontinuity
when we pass from z > 0 to z < 0, wherein we must cross the disc. This
time by boundedness of u at r = 0, all the B′

ns must vanish. We first
consider the upper half-ball region {r < a} ∩ {z > 0}.

u(r, ϕ) =
∑

n≥0

Anr
nPn(cosϕ).
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Along the positive z-axis,

u(r, 0) =
∑

n≥0

Anr
n =

2M

a

[

(

1 +
r2

a2

)1/2

− r

a

]

.

Again expanding by binomial series and on comparing the coefficients,
A0 = 2M/a, A1 = −2M/a2, the remaining Aodd = 0. Also

A2m = (−1)m−1 M(2m− 2)!

4m−1m!(m− 1)!a2m+1

for m ≥ 1. Putting together,

u(r, ϕ) =
2M

a

[

1− P1(cosϕ)
r

a

]

+
M

a





∑

m≥1

(−1)m−1 (2m− 2)!P2m(cosϕ)

4m−1m!(m− 1)!

( r

a

)2m



 .

Finally, in the lower half-ball, due to symmetry wrt ϕ 7→ π − ϕ, the P1

term should be relaced by its negative. In short we can write,

u =
2M

a

[

1− | cosϕ| r
a

]

+
M

a





∑

m≥1

(−1)m−1 (2m− 2)!P2m(cosϕ)

4m−1m!(m− 1)!

( r

a

)2m



 .

Remark : The function r| cosϕ| is actually |z|, which is not harmonic, but
it is so, separately in the open half regions, z > 0 and z < 0.

(9) Find the steady-state temperature distribution in a thin unit spherical
frustum between z = ± 1

2 , whose upper boundary is maintained at the
constant temperature T and the lower boundary as per (i) T (ii) −T .

(The frustum is the portion of the unit sphere whose z coordinate is
between −1/2 and 1/2.)

Solution. In spherical polar coordinates,

∆S2 =
∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2
.

In both cases, we expect u to be independent of θ. So let u = u(ϕ). In
the steady state, ∆S2u = 0. So we find u(ϕ) satisfying the ODE:

u′′ + cotϕu′ = 0,

which is the Legendre equation with parameter n = 0. The general solu-
tion is

u = AP0(cosϕ) +BQ0(cosϕ) = A+B log

[

1 + z

1− z

]

.

The second equality holds since z = cosϕ on a unit sphere.
In (i), the boundary conditions give A = T , and B = 0. Hence u ≡ T .

In (ii), the boundary conditions give A = 0, and B =
T

log 3
. Hence

u =
T

log 3
log

[

1 + z

1− z

]

.

Generalize to T = f(θ), instead of being a constant.
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Solution. We will only generalize (i). (ii) is similar. We have to
solve for u(θ, ϕ) satisfying the PDE

uϕϕ + cotϕuϕ + csc2 ϕuθθ = 0,

in the ‘rectangle’

0 ≤ θ ≤ 2π, π/3 ≤ ϕ ≤ 2π/3

subject to the boundary conditions

u(θ, π/3) = f(θ) = u(θ, 2π/3)

and implicitly the periodic boundary conditions

u(0, ϕ) = u(2π, ϕ), uθ(0, ϕ) = uθ(2π, ϕ).

As usual, since periodic boundary conditions is a homogeneous boundary
conditions, the separation of variables will give an expansion,

u(θ, ϕ) = X0(ϕ) +
∑

n≥1

[Xn(ϕ) cosnθ + Yn(ϕ) sinnθ.

Substitution in the PDE leads to the ODEs

(X ′′
n + cotϕX ′

n) sin
2 ϕ = n2Xn(ϕ), n ≥ 0

and

(Y ′′
n + cotϕY ′

n) sin
2 ϕ = n2Yn(ϕ), n ≥ 1.

The equation forX0 is the Legendre equation in polar form with parameter
n = 0. Hence the general solution is

X0(ϕ) = A0 +B0 log

[

1 + cosϕ

1− cosϕ

]

= A0 +B0 log cot(ϕ/2).

For n ≥ 1, the Xn and Yn both satisfy the equation

(*) y′′ + cotϕy′ +

[

− n2

1− cos2 ϕ

]

y = 0.

The above is the associated Legendre equation of parameter value 0 in
polar form. By Problem 8 in Section 1.1 combined with Problem 11 in
Section 1.2 and putting x = cosϕ, we find that the general solution of (*)
is

y(ϕ) = Cn tan
n(ϕ/2) +Dn cot

n(ϕ/2).

Thus we can let

Xn = An tan
n(ϕ/2) +Bn cot

n(ϕ/2) and Yn = Cn tan
n(ϕ/2) +Dn cot

n(ϕ/2).

Thus

u(θ, ϕ) =
(

A0 +B0 log cot
ϕ

2

)

+
∑

n≥1

(

An tan
n ϕ

2
+Bn cot

n ϕ

2

)

cosnθ

+
∑

n≥1

(

Cn tan
n ϕ

2
+Dn cot

n ϕ

2

)

sinnθ

Finally, let

f(θ) = a0 +
∑

n≥1

[an cosnθ + bn sinnθ].
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The values tan(π/6) = 1/
√
3 and tan(π/3) =

√
3 allow us to find all

the unknown constants in terms of ’known’ constants an, bn. The final
answers are
Generalized (i):

A0 = a0, B0 = 0,

An = Bn =
an

3n/2 + 3−n/2
,

Cn = Dn =
bn

3n/2 + 3−n/2
,

and

u(θ, ϕ) = a0 +
∑

n≥1

(tann ϕ
2 + cotn ϕ

2 )

3n/2 + 3−n/2
[an cosnθ + bn sinnθ].

Generalized (ii):

A0 = 0, B0 =
2a0
log 3

,

−An = Bn =
an

3n/2 − 3−n/2
,

− Cn = Dn =
bn

3n/2 − 3−n/2
,

and

u(θ, ϕ) =
2a0
log 3

log cot
ϕ

2
+
∑

n≥1

(cotn ϕ
2 − tann ϕ

2 )

3n/2 − 3−n/2
[an cosnθ + bn sinnθ].

(10) Show that in solving for the steady-state temperature distribution in space
using the separation of spherical coordinates (r, θ, ϕ), we are naturally led
to solving for the amplitudes of the pure harmonics of the unit sphere.

Solution. In polar coordinates,

∆R3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

.

The steady state equation is ∆u(r, θ, ϕ) = 0, which we attempt to solve
by separation of variables. So let u = X(r)Y (θ)Z(ϕ). The domain of
the equation is [0,∞) × [0, 2π] × [0, π] and the implicit homogeneous
boundary conditions are (i) u(r, θ, ϕ) remains bounded as ϕ → 0, π and
(ii) u(r, 0, ϕ) = u(r, 2π, ϕ), uθ(r, 0, ϕ) = uθ(r, 2π, ϕ). On substituting
u = XY Z in the steady state equation and simplifying, we get

r2X ′′(r)

X(r)
+

2rX ′(r)

X(r)
= −

[

Z ′′(ϕ)

Z ′(ϕ)
+ cotϕ

Z ′(ϕ)

Z(ϕ)
+

1

sin2 ϕ

Y ′′(θ)

Y (θ)

]

.

The lhs is a function of r alone while rhs is that of (θ, ϕ), hence both
sides must equal to a common constant. At this stage solving for Y (θ)
and Z(ϕ) under the boundary conditions stated above is solving for the
amplitudes of the fundamental harmonics of the unit sphere S

2.
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(11) Find the steady-state temperature function in the shell enclosed between
two concentric spheres of radii b1 and b2 respectively, if the temperature
distributions u(b1, ϕ) = f1(ϕ) and u(b2, ϕ) = f2(ϕ) are maintained over
the inner and outer surfaces, respectively. Solve explicitly when b1 =
1, b2 = 2 and f1(ϕ) = cosϕ and f2(ϕ) = 3 cos 2ϕ.

Solution. In spherical polar coordinates, we expect the temperature
distribution to be independent of θ due to the boundary temperatures
being independent of the same. Hence in effect we have to solve the PDE

urr + 2r−1ur + r−2(vϕϕ + cotϕuϕ) = 0,

in the ‘rectangle’ [b1, b2] × [0, π] subject to the boundary conditions (i)
u(b1, ϕ) = f1(ϕ), u(b2, ϕ) = f2(ϕ) and (ii) u(r, ϕ) is bounded as ϕ → 0, π.
Let u(r, ϕ) = X(r)Y (ϕ). Then we get

r2X ′′(r) + 2rX ′(r)

X(r)
= −Y ′′(ϕ) + cotϕY ′(ϕ)

Y (ϕ)
.

Due to the boundary conditions (ii), the common constant has to be
n(n+ 1), n ∈ {0, 1, 2, . . . } and

Y (ϕ) = Pn(cosϕ).

Correspondingly,

X(r) = Arn +B/rn+1

and the general solution is

u(r, ϕ) =
∑

n≥0

(

Anr
n +Bn/r

n+1
)

Pn(cosϕ).

Finally, expand the boundary data in Fourier-Legendre series:

f1(ϕ) =
∑

cnPn(cosϕ) =
∑

(

Anb
n
1 +Bn/b

n+1
1

)

Pn(cosϕ)

and

f2(ϕ) =
∑

dnPn(cosϕ) =
∑

(

Anb
n
2 +Bn/b

n+1
2

)

Pn(cosϕ).

Hence,

bn1An + b−n−1
1 Bn = cn and bn2An + b−n−1

2 Bn = dn.

This allows us to solve for unknown constants An, Bn in terms of ’known’
b1, b2, cn, dn for n ≥ 0. In the numerical example,

f1(ϕ) = P1(cosϕ) and f2(ϕ) = 6 cos2 ϕ− 3 = −P0 + 4P2(cosϕ)

which implies c1 = 1, cn = 0, n 6= 1 and d0 = −1, d2 = 4, dn = 0, n 6= 0, 2.
This trivially implies An = 0 = Bn, n ≥ 3. The equations

A0 +B0 = 0 and A0 +
B0

2
= −1

imply A0 = −2, B0 = 2. The equations

A1 +B1 = 1 and 2A1 +
B1

4
= 0
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imply A1 =
−1

7
, B1 =

8

7
, and the equations

A2 +B2 = 0 and 4A2 +
B2

8
= 4

imply A2 =
32

31
= −B2.
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