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INTRODUCTION 1

Introduction

Our objective is to solve traditionally important PDEs by the method of sepa-
ration of variables. This leads to simultaneous ODEs in each variable and the ODEs
which generally occur (depending on the geometry of the space or the geometry of
the pre-assigned boundary values) are the Legendre equation, the Bessel equation
and the equation of a simple harmonic oscillator.

We begin by solving the Legendre equation, and the Bessel equation. (The
solution of the equation of the simple harmonic oscillator is assumed to be known.)
Next we take up various PDEs one by one and solve some illustrative problems.

(1) Heat equation (also called evolution equation or diffusion equation).
(2) Wave equation.
(3) Laplace equation (also called steady state equation).

Wikipedia gives good information on any topic and is often a good place to
start. Some books that you may want to look at for additional information are [2],
[3], [7] and [10]. Two useful books specifically written for engineers are [6] and [14].
More references are provided in the text.

Acknowledgement. I am grateful to Akhil Ranjan for many discussions on this
subject. These notes are expanded from a detailed draft prepared by him.

Pictures in the text have been borrowed from wikipedia or from similar sources
on the internet.





CHAPTER 1

Power series

1.1. Convergence criterion for series

We assume basic familiarity with the notion of convergence of series. A series
is said to diverge if it does not converge.

Let
∑

n an be a series of (real or complex) numbers. The following are some
standard tests for determining its convergence or divergence.

(1) Weierstrass M-test:
If
∑

nMn is a convergent series of nonnegative constants, and |an| ≤Mn

for all n, then
∑

n an is also (absolutely) convergent.

(2) Ratio test:

If an 6= 0 for all n, and if limn→∞
∣

∣

∣

an+1

an

∣

∣

∣
= L, then

∑

n an

• converges (absolutely) if L < 1,
• diverges if L > 1.

The test is inconclusive if L = 1.

(3) Root test:

If limn→∞ |an|
1
n = L, then

∑

n an
• converges (absolutely) if L < 1,
• diverges if L > 1.

The test is inconclusive if L = 1.

(4) Refined root test:

If lim supn→∞ |an|
1
n = L, then

∑

n an
• converges (absolutely) if L < 1,
• diverges if L > 1.

The test is inconclusive if L = 1.

Remark 1.1. In the ratio or root test, existence of the limit L is a pre-requisite. A
definition of lim inf (short for limit infimum) and lim sup (short for limit supremum)
can be found in [8, Definition 3.16] (or see wikipedia). The advantage of working
with lim inf and lim sup is that it always exists. The latter is used in the refined
root test. There is also a refined ratio test in which lim sup < 1 is used to conclude
convergence and lim inf > 1 is used to conclude divergence. The Weierstrass M-test
is the most basic criterion and is, in fact, used to establish the remaining tests by
comparing with a suitable geometric series of positive terms.

3



4 1. POWER SERIES

1.2. Power series

For a real number x0 and a sequence (an) of real numbers, consider the expres-
sion

(1.1)
∞
∑

n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + a3(x− x0)
3 + . . . .

This is called a power series in the real variable x. The number an is called the
n-th coefficient of the series and x0 is called its center.

For instance,

∞
∑

n=0

1

n+ 1
(x− 1)n = 1 +

1

2
(x− 1) +

1

3
(x− 1)3 + . . .

is a power series in x centered at 1 and with n-th coefficient equal to 1
n+1 .

What can we do with a power series? Note that by substituting a value for
x in a power series, we get a series of real numbers. We say that a power series
converges (absolutely) at x1 if substituting x1 for x in (1.1) yields a (absolutely)
convergent series. A power series always converges absolutely at its center x0.

We would like to know the set of values of x where a power series converges.
The following can be shown by applying the refined root test.

Lemma 1.2. Suppose the power series (1.1) converges for some real number x1 6=
x0. Let |x1 − x0| = r. Then the power series is (absolutely) convergent for all x
such that |x− x0| < r, that is, in the open interval (or disc) of radius r centered at
x0.

Definition 1.3. The radius of convergence of the power series (1.1) is the largest
number R, including ∞, such that the power series converges in the open interval
(or disc) {|x − x0| < R}. The latter is called the interval of convergence of the
power series.

It is possible that there is no x1 6= x0 for which the power series (1.1) converges.
An example is

∑

n n!x
n. In this case, R = 0. The geometric series

∑

n x
n has radius

of convergence R = 1. It does not converge at x = 1 or x = −1.
We can calculate the radius of convergence of a power series in terms of its

coefficients by the following methods:

(1) Ratio test:

If an 6= 0 for all n, and if limn→∞
∣

∣

∣

an+1

an

∣

∣

∣
= L, then the radius of conver-

gence of the power series is 1
L .

(2) Root test:

If limn→∞ |an|
1
n = L, then the radius of convergence of the power series

is 1
L .

(3) Refined root test:

If lim supn→∞ |an|
1
n = L, then the radius of convergence of the power

series is 1
L .

These tests are deduced from the corresponding tests for series.
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A power series determines a function in its interval of convergence. Denoting
this function by f , we may write

(1.2) f(x) =
∞
∑

n=0

an(x− x0)
n, |x− x0| < R.

Let us assume R > 0. It turns out that f is infinitely differentiable on the interval of
convergence, and the successive derivatives of f can be computed by differentiating
the power series on the right termwise. From here one can deduce that

(1.3) an =
f (n)(x0)

n!
.

Thus, two power series both centered at x0 take the same values in some open
interval around x0 iff all the corresponding coefficients of the two power series are
equal. Explicitly, if

a0 + a1(x− x0) + a2(x− x0)
2 + · · · = b0 + b1(x− x0) + b2(x− x0)

2 + . . .

holds in some interval around x0, then an = bn for all n. (The converse is obvious.)

The above discussion is also valid if we take x0 and the an to be complex
numbers, and let x be a complex variable.

1.3. Real analytic functions

We saw that a power series determines a function in its interval of convergence.
Let us now invert the situation. Namely, we start with a function f , and ask
whether there is a power series whose associated function is f .

1.3.1. Real analytic functions. Let R denote the set of real numbers. A subset
U of R is said to be open if for each x0 ∈ U , there is a r > 0 such that the open
interval |x− x0| < r is contained in U .

Definition 1.4. Let f : U → R be a real-valued function on an open set U . We
say f is real analytic at a point x0 ∈ U if (1.2) holds in some open interval around
x0. We say f is real analytic on U if it is real analytic at all points of U .

In general, we can always consider the set of all points in the domain where f
is real analytic. This is called the domain of analyticity of f .

Just like continuity or differentiability, real analyticity is a local property.
Suppose f is real analytic on U . Then f is infinitely differentiable on U , and its

power series representation around x0 is necessarily the Taylor series of f around
x0 (that is, the coefficients an are given by (1.3)).

If f and g are real analytic on U , then so is cf , f + g, fg, and f/g (provided
g 6= 0 on U).

A power series is real analytic in its interval of convergence. Thus, if a function
is real analytic at a point x0, then it is real analytic in some open interval around
x0. Thus, the domain of analyticity of a function is an open set.

1.3.2. Examples. Polynomials such as x3 − 2x + 1 are real analytic on all of R:
A polynomial is a truncated power series (so there is no issue of convergence). By
writing x = x0 + (x − x0), we can rewrite any polynomial using powers of x − x0.
This will be a truncated power series centered at x0.
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The sine, cosine and exponential functions are real analytic on all of R. The
Taylor series written using (1.3) are

sin(x) = x− x3

3!
+
x5

5!
+ . . .

cos(x) = 1− x2

2!
+
x4

4!
+ . . .

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . .

Using Taylor’s remainder formula, one can show that these identities are valid for
all x. However this may not always be the case. Consider the function

f(x) =
1

1 + x2
.

It is real analytic on all of R. The Taylor series around 0 is

1

1 + x2
= (1− x2 + x4 − x6 + . . . ).

This series has a radius of convergence 1 and the identity only holds for |x| < 1. At
x = 1, note that f(1) = 1/2 while the series oscillates between 1 and 0. Thus, even
though a function is real analytic, it may not be representable by a single power
series. From the analysis done so far, we can only conclude that f is real analytic
in (−1, 1). If we want to show that f is real analytic at 1, then we need to need to
find another power series centered at 1 which converges to f in an interval around
1. This is possible. Alternatively, one can use a result stated earlier to directly
deduce that f is real analytic everywhere. Since 1 and 1+x2 are polynomials, they
are real analytic analytic, and hence so is their quotient. Draw picture.

The function f(x) = x1/3 is defined for all x. It is not differentiable at 0 and
hence not real analytic at 0. However it is real analytic at all other points. For
instance,

x1/3 = (1 + (x− 1))1/3 = 1 +
1

3
(x− 1) +

1

3
(
1

3
− 1)

(x− 1)2

2!
+ . . .

is valid for |x − 1| < 1, showing analyticity in the interval (0, 2). (This is the
binomial theorem which we will prove below.) Analyticity at other nonzero points
can be established similarly. Thus, the domain of analyticity of f(x) = x1/3 is
R \ {0}.

The function

(1.4) f(x) =

{

e−1/x2

if x 6= 0,

0 if x = 0,

is infinitely differentiable. But it is not real analytic at 0 since f (n)(0) = 0 for all
n and the Taylor series around 0 is identically 0. The domain of analyticity of f is
R \ {0}. Draw picture.

(This kind of behaviour does not happen for functions of a complex variable.
If a function of a complex variable is differentiable in a region, then it is complex
analytic in that region. If x is a complex variable, then (1.4) has an essential
singularity at 0, in particular, it is not differentiable at 0. Also note that if x is
allowed to be complex, the function 1

1+x2 is not defined at x = ±i explaining why

we got the corresponding power series to have a radius of convergence of 1.)
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Remark 1.5. For a function f , never say “convergence of f”, instead say “conver-
gence of the Taylor series of f”.

1.4. Solving a linear ODE by the power series method

Consider a particle moving on the real line. Laws of classical physics say:
If we know its position at a particular time and velocity at all times, then its
position at all times is uniquely determined. If we know its position and velocity
at a particular time and acceleration at all times, then its position at all times is
uniquely determined.

Mathematically, this suggests that a first order ODE with value specified at a
point, or a second order ODE with value and derivative specified at a point has
a unique solution. It is too much to expect such statements to hold in complete
generality. One needs to impose some conditions on the ODE, and further the
solutions will only exist in some interval around the point. We now discuss a result
of this nature.

Consider the initial value problem

(1.5) p(x)y′′ + q(x)y′ + r(x)y = g(x), y(a) = y0, y
′(a) = y1,

where p, q, r and g are real analytic functions in an interval containing the point
a, and y0 and y1 are specified constants.

Theorem 1.6. Let r > 0 be less than the minimum of the radii of convergence
of the functions p, q, r and g expanded in power series around a. Assume that
p(x) 6= 0 for all x ∈ (x0 − r, x0 + r). Then there is a unique solution to the initial
value problem (1.5) in the interval (x0−r, x0+r), and moreover it can be represented
by a power series

(1.6) y(x) =
∑

n≥0

an(x− x0)
n

whose radius of convergence is at least r.

Proof. There is an algorithm to compute the power series representation of y:
Plug (1.6) into (1.5), take derivatives of the power series formally, and equate the
coefficients of (x−x0)n for each n to obtain a recursive definition of the coefficients
an. (In most examples, x0 = 0 and the functions p, q, r and g are polynomials.)
The an’s are uniquely determined and we obtain a formal power series solution.
But we are not done here. We need to show that the obtained formal solution has a
positive radius of convergence. This argument is given in [10, Chapter 5, Appendix
A].

To see why the last step is essential: Suppose in trying to solve an ODE using
this power series method, we obtain the recursion an+1 = (n + 1)an and a1 = 1.
Then an = n!, so the formal solution is

∑

n n!x
n. But this does not converge at any

point except x = 0, so the power series is not really giving a solution. The crux of
the last step is to show that such “bad” recursions do not arise. �

This result generalizes to any n-th order linear ODE with the first n−1 deriva-
tives at x0 specified. In particular, it applies to the first order linear ODE for which
the initial condition is simply the value at x0. Suppose the first order ODE is

p(x)y′ + q(x)y = 0.



8 1. POWER SERIES

Then, by separation of variables, we see that the general solution is

(1.7) ce−
∫

q(x)
p(x)

dx,

provided p(x) 6= 0 else the integral may not be well-defined. This is an indicator
why such a condition is required in the hypothesis of Theorem 1.6.

Example 1.7. Consider the first order linear ODE

y′ − y = 0, y(0) = 1.

The coefficients are constants, so Theorem 1.6 applies and it will yield a solution
which is real analytic on all of R. Write y =

∑

n anx
n. The initial condition

y(0) = 1 implies a0 = 1. Comparing the coefficient of xn on both sides of y′ = y
yields

(n+ 1)an+1 = an for n ≥ 0.

This is a 2-step recursion. It can be solved explicitly as an = 1/n!. Thus

y(x) =
∑

n

1

n!
xn

which we know is ex. Thus, the function ex is characterized by the property that
its derivative is itself, and its value at 0 is 1.

Remark 1.8. In calculus textbooks, we first define the logarithm function by

log x =

∫ x

1

1

t
dt.

The exponential function ex is then defined as its inverse. The properties (ex)′ = ex

and e0 = 1 are deduced from properties of log. Thus, ex satisfies the above initial
value problem, and so by uniqueness of the solution, we see that the Taylor series
of ex is valid for all x. In calculus textbooks, this is established using Taylor’s
remainder formula, here we see it as a consequence of Theorem 1.6.

Example 1.9. Consider the first order linear ODE

y′ − 2xy = 0, y(0) = 1.

We proceed as in the previous example. The initial condition y(0) = 1 implies
a0 = 1. This time we get a 3-step recursion:

(n+ 1)an+1 = 2an−1 for n ≥ 1,

and a1 = 0. So all odd coefficients are zero. For the even coefficients, the recursion
can be rewritten as na2n = a2n−2, so a2n = 1/n!. Thus

y(x) =
∑

n

1

n!
x2n

(which we know is ex
2

).

Example 1.10. Consider the function f(x) = (1 + x)p where |x| < 1 and p is any
real number. Note that it satisfies the linear ODE.

(1 + x)y′ = py, y(0) = 1.

Let us solve this using the power series method around x = 0. Since 1 + x is zero
at x = −1, we are guaranteed a solution only for |x| < 1. The initial condition
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y(0) = 1 implies a0 = 1. To calculate the recursion, express each term as a power
series:

y′ = a1 + 2a2x+ 3a3x
2 + · · ·+ (n+ 1)an+1x

n + . . .

xy′ = a1x+ 2a2x
2 + · · ·+ nanx

n + . . .

py = pa0 + pa1x+ pa2x
2 + · · ·+ panx

n + . . . .

Comparing coefficients yields a 2-step recursion:

an+1 =
p− n

n+ 1
an for n ≥ 0.

This shows that

(1 + x)p = 1 + px+
p(p− 1)

2
x2 + . . . .

This is the binomial theorem and we just proved it. The most well-known case
is when p is a positive integer (in which case the power series terminates to a
polynomial of degree p). Also check by the ratio test that the power series has
radius of convergence 1 if p is not a positive integer.

All the above examples were of first order ODEs. Check that the solutions
obtained by the power series method agree with (1.7).

Example 1.11. Consider the second order linear ODE

y′′ + y′ − 2y = 0.

(The initial conditions are left unspecified.) Proceeding as before, we get a 3-step
recursion:

(n+ 2)(n+ 1)an+2 + (n+ 1)an+1 − 2an = 0 for n ≥ 0,

and a0 and a1 are arbitrary. There is a general method to solve recursions of this
kind. First substitute bn = n!an, so we obtain

bn+2 + bn+1 − 2bn = 0 for n ≥ 0,

We now guess that bn = λn is a solution. This yields the quadratic λ2 + λ− 2 = 0
(which can be written directly from the constant-coefficient ODE). Its roots are 1
and −2. Thus the general solution is

bn = α+ β (−2)n,

where α and β are arbitrary. Alternatively, since the sum of the coefficients in the
recursion is 0, by add the first n+1 recursion, we get bn+2+2bn+1 = 2b0+b1 which
says that the bn are in shifted geometric progression. The general solution to the
original recursion is

an = α
1

n!
+ β

(−2)n

n!
,

So the general solution to the ODE is

y(x) = αex + βe−2x.

(How would you solve the recursion if the quadratic has repeated roots? Recall
how you solve a constant-coefficient ODE whose auxiliary equation has a repeated
root?)
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Remark 1.12. The Hemachandra-Fibonacci numbers are defined by the recursion
bn+2 = bn+1 + bn with b0 = b1 = 1. The above method yields a formula for these
numbers.

In all the above examples, we were able to solve the recursion in closed form.
But this may not always be possible.

Example 1.13. Consider the second order linear ODE

y′′ + y = 0.

(The initial conditions are left unspecified.) Proceeding as before, we get

(n+ 2)(n+ 1)an+2 + an = 0 for n ≥ 0,

and a0 and a1 are arbitrary. Observe that the general solution to the ODE is

y(x) = a0 cos(x) + a1 sin(x).

Remark 1.14. How should one define the sine and cosine functions? In school,
the sine is defined as the ratio of the opposite side and the hypotenuse. But this
assumes that we know what angle is. We can take the unit circle and define angle
as the length of the corresponding arc, and we know how to define length of the
arc. Thus, for x2 + y2 = 1, if we let

z =

∫ y

0

√

1 + (
dx

dy
)2dy,

then sin z = y. So what we do in school amounts to defining sin−1 by the formula

z = sin−1(y) =

∫ y

0

1√
1− t2

dt.

Note the similarity with the approach to exp via log.

Question 1.15. Given a linear ODE with polynomial coefficients, how can you
determine by inspection what step recursion you are going to get? (If the coefficients
are not polynomials, then the recursion is not finite-step. As n increases, one has
to look further and further back to determine an.) Give formula.

Remark 1.16. While computing the recursion for a linear ODE, it is useful to
keep in mind that: Taking derivative lowers degree by 1 while multiplying by x
raises degree by 1. The two operators do not commute. In fact

d

dx
x− x

d

dx
= 1.

This is the famous Heisenberg relation.



CHAPTER 2

Legendre equation

We study the Legendre equation. There is one for each real number p. We
solve it using the power series method. When p is a nonnegative integer n, we
get a polynomial solution. This is the n-th Legendre polynomial. We consider
orthogonality properties of these polynomials, and also write down their generating
function.

2.1. Legendre equation

Consider the second order linear ODE:

(2.1) (1− x2)y′′ − 2xy′ + p(p+ 1)y = 0.

This is known as the Legendre equation. Here p denotes a fixed real number. (It
suffices to assume p ≥ −1/2. Why?) The equation can also be written in the form

(2.2) ((1− x2)y′)′ + p(p+ 1)y = 0.

This is called the Sturm-Liouville or self-adjoint form of the ODE.
This ODE is defined for all real numbers. The coefficients (1 − x2), −2x and

p(p+ 1) are polynomials (and in particular real analytic). However 1− x2 = 0 for
x = ±1. These are the singular points of the ODE. So by Theorem 1.6, we are
only guaranteed a power series solution around x = 0 in the interval (−1, 1). (The
solution is unique when y(0) and y′(0) are specified.) Accordingly, let y =

∑

anx
n.

Equating the coefficients of xn from each term yields a 3-step recursion:

(2.3) an+2 =
(n− p)(n+ p+ 1)

(n+ 2)(n+ 1)
an, n ≥ 0,

with a0 and a1 arbitrary. To see this, we rewrite the ODE as y′′ = x2y′′ + 2xy′ −
p(p+1)y. The lhs contributes the term (n+2)(n+1)an+2 while the rhs contributes
[n(n− 1) + 2n− p(p+ 1)]an which is the same as [n(n+ 1)− p(p+ 1)]an. Observe
that something interesting is going to happen when p is a nonnegative integer. We
will be discussing this case in detail.

Since the an+1 term is absent in the recursion, it breaks into two 2-step recur-
sions relating the odd and even terms respectively. (Note the similarity with the
analysis done in Example 1.13.) Explicitly,

a2 = −p(p+ 1)

2!
a0, a4 = +

(p(p− 2)(p+ 1)(p+ 3)

4!
a0,

a6 = −p(p− 2)(p− 4)(p+ 1)(p+ 3)(p+ 5)

6!
a0, . . .

11



12 2. LEGENDRE EQUATION

and

a3 = − (p− 1)(p+ 2)

3!
a1, a5 = +

(p− 1)(p− 3)(p+ 2)(p+ 4)

5!
a1,

a7 = − (p− 1)(p− 3)(p− 5)(p+ 2)(p+ 4)(p+ 6)

7!
a1, . . . .

Thus

(2.4) y(x) = a0(1−
p(p+ 1)

2!
x2 +

(p(p− 2)(p+ 1)(p+ 3)

4!
x4 + . . . )

+ a1(x− (p− 1)(p+ 2)

3!
x3 +

(p− 1)(p− 3)(p+ 2)(p+ 4)

5!
x5 + . . . ).

The first series is an even function while the second series is an odd function. The
above is the general solution of (2.1) in the interval (−1, 1). It is called the Legendre
function.

Remark 2.1. If p is not an integer, then both series in (2.4) have radius of con-
vergence 1. (You can check this by the ratio test.)

2.2. Legendre polynomials

Now suppose the parameter p in the Legendre equation (2.1) is a nonnegative
integer. Then one of the two series in (2.4) terminates: if p is even, then the first
series terminates. In this case, if we put a1 = 0, then we get a polynomial solution.
Similarly, if p is odd, then the second series terminates, and we get a polynomial
solution by putting a0 = 0. Thus we obtain a sequence of polynomials Pm(x) (up
to multiplication by a constant) for each nonnegative integer m. These are called
the Legendre polynomials. The m-th Legendre polynomial Pm(x) solves (2.1) for
p = m and for all x, not just for x ∈ (−1, 1). It is traditional to normalize the
constants so that Pm(1) = 1. The first few values are as follows.

n Pn(x)

0 1

1 x

2
1

2
(3x2 − 1)

3
1

2
(5x3 − 3x)

4
1

8
(35x4 − 30x2 + 3)

5
1

8
(63x5 − 70x3 + 15x)

Note that only even or odd powers are present, but other than that by (2.3), there
are no “missing” powers.

Many interesting features of these polynomials are visible in the interval (−1, 1).
So it is customary to restrict them to this interval, though they are defined over the
entire real line. The graphs of the first few Legendre polynomials in this interval
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are given below.

Remark 2.2. In order to normalize by the condition Pm(1) = 1, we need to
know that no polynomial solution vanishes at x = 1. For this, suppose f(x) is a
polynomial solution of (2.1). Write f(x) = (x− 1)kg(x) with g(1) 6= 0. Substitute
this in (2.1), simplify, remove the common factor of (x − 1)k−1, and finally put
x = 1 to obtain k2g(1) = 0, which implies that k = 0. So f(1) 6= 0.

Remark 2.3. We do not need to consider negative integral values of p separately,
since by our earlier observation it suffices to assume p ≥ −1/2. Explicitly, −k(−k+
1) = (k − 1)k.

Now let us consider the second independent solution given by (2.4). It is a
honest power series. For p = 0, it is

x+
x3

3
+
x5

5
+ · · · = 1

2
log

(1 + x

1− x

)

,

while for p = 1, it is

1− x2

1
− x4

3
− x6

5
− · · · = 1− 1

2
x log

(1 + x

1− x

)

.

These nonpolynomial solutions always have a log factor of the above kind and hence
are unbounded at both +1 and −1. (Since they are either even or odd, the behavior
at x = 1 is reflected at x = −1.) They are called the Legendre functions of the
second kind (with the Legendre polynomials being those of the first kind). Most
books tend to ignore these. The reason for the log factor will become evident when
we apply the Frobenius method at x = ±1, see Example 3.10. Include pictures.

2.3. Orthogonality and Legendre series

We now look at the orthogonality property of the Legendre polynomials wrt to
an inner product on the space of polynomials. This property allows us to expand
any square-integrable function on [−1, 1] into a Legendre series.

2.3.1. Orthogonal basis for the vector space of polynomials. Recall that
the space of polynomials in one variable is a vector space (that is, one can scalar-
multiply and add two polynomials). Its dimension is countably infinite and the
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set {1, x, x2, . . . } is a canonical basis. Since Pm(x) is a polynomial of degree m, it
follows that {P0(x), P1(x), P2(x), . . . } is also a basis. Explain.

Further the space of polynomials carries an inner product defined by

(2.5) 〈f, g〉 :=
∫ 1

−1

f(x)g(x)dx.

Note that we are integrating only between −1 and 1. This ensures that the integral
is always finite. The norm of a polynomial is defined by

(2.6) ‖f‖ :=

(∫ 1

−1

f(x)f(x)dx

)1/2

.

In the discussion below, we will repeatedly use the following simple consequence
of integration by parts: For differentiable functions f and g, if (fg)(b) = (fg)(a),
then

(2.7)

∫ b

a

fg′dx = −
∫ b

a

f ′gdx.

(This process transfers the derivative from g to f . This has theoretical significance,
it is used to define the notion of weak derivatives.)

The following result says that the Legendre polynomials provide an orthogonal
basis (that is, distinct Legendre polynomials are perpendicular to each other wrt
the above inner product).

Proposition 2.4. Suppose m and n are two nonnegative integers with m 6= n.
Then

(2.8)

∫ 1

−1

Pm(x)Pn(x)dx = 0.

Orthogonality does not depend on the normalization factor, so the specific
normalization used to define Pn is not relevant here. To prove (2.8), one can try a
brute force method using the formulas (2.4). Since Pn(x) is an odd or even function
depending on whether n is odd or even, the result is immediate if m and n are of
opposite parity. However, handling the cases when m and n are both even, or both
odd, would require some effort. A computation-free proof is given below.

Proof. Since Pm(x) solves the Legendre equation (2.2) for p = m, we have

((1− x2)P ′
m)′ +m(m+ 1)Pm = 0.

Multiply by Pn and integrate by parts to get

−
∫ 1

−1

(1− x2)P ′
mP

′
n + (1− x2)P ′

mPn

∣

∣

1

−1
+m(m+ 1)

∫ 1

−1

Pm(x)Pn(x)dx = 0.

The boundary term vanishes because 1 − x2 = 0 at both x = 1 and x = −1. (We
are in the situation of (2.7).) Thus,

−
∫ 1

−1

(1− x2)P ′
mP

′
n +m(m+ 1)

∫ 1

−1

Pm(x)Pn(x)dx = 0.

Interchanging the roles of m and n,

−
∫ 1

−1

(1− x2)P ′
mP

′
n + n(n+ 1)

∫ 1

−1

Pm(x)Pn(x)dx = 0.
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Subtracting the two identities, we obtain

(m(m+ 1)− n(n+ 1))

∫ 1

−1

Pm(x)Pn(x)dx = 0.

Since m 6= n, the scalar in front can be canceled and we get (2.8). �

Remark 2.5. Suppose {fn(x)} is a sequence of polynomials such that fn(1) = 1
and fn(x) has degree n, and they are orthogonal wrt the inner product (2.5). Then
fn(x) = Pn(x). This is a geometric way to (introduce and) understand the Legendre
polynomials.

2.3.2. Rodrigues formula. There is another nice way to obtain an orthogonal
basis for the space of polynomials. For this, consider the sequence of polynomials

qn(x) :=
( d

dx

)n
(x2 − 1)n = Dn(x2 − 1)n, n ≥ 0.

(We are writing D as a shorthand for the derivative operator.) Observe that qn(x)
has degree n. The first few polynomials are 1, 2x, 4(3x2 − 1), . . . . [Note the
similarity with the Legendre polynomials.]

Proposition 2.6. Suppose m and n are two nonnegative integers with m 6= n.
Then

∫ 1

−1

qm(x)qn(x)dx = 0.

Proof. Assume wlog that m < n. Using (2.7) repeatedly, transfer all the n
derivatives in qn(x) to qm(x).

∫ 1

−1

Dm(x2 − 1)mDn(x2 − 1)ndx = −
∫ 1

−1

Dm+1(x2 − 1)mDn−1(x2 − 1)ndx

= · · · = (−1)m
∫ 1

−1

D2m(x2 − 1)mDn−m(x2 − 1)ndx

= (−1)m+1

∫ 1

−1

D2m+1(x2 − 1)mDn−m−1(x2 − 1)ndx = 0,

since D2m+1(x2 − 1)m ≡ 0.
In order to apply (2.7), we need to check that the boundary terms always

vanish: At each step, the boundary term in the integration by parts has a factor
Dr(x2 − 1)n, r < n which vanishes at ±1. For instance, the first boundary term is

qm(x)Dn−1(x2 − 1)n
∣

∣

1

−1
.

Since (x2 − 1)n has roots +1 and −1 of multiplicity n, the second term vanishes at
both +1 and −1. �

So the sequence {qn(x)} is also an orthogonal basis of the space of polynomials.
Further the span of q0(x), . . . , qn(x) consists of all polynomials of degree n or less.
This feature is also exhibited by the Legendre polynomials. So it follows that Pn(x)
and qn(x) are scalar multiples of each other (in view of the following general result).

Lemma 2.7. In any inner product space, suppose {u1, u2, . . . , un} and {v1, v2, . . . , vn}
are two orthogonal systems of vectors such that for each 1 ≤ k ≤ n, the span of
u1, . . . , uk equals the span of v1, . . . , vk. Then ui = civi for each i for certain
nonzero scalars ci.
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Proof. Nice exercise. �

The scalar relating qn and Pn can be found for instance by computing qn(1).
This is done below.

Proposition 2.8. We have qn(1) = 2nn!.

Proof. Repeatedly apply the product rule to (x− 1)n and (x+ 1)n to obtain

Dn(x2 − 1)n =

n
∑

r=0

(

n

r

)

Dr(x− 1)n ·Dn−r(x+ 1)n.

Since

Dr(x− 1)n
∣

∣

x=1
=

{

0 if r < n,

n! if r = n.

Thus after substuting x = 1, only the term where all n derivatives are on (x− 1)n

survives. This gives n!, while substituting 1 in (x+ 1)n gives 2n. �

Since by convention Pn(1) = 1,

(2.9) Pn(x) =
1

2nn!

( d

dx

)n
(x2 − 1)n.

This is known as Rodrigues formula.

Proposition 2.9. We have

‖qn(x)‖2 =
2

2n+ 1
(2nn!)2.

Proof. By repeated use of (2.7), as in the proof of Proposition 2.6, we obtain

‖qn(x)‖2 =

∫ 1

−1

(x2 − 1)n(−1)nD2n(x2 − 1)ndx

=

∫ 1

−1

(1− x2)n(2n)!dx = 2(2n)!

∫ π/2

0

sin2n+1 θdθ.

The rhs is a standard integral. Instead of the trigonometric substitution, one can
continue to exploit (2.7):

(2n)!

∫ 1

−1

(1− x)n(1 + x)ndx = (2n)!

∫ 1

−1

n(1− x)n−1 (1 + x)n+1

n+ 1
dx = . . .

= (2n)!
n

n+ 1

n− 1

n+ 2
. . .

1

2n

∫ 1

−1

(1 + x)2ndx =
22n+1(n!)2

2n+ 1
.

�

This along with the Rodrigues formula (2.9) implies that

(2.10) ‖Pn(x)‖2 =

∫ 1

−1

Pm(x)2dx =
2

2n+ 1
.

Using the Rodrigues formula (2.9) one can show that

(2.11) Pn(x) =

[n/2]
∑

m=0

(−1)m
(2n− 2m)!

2nm!(n−m)!(n− 2m)!
xn−2m
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where [n/2] denotes the greatest integer less than or equal to n/2. (This is a tutorial
problem.) Note that (2.4) gives an explicit formula for Pn(x) but only up to a scalar
multiple. The point of (2.11) is that this scalar is now determined.

2.3.3. Fourier-Legendre series. We have already noted that a polynomial f(x)
of degree m can be uniquely expressed as a linear combination of the first m Le-
gendre polynomials:

f(x) = c0P0(x) + c1P1(x) + · · ·+ cmPm(x).

Since the Legendre polynomials are orthogonal, we obtain for 0 ≤ n ≤ m,
∫ 1

−1

f(x)Pn(x)dx = cn

∫ 1

−1

Pn(x)Pn(x)dx.

Thus

(2.12) cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx.

A function f(x) on [−1, 1] is square-integrable if

(2.13)

∫ 1

−1

f(x)f(x)dx <∞.

For instance, (piecewise) continuous functions are square-integrable. The set of all
square-integrable functions on [−1, 1] is a vector space. Moreover, it an inner prod-
uct space under (2.5). It contains polynomials as a subspace. Observe from (2.6)
that the condition (2.13) simply says that ‖f‖ is finite. The Legendre polynomials
no longer form a basis for this larger space. Nevertheless, one can do the following.

Any square-integrable function f(x) on [−1, 1] can be expanded in a series of
Legendre polynomials

(2.14) f(x) ≈
∑

n≥0

cnPn(x),

where cn is as in (2.12). This is called the Fourier-Legendre series (or simply the
Legendre series) of f(x). This series converges to f(x) in the sense that

‖f(x)−
m
∑

n=0

cnPn(x)‖ → 0 as m→ ∞.

This is known as convergence in norm. (The reason this works is that the Legendre
polynomials form a maximal orthogonal set in the space of square-integrable func-
tions.) We are only claiming here that f(x) can be approximated by a sequence
of polynomials of increasing degrees in an average sense. Pointwise convergence is
more delicate. There are two issues here: Does the series on the right in (2.14) con-
verge at x? If yes, then does it converge to f(x)? A useful result in this direction
is given below (see [10, footnote on page 345]).

Theorem 2.10. If both f(x) and f ′(x) have at most a finite number of jump
discontinuities in the interval [−1, 1], then the Legendre series converges to

1

2
(f(x−) + f(x+))

for −1 < x < 1, to f(−1+) at x = −1, and to f(1−) at x = 1. In particular, the
series converges to f(x) at every point of continuity.
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This is sometimes referred to as the Legendre expansion theorem.

Example 2.11. Consider the function

f(x) =

{

1 if 0 < x < 1,

−1 if − 1 < x < 0.

Theorem 2.10 applies. By explicit calculation using the Rodrigues formula, one can
show that the Legendre series of f(x) is

∑

k≥0

(−1)k(4k + 3)

22k+1(k + 1)

(

2k

k

)

P2k+1(x) =
3

2
P1(x)−

7

8
P3(x) +

11

16
P5(x)− . . . .

(This is a tutorial problem.) Sketch the first few graphs. They wiggle around
the graph of f(x). Include pictures. One can use Stirling’s approximation for
the factorial, and get an asymptotic expression for the coefficients. The ratio of
successive coefficients approaches −1. It comes from the (−1)k part, the ratio of
the remaining part goes to 1.

2.4. Generating function

Consider the function of two variables

ϕ(x, t) :=
1√

1− 2xt+ t2
.

We restrict the domain to those x and t which satisfy 2|xt| + |t|2 < 1. (The
function may be defined for more values, but we make this assumption to justify
the manipulations below.) First by the binomial theorem,

ϕ(x, t) = (1− 2xt+ t2)−1/2 = 1− 1

2
(−2xt+ t2) +

1

2!
(−1

2
)(−3

2
)(−2xt+ t2)2

+
1

3!
(−1

2
)(−3

2
)(−5

2
)(−2xt+ t2)3 + . . . .

Next by rearranging terms and writing them as a power series in t,

ϕ(x, t) = 1 + xt+
1

2
(3x2 − 1)t2 + . . . .

The coefficients are precisely the Legendre polynomials. Above we only computed
the first three terms, the fact that they will always be the Legendre polynomials
can be shown using (2.11). Thus:

Proposition 2.12. For any x and t such that 2|xt|+ |t|2 < 1,

(1− 2xt+ t2)−1/2 =
∑

n≥0

Pn(x)t
n.

Remark 2.13. The binomial expansion only requires |−2xt+ t2| < 1. However we
then rearranged terms of the resulting series. This is justified whenever the series
converges absolutely. The assumption 2|xt|+ |t|2 < 1 implies absolute convergence.

Consider the series

1− 1

2
+

1

3
− 1

4
+ . . .

which converges to log 2. Now rearrange this series as follows

(1− 1

2
)− 1

4
+ (

1

3
− 1

6
)− 1

8
+ (

1

5
− 1

10
)− 1

12
+ . . .
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and observe that it converges to 1
2 log 2. Thus rearranging the terms of a series can

alter its sum. Another example and some related theory is given in [8, Example
3.53].

The above result says that ϕ is the generating function for the Legendre poly-
nomials. We give another argument for this result which does not require know-
ing (2.11).

The function ϕ satisfies the PDE:

(2.15) (1− x2)
∂2ϕ

∂x2
− 2x

∂ϕ

∂x
+ t

∂2(tϕ)

∂t2
= 0.

This is a direct check. First,

(2.16)
∂ϕ

∂x
= tϕ3 and

∂ϕ

∂t
= (x− t)ϕ3.

Hence

(1− x2)
∂2ϕ

∂x2
− 2x

∂ϕ

∂x
= (1− x2)t.3ϕ2.tϕ3 − 2xtϕ3 = tϕ5(3t− 2(1 + t2)x+ tx2),

and

t
∂2(tϕ)

∂t2
= t(2

∂ϕ

∂t
+ t

∂2ϕ

∂t2
) = t(2(x− t)ϕ3 − tϕ3 + t(x− t).3ϕ2(x− t)ϕ3)

= tϕ5(−3t+ 2(1 + t2)− tx2),

proving (1.5).
Now write

ϕ(x, t) =
∑

qn(x)t
n where qn(x) =

1

n!

∂nϕ

∂tn

∣

∣

∣

t=0
.

The qn(x) are polynomials in x due to (2.16). Substituting this expression in (2.15),
we see that qn(x) satisfies (2.1) for p = n. Further,

ϕ(1, t) = (1− t)−1 =
∑

tn

shows that qn(1) = 1 for all n. Hence qn = Pn for all n.

2.4.1. Gravitational potential of a point mass. Write x = cosϕ for 0 ≤ ϕ ≤
π. Consider the triangle two of whose sides are a and r and the angle between them

is ϕ. Then the length of the third side (by the cosine rule) is
√

a2 − 2ar cosϕ+ r2.
Let the vertex with angle ϕ be denoted O. Let the remaining two vertices be
denoted A and B. Then the gravitational (or electric) potential at B due to a
point mass (or charge) at A is (up to normalization) given by

(2.17)
1

√

a2 − 2ar cosϕ+ r2
.

If a < r, then this can expressed as a power series in t := a/r and the coefficients
are Pn(cosϕ). This is how Legendre discovered these polynomials. (If a > r, then
we can let t := r/a.)

If r = a, then this value is the reciprocal of 2a sinϕ/2.





CHAPTER 3

Frobenius method for regular singular points

Some of the most important second order ODEs which occur in physics and
engineering problems when written in the form y′′ + p(x)y′ + q(x)y = 0 do not
allow power series expansion of p(x) and q(x). For example, this is true for the
Cauchy-Euler equation x2y′′ + xy′ + y = 0. The solution of such an equation may
involve negative powers of x or a term such as log x, which are singular at the origin.
We now study a general method called the Frobenius method for dealing with an
ODE of the above kind. A nice and detailed exposition of these ideas is given by
Rainville [7, Chapter 18].

3.1. Ordinary and singular points

Consider the second-order linear ODE

p(x)y′′ + q(x)y′ + r(x)y = 0

defined on an interval I. We assume that p, q, and r are real analytic on I, and do
not have any common zeroes.

A point x0 ∈ I is an ordinary point of the ODE if p(x0) 6= 0, and a singular
point if p(x0) = 0. A singular point x0 is a regular singular point if

lim
x→x0

(x− x0)
q(x)

p(x)
and lim

x→x0

(x− x0)
2 r(x)

p(x)

exist. In other words, the bad behavior of q/p and r/p at x0 can be tamed by
multiplying them by x−x0 and (x−x0)2 respectively. Equivalently, (using the real
analyticity of p, q, and r,) at a regular singular point x0, the ODE can be written
in the form

(3.1) y′′ +
b(x)

x− x0
y′ +

c(x)

(x− x0)2
y = 0,

where b(x) and c(x) are real analytic in a neighborhood of x0.
A point which is not regular singular is called irregular singular. We will not

be considering ODEs with irregular singular points.

Example 3.1. Consider the Legendre equation (2.1). The singular points are
x = ±1, the rest are all ordinary points. Rewrite the equation as

(3.2) y′′ +
2x

x2 − 1
y′ − p(p+ 1)

x2 − 1
y = 0.

This can be put in the form (3.1) with x0 = 1 for

(3.3) b(x) =
2x

x+ 1
and c(x) = − (x− 1)p(p+ 1)

x+ 1
.

Both are real analytic in a neighborhood of x = 1. So x = 1 is a regular singular
point. By similar reasoning, we see that x = −1 is also a regular singular point.

21
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Example 3.2. Consider the Cauchy-Euler equation

(3.4) x2y′′ + b0xy
′ + c0y = 0,

where b0 and c0 are constants with c0 6= 0. Then x = 0 is a singular point, the rest
are all ordinary points. The ODE can be put in the form (3.1) with b(x) ≡ b0 and
c(x) ≡ c0 being constants, hence x = 0 is a regular singular point. So Theorem 1.6
does not apply. (Nonetheless, if we try the power series method, then we get a
one-step recursion

(n(n− 1) + b0n+ c0)an = 0, n ≥ 0,

an indicator that something is not right here. It is very likely that no integer n
satisfies n(n− 1) + b0n+ c0 = 0, in which case an = 0 for all n. So we do not get
anything beyond the trivial solution.) As a concrete example, consider

(3.5) x2y′′ + 2/9y = 0.

The power series method leads to the equation n(n−1)+2/9 = (n−1/3)(n−2/3) = 0
which has no integer solutions. However, if n is allowed to be a real variable, then
the equation does have two roots, and one can readily check that the functions
x1/3 and x2/3 are two independent solutions of (3.5). Note that neither of the two
solutions is real analytic in a neighborhood of 0.

The general Cauchy-Euler equation (3.4) can be solved in a similar manner.
Assume x > 0. Substitute y = xr, and compute the roots r1 and r2 of the equation

(3.6) r2 + (b0 − 1)r + c0 = 0.

Since this is an equation satisfied by the index r (more commonly called exponent),
it is called the indicial equation.

• If the roots are real and unequal, then xr1 and xr2 are two independent
solutions.

• If the roots are complex (written as a ± ib), then xa cos(b log x) and
xa sin(b log x) are two independent solutions.

• If the roots are real and equal, then xr1 and (log x)xr1 are two independent
solutions.

Note that unless r1 or r2 is a nonnegative integer, the solutions have singularities
at 0. For the interval x < 0, one can make a substitution u = −x, and reduce to the
above case. The upshot is that the solutions are again as above with −x instead of
x.

The analysis of (3.4) is strikingly similar to the second-order linear ODE with
constant coefficients. This is not an accident. After making the substitution x = et,
(3.4) transforms to

d2y

dt2
+ (b0 − 1)

dy

dt
+ c0y = 0.

The auxiliary equation of this constant coefficient ODE is precisely (3.6). In case
of distinct real roots, the solutions are er1t and er2t, which when expressed in the
variable x are xr1 and xr2 .

Remark 3.3. The function xr for r real and x > 0 is not trivial to define. One
standard way is to first define log x and ex, and then define

xr := er log x.
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Note that this makes sense for r real and x > 0. This function is always nonnegative.
Using properties of log and exp, one can then easily show that for r and s real and
x > 0,

xrxs = xr+s, (xr)s = xrs, and
d

dx
(xr) = rxr−1.

These identities get routinely used. For instance, we used them in Example 3.2
when we substituted xr in the Cauchy-Euler equation.

3.2. Fuchs-Frobenius theory

There is a satisfactory theory to understand the solutions of a second-order
linear ODE at a regular singular point. Wlog assume that this point is the origin,
and write the ODE as

(3.7) L[y] := x2y′′ + xb(x) y′ + c(x) y = 0,

where b(x) and c(x) are real analytic in a neighborhood of the origin. Here L
denotes the differential operator

(3.8) L := x2
d2

dx2
+ xb(x)

d

dx
+ c(x).

Let

(3.9) b(x) =
∑

n≥0

bnx
n and c(x) =

∑

n≥0

cnx
n

be their power series expansions. If we take b(x) and c(x) to be constants, then we
recover the Cauchy-Euler equation (3.4). The analysis below generalizes the one
given in Example 3.2.

3.2.1. Frobenius method. We restrict to x > 0. (This is a standing assumption
whenever the Frobenius method is applied.) Assume that (3.7) has a solution of
the form

(3.10) y(x) = xr
∑

n≥0

anx
n, a0 6= 0,

where r is a fixed real number. (The point is that r need not be a nonnegative
integer. Nothing is gained by allowing a0 = 0. If the first few terms of the series
are zero and it starts at say akx

k with ak 6= 0, then xk could be absorbed with xr.)
Substituting (3.10) in (3.7) and equating the coefficient of xr (the lowest degree
term) and canceling off a0 (which is nonzero), we obtain the indicial equation:

(3.11) r(r − 1) + b0r + c0 = 0, or equivalently, r2 + (b0 − 1)r + c0 = 0.

Let us denote the quadratic in r by I(r). Equating the coefficient of xr+1, we obtain

[(r + 1)r + (r + 1)b0 + c0]a1 + a0(rb1 + c1) = 0.

More generally, equating the coefficient of xr+n, we obtain the recursion

(3.12) I(r + n)an +

n−1
∑

j=0

aj((r + j)bn−j + cn−j) = 0, n ≥ 1.

This shows that an depends on all the preceding coefficients a0, . . . , an−1.
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Remark 3.4. Note that (3.12) is not a finite-step recursion, since the number of
terms depends on n. This happens because b(x) and c(x) are not assumed to be
polynomials. Also observe that b0 and c0 appear in the first term as a part of
I(r + n), while the higher bi and ci appear in the sum. In most examples we look
at, b(x) and c(x) are polynomials of degree 1, so the sum in (3.12) has only one
term which involves an−1, and we get a two-step recursion.

Let r1 and r2 be the two roots of I(r) = 0. If both are real, we follow the
convention that r1 ≥ r2. Note that the recursion (3.12) can be solved uniquely
(starting with a0 = 1 for definiteness) provided I(r + n) is never 0 for any n ≥ 1.
Now I(x) = 0 only for x = r1 or x = r2. Hence it is clear that for the larger root
r1, I(r1 + n) is never 0 for any n ≥ 1. The same is true for r2 provided r1 − r2 is
not a positive integer. This leads to the following result.

Theorem 3.5. With notation as above, the ODE (3.7) has as a solution for x > 0

(3.13) y1(x) = xr1(1 +
∑

n≥1

anx
n)

where the an solve the recursion (3.12) for r = r1 and a0 = 1.
If, in addition, r1−r2 is not zero or a positive integer, then a second independent

solution for x > 0 is given by

(3.14) y2(x) = xr2(1 +
∑

n≥1

Anx
n)

where the An solve the recursion (3.12) for r = r2 and a0 = 1.
The power series in (3.13) and (3.14) converge in the interval in which both

power series in (3.9) converge.

The above solutions are called the fractional power series solutions. Note that
we have not proved this theorem. The important step is the last part which claims
that these power series have a nonzero radius of convergence (similar to what is
needed to prove Theorem 1.6). This argument is given in [10, Chapter 5, Appendix
A] or [4, Chapter 4, Section 5].

Remark 3.6. Suppose the indicial equation has complex roots. The above so-
lutions are still valid except that they are now complex-valued. One can obtain
real-valued solutions by taking the real and imaginary parts of y1(x) (or of y2(x)).
Since r1 and r2 are complex conjugates, the real and imaginary parts of y1(x) and
y2(x) are closely related, so we are only going to get two independent real-valued
solutions.

Example 3.7. Consider the ODE

2x2y′′ − xy′ + (1 + x)y = 0.

Observe that x = 0 is a regular singular point. (The functions b(x) = −1/2 and
c(x) = (1 + x)/2 are in fact polynomials, so they converge everywhere.) Let us
apply the Frobenius method. The indicial equation is

r(r − 1)− r

2
+

1

2
= 0.

The roots are r1 = 1 and r2 = 1/2. Their difference is not an integer. Hence by The-
orem 3.5, we will get two fractional power series solutions converging everywhere.



3.2. FUCHS-FROBENIUS THEORY 25

Let us write them down explicitly. The general recursion is

(2(r + n)(r + n− 1)− (r + n) + 1)an + an−1 = 0, n ≥ 1.

This is an instance of (3.12) (multiplied by 2 for convenience). Instead of special-
izing (3.12), one may also directly substitute (3.10) into the ODE and obtain the
above recursion by equating the coefficient of xn+r. In the present case, we got a
simple two-step recursion since among the higher bi and ci, only c1 is nonzero.

For the root r = 1, the recursion simplies to

an =
−1

(2n+ 1)n
an−1, n ≥ 1

leading to the solution for x > 0

y1(x) = x

(

1 +
∑

n≥1

(−1)nxn

(2n+ 1)n(2n− 1)(n− 1) . . . (5 · 2)(3 · 1)

)

.

Similarly, for the root r = 1/2, the recursion simplies to

an =
−1

2n(n− 1/2)
an−1, n ≥ 1

leading to the second solution for x > 0

y2(x) = x1/2
(

1 +
∑

n≥1

(−1)nxn

2n(n− 1/2)(2n− 2)(n− 3/2) . . . (4 · 3/2)(2 · 1/2)

)

.

One can also directly check using the ratio test that the power series in both solu-
tions converge everywhere, in accordance with Theorem 3.5.

3.2.2. Indicial equation with repeated roots. Suppose the indicial equation
has repeated roots r1 = r2. Then the Frobenius method yields only one solution.
To obtain the other, let us go through that procedure carefully again. Let us leave
aside (3.11). Given any r, we can uniquely solve (3.12) for the unknowns an (given
a0). These unknowns depend on r, so to show this dependence, let us write an(r).
These are rational functions in r, that is, a quotient of two polynomials in r. Now
consider

(3.15) ϕ(r, x) := xr
∑

n≥0

an(r)x
n = xr

(

a0 +
∑

n≥1

an(r)x
n
)

.

This is a function of two variables r and x. By our choice of the an(r), we have

(3.16) L[ϕ(r, x)] = a0I(r)x
r

(at least formally). Here L is the differential operator (3.8). If we now put r = r1,
then the rhs of (3.16) is zero and this is the first fractional power series solu-
tion (3.13). If instead we differentiate the rhs wrt r and put r = r1, we still get 0
(since r is a repeated root). So

∂

∂r
L[ϕ(r, x)](r1, x) = 0.
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Interchanging the order of the partial derivatives wrt r and wrt x suggests that the
second solution is

y2(x) =
∂ϕ(r, x)

∂r

∣

∣

∣

∣

r=r1

=
∂

∂r

(

xr
∑

n≥0

an(r)x
n

)∣

∣

∣

∣

r=r1

= xr1 log x
∑

n≥0

an(r1)x
n + xr1

∑

n≥1

a′n(r1)x
n

= y1(x) log x+ xr1
∑

n≥1

a′n(r1)x
n.

It is possible to justify these steps leading to the following result.

Theorem 3.8. If the indicial equation has repeated roots, then there is a second
independent solution of (3.7) of the form

(3.17) y2(x) = y1(x) log x+ xr1
∑

n≥1

Anx
n

with y1(x) as in (3.13). The power series converges in the interval in which both
power series in (3.9) converge.

In fact, the preceding discussion shows that An = a′n(r1). Recall that the an(r)
are rational functions in r. There is a nice procedure to compute their derivatives:
Suppose f(r) = f1(r) . . . fn(r). Then by the product rule

(3.18) f ′(r) = f(r)
(f ′1(r)

f1(r)
+ · · ·+ f ′n(r)

fn(r)

)

.

Further if f(r) = (αr + β)k, then

f ′(r)

f(r)
=

kα

αr + β
.

For instance, if

f(r) =
(r − 1)2

(r + 1)(r − 3)4

then

f ′(r) = f(r)
( 2

r − 1
− 1

r + 1
− 4

r − 3

)

.

Note that y2(x) always has a singularity at 0 (that is, it is unbounded near 0).
This is because of the presence of log x. In addition, y1(x) also has a singularity at
0 whenever r1 is not a nonnegative integer, and its product with log x only makes
matters worse.

Given an ODE, it is often possible to calculate the derivatives of an(r) by the
above procedure. Another alternative is to substitute (3.17) in (3.7) and solve for
the An. (Yet another alternative is to use the method of variation of parameters,
and compute the second solution from y1(x). This would express the solution as
an integral rather than a power series.)

Example 3.9. Consider the ODE

x2y′′ + 3xy′ + (1− 2x)y = 0.
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This has a regular singularity at 0. Written in the form (3.1), b(x) = 3 and
c(x) = 1 − 2x. The indicial equation is r2 + 2r + 1 = 0 which has a repeated
root at −1. One may check that the recursion is

(n+ r + 1)2an = 2an−1, n ≥ 1.

(Why did we get a two-step recursion?) Hence

an(r) =
2n

[(r + 2)(r + 3) . . . (r + n+ 1)]2
a0.

(Since we had a two-step recursion, this rational function comes factorized into
linear factors.) Setting r = −1 (and a0 = 1) yields the fractional power series
solution

y1(x) =
1

x

∑

n≥0

2n

(n!)2
xn.

The power series converges everywhere. The formula for an(r) in simple enough
that we can compute the second solution explicitly. First, from (3.18) and using
the method explained there,

a′n(r) = −2an(r)
( 1

r + 2
+

1

r + 3
+ · · ·+ 1

r + n+ 1

)

, n ≥ 1.

Evaluating at r = −1,

a′n(−1) = −2n+1Hn

(n!)2
,

where

(3.19) Hn = 1 +
1

2
+ · · ·+ 1

n
.

(These are the partial sums of the harmonic series.) So the second solution is

y2(x) = y1(x) log x− 1

x

∑

n≥1

2n+1Hn

(n!)2
xn.

The power series converges everywhere.

Example 3.10. Let us go back to the Legendre equation (3.2). We have seen that
it has regular singular points at x = ±1. Let us look at the point x = 1 in more
detail. We are guaranteed one fractional power series solution

(x− 1)r
∑

n≥0

an(x− 1)n.

We should expand b(x) and c(x) in powers of x − 1. The constant coefficients b0
and c0 can be obtained by putting x = 1 in (3.3). Hence b0 = 1 and c0 = 0. So the
indicial equation is r2 = 0 which has a repeated root at 0. The fractional power
series solution can be computed to be

(3.20) y1(x) = 1+

∑

n≥1

(−1)n+1 p(p+ 1)[1 · 2− p(p+ 1)] . . . [n(n− 1)− p(p+ 1)]

2n(n!)2
(x− 1)n.

Since r = 0, this is in fact a power series. Observe that if p is a nonnegative integer,
then y1(x) is a polynomial of degree p. Up to a scalar multiple, this is the p-th
Legendre polynomial expanded in powers of x− 1. If p is not an integer, then the
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above power series has a radius of convergence of 2 with a singularity at x = −1.
(This should be checkable by the ratio test.) Now let us compare (3.20) with the
general solution (2.4). A suitable choice of a0 and a1 in (2.4) must give (3.20).
If p is an integer, then one of a0 or a1 is 1 and the other is 0. However in the
noninteger case, both a0 and a1 are nonzero. In this case, both power series in (2.4)
have singularities at x = 1, but this particular choice of a0 and a1 gets rid of the
singularity at x = 1. (The singularity at x = −1 stays.)

By Theorem 3.8, the second solution is given by (3.17). This has a logarithmic
singularity at x = 1. It should be possible to write down an explicit formula for
the An.

3.2.3. Roots differing by an integer. Suppose the indicial equation has roots
differing by a positive integer. Write r1 − r2 = N . The Frobenius method yields a
solution for r1. However, there may be a problem for r2. So we proceed as follows.
With ϕ as in (3.15), consider

ψ(r, x) := (r − r2)ϕ(r, x) = xr(r − r2)
∑

n≥0

an(r)x
n.

(The recursion (3.12) is linear in the ai. So if we start with (r − r2)a0 as the 0-th
term, then the n-th term will be (r − r2)an(r).) It follows from (3.16) that

L[ψ(r, x)] = a0x
r(r − r2)I(r).

If we differentiate the rhs wrt r and put r = r2, we get zero. (Wlog, let us assume
from now on that a0 = 1.) This suggests that the second solution is

y2(x) =
∂ψ(r, x)

∂r

∣

∣

∣

∣

r=r2

=
∂

∂r

(

xr
∑

n≥0

(r − r2)an(r)x
n

)∣

∣

∣

∣

r=r1

= xr2 log x

[

∑

n≥0

(r − r2)an(r)x
n

]∣

∣

∣

∣

r=r2

+ xr2(1 +
∑

n≥1

Anx
n)

= Ky1(x) log x+ xr2(1 +
∑

n≥1

Anx
n),

where

(3.21) An =
d

dr
((r − r2)an(r))

∣

∣

r=r2
, n ≥ 1,

and

(3.22) K = lim
r→r2

(r − r2)aN (r).

The last step requires some explanation. Since the an(r) have no singularity at r2
till n < N , for all such n

lim
r→r2

(r − r2)an(r) = 0.

So the first contributing term will be for n = N , and this term is KxN multiplied
by xr2 log x, that is, Kxr1 log x. Note that this is the first term in Ky1(x) log x.
Can you see why terms for n > N will match the terms coming from the power
series of y1(x)?
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Theorem 3.11. If r1 − r2 is a positive integer, then there is a second solution
of (3.7) of the form

(3.23) y2(x) = Ky1(x) log x+ xr2(1 +
∑

n≥1

Anx
n),

with K and An as defined above. The power series converges in the interval in
which both power series in (3.9) converge.

More precisely, we can write the solution as

(3.24) y2(x) = Ky1(x) log x+ xr2(1 +

N−1
∑

n=1

an(r2)x
n) + xr2

∑

n≥N

Anx
n.

This is becuase an(r) has no singularity for n < N , and for all such n, An = an(r2).
(Use: if f(r) is differentiable at r2, then

d
dr (r − r2)f(r)

∣

∣

r=r2
= f(r2).)

In general, aN (r) (and the subsequent an(r) will have a singularity at r = r2
and K will be nonzero. The only way this does not happen is if the sum in (3.12)
is zero for n = N , that is, if the rational function given by the sum has a factor
of r − r2. In such a situation, K = 0 and there is no log term. Further, none of
the an(r) have a singularity at r = r2, and An = an(r2). So the second solution is
given more simply by

(3.25) y2(x) = xr2(1 +
∑

n≥1

an(r2)x
n).

Remark 3.12. If the log term is absent, then the smaller root r2 can be used to get
the general solution directly. Start with arbitrary a0, and compute till aN−1(r2).
Then instead of taking aN (r2), take an arbitrary b as the value for aN , and solve
the rest of the recursion uniquely. Then this solution is

a0y2(x) + (b− aN (r2))y1(x).

Here a0 and b are both arbitrary. The point is that one does not have to do the
y1(x) calculation separately.

Example 3.13. Consider the ODE

x2y′′ + x(1− x)y′ − (1 + 3x)y = 0.

The indicial equation is (r + 1)(r − 1) = 0, with the roots differing by a positive
integer. The recursion is

(n+ r + 1)(n+ r − 1)an = (n+ r + 2)an−1, n ≥ 1.

Hence

an(r) =
r + n+ 2

(r + 2)[r(r + 1) . . . (r + n− 1)]
a0.

Setting r = 1 (and a0 = 1) yields the fractional power series solution

y1(x) =
1

3

∑

n≥0

n+ 3

n!
xn+1.

Note that setting r = −1 in an(r) is problematic since there is a r + 1 in the
denominator. Using (3.21) and (3.22), we calculate K = −3, A1 = −2, A2 = −1,
and

An = − n+ 1

(n− 2)!

( 1

n+ 1
−Hn−2

)

, n ≥ 3,
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where Hn−2 is the harmonic sum (3.19). This yields the second solution

y2(x) = −3y1(x) log x+
1

x

(

1− 2x− x2 +
∑

n≥3

1− (n+ 1)Hn−2

(n− 2)!
xn

)

.

Example 3.14. Now let us consider an ODE where the log term is absent.

xy′′ − (4 + x)y′ + 2y = 0

The indicial equation is r(r− 5) = 0, with the roots differing by a positive integer.
The recursion is

(n+ r)(n+ r − 5)an = (n+ r − 3)an−1, n ≥ 1.

Hence

an(r) =
(n+ r − 3) . . . (r − 2)

(n+ r) . . . (1 + r)(n+ r − 5) . . . (r − 4)
a0.

Setting r = 5 (and a0 = 1) yields the fractional power series solution

y1(x) =
∑

n≥0

60

n!(n+ 5)(n+ 4)(n+ 3)
xn+5.

For the second solution, let us look at the ‘critical’ function

a5(r) =
(r + 2)(r + 1)r(r − 1)(r − 2)

(r + 5) . . . (r + 1)r(r − 1) . . . (r − 4)
.

Note that there is a factor of r in the numerator also. So this function does not
have a singularity at r = 0, and K = 0, and a5(0) = 1/720.

y2(x) = (1 +
1

2
x+

1

12
x2) + a5(0)

(

x5 +
∑

n≥6

60

(n− 5)!n(n− 1)(n− 2)
xn

)

.

Here the first solution y1(x) is clearly visible. This happens because following
Remark 3.12, if we take b = 0 for a5, then all higher ai are zero (since the recursion
is two-step). Check that

1 +
1

2
x+

1

12
x2

solves the ODE, this is a combination of y1(x) and y2(x), the two independent
solutions given by the method, both of which were complicated!

As a simple illuminating exercise, apply the Frobenius method to the Cauchy-
Euler equation (3.4). In the case when the roots differ by a positive integer, we
always have K = 0 and the log term is absent. Why?



CHAPTER 4

Bessel equation and Bessel functions

We study the Bessel equation. There is one for each real number p. We solve
it using the Frobenius method. The fractional power series solution for the larger
root of the indicial equation is the Bessel function (of the first kind) of order p. It
is denoted by Jp(x). We study some important identities of the Bessel functions,
their orthogonality properties, and also write down their generating function. In
our analysis, it is a standing assumption that x > 0.

There is a Bessel-pedia by Watson [12]. There is also a much shorter book by
Bowman [1]. Another source is [3, Chapter 7]. Most books cited in the bibliography
contain some material on Bessel functions.

4.1. Bessel functions

Consider the second-order linear ODE

(4.1) x2y′′ + xy′ + (x2 − p2)y = 0.

This is known as the Bessel equation. Here p denotes a fixed real number. We may
assume p ≥ 0. There is a regular singularity at x = 0. All other points are ordinary.
We apply the Frobenius method to find the solutions. All the different nuances of
the method are visible in the analysis.

4.1.1. Bessel function of the first kind. Writing (4.1) in the form (3.1), b(x) =
1 and c(x) = x2 − p2. The indicial equation is

r2 − p2 = 0.

The roots are r1 = p and r2 = −p. The recursion is

(r + n+ p)(r + n− p)an + an−2 = 0, n ≥ 1.

By convention, a−1 = 0. Let us solve this recursion with r as a variable. For that,
first note that a1(r) = 0 and hence an(r) = 0 for all odd n. The even terms are

a2(r) = − 1

(r + 2)2 − p2
a0, a4(r) =

1

((r + 2)2 − p2)((r + 4)2 − p2)
a0, . . .

and in general

(4.2) a2n(r) =
(−1)n

((r + 2)2 − p2)((r + 4)2 − p2) . . . ((r + 2n)2 − p2)
a0.

31
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The fractional power series solution for the larger root r1 = p obtained by setting
a0 = 1 and r = p is

y1(x) = xp
∑

n≥0

(−1)n

((p+ 2)2 − p2)((p+ 4)2 − p2) . . . ((p+ 2n)2 − p2)
x2n(4.3)

= xp
∑

n≥0

(−1)n

22nn!(1 + p) . . . (n+ p)
x2n.

The power series converges everywhere. (We follow the convention that

n
∏

j=1

(j + p) = 1 if n = 0.

As a general convention, a product over an empty set is taken to be 1, while a sum
over an empty set is taken to be 0.) The solution y1(x) itself is bounded at x = 0:
the value at x = 0 is 0 if p > 0, and 1 if p = 0. The solution is analytic at x = 0 if
p is a nonnegative integer. Define

(4.4) Jp(x) :=
(x

2

)p ∑

n≥0

(−1)n

n!(n+ p)!

(x

2

)2n

, x > 0.

This is called the Bessel function of the first kind of order p. It is obtained by
multiplying y1(x) by

1
2pp! . (The choice of this constant is traditional.) So Jp(x) is

a solution of (4.1). Since p may not be an integer, a more correct way to say things
is to use the gamma function (A.1): Normalize y1(x) by

1
2pΓ(1+p) and define

(4.5) Jp(x) :=
(x

2

)p ∑

n≥0

(−1)n

n! Γ(n+ p+ 1)

(x

2

)2n

, x > 0.

Explicitly, the Bessel functions of order 0 and 1 are as follows.

J0(x) :=
∑

n≥0

(−1)n

(n!)2

(x

2

)2n

(4.6)

= 1− x2

22
+

x4

2242
− x6

224262
+ . . .

J1(x) :=
∑

n≥0

(−1)n

n!(n+ 1)!

(x

2

)2n+1

(4.7)

=
x

2
− 1

1!2!

(x

2

)3

+
1

2!3!

(x

2

)5

+ . . . .

Both J0(x) and J1(x) have a damped oscillatory behavior having an infinite number
of zeroes, and these zeroes occur alternately much like the functions cosx and sinx.
Further, they also satisfy similar derivative identities

(4.8) J ′
0(x) = −J1(x) and [xJ1(x)]

′ = xJ0(x).

More general identities of this kind are discussed later.
If p is a nonnegative integer, then Jp(x) is a power series convergent everywhere,

so it is real analytic everywhere. In the remaining cases, we restrict to x > 0.
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4.1.2. Second Frobenius solution. Observe that r1 − r2 = 2p. Suppose 2p is
not an integer. Then by Theorem 3.5, there is a second fractional power series
solution (3.14) with coefficients an(r2):

(4.9) y2(x) = x−p
∑

n≥0

(−1)n

22nn!(1− p) . . . (n− p)
x2n.

(Note that replacing p by −p in y1(x) results in y2(x).) Normalizing by 1
2−pΓ(1−p) ,

define

(4.10) J−p(x) :=
(x

2

)−p ∑

n≥0

(−1)n

n! Γ(n− p+ 1)

(x

2

)2n

, x > 0.

This is a second solution of (4.1) linearly independent of Jp(x). It is clearly un-
bounded at x = 0, behaving like x−p as x approaches 0.

4.1.3. Half-integer case. Now consider the case when p is a positive half-integer
such as 1/2, 3/2, 5/2, etc. Then the difference of the roots N = 2p is an odd
integer. Since we have seen that an(r) = 0 for all odd n, in particular, aN (r)
has no singularity at r = −p, and in fact, is identically zero. So we get a second
fractional power series solution (3.25) which coincides with y2(x) above. Hence
J−p(x) is a second solution of (4.1) in the half-integer case as well.

Remark 4.1. Recall from Remark 3.12 that in the above situation, we can get the
general solution directly by choosing aN arbitrarily. However note that the solution
separates into the even and odd parts, and we get a0J−p(x) + aNJp(x), so there is
no particular advantage doing things this way.

Explicitly, for p = 1/2, the two solutions are

(4.11) J 1
2
(x) =

√

2

πx
sinx and J− 1

2
(x) =

√

2

πx
cosx.

(The first function is bounded at 0 but does not have a derivative at 0, while the
second function is not even bounded.) This can be seen by a direct calculation. For
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instance, substituting p = 1/2 in (4.3)

x1/2
∑

n≥0

(−1)n

22nn! 3/2 . . . (2n+ 1)/2
x2n = x1/2

∑

n≥0

(−1)n

2nn! 3 . . . (2n+ 1)
x2n

= x1/2
∑

n≥0

(−1)n

(2n+ 1)!
x2n = x−1/2

∑

n≥0

(−1)n

(2n+ 1)!
x2n+1 = x−1/2 sinx.

Now normalize by the reciprocal of
√
2Γ(3/2). Alternatively, one can also substitute

p = 1/2 in (4.5), and repeatedly use the identity (A.2).
Formulas (4.11) can be derived more simply as follows. (The method is sug-

gested by the formulas themselves.) The substitution u(x) =
√
x y(x) transforms

the Bessel equation into

(4.12) u′′ +
(

1 +
1− 4p2

4x2
)

u = 0.

For p = 1/2, this is exactly u′′ + u′ = 0, whose solutions are sinx and cosx.

4.1.4. Case p = 0. In this case, the indicial equation has a repeated root r1 =
r2 = 0. Substituting p = 0 in (4.2),

a2n(r) =
(−1)n

(r + 2)2(r + 4)2 . . . (r + 2n)2
a0.

The an(r) for n odd are the zero functions. The fractional power series solution is
a power series with coefficients an(0):

y1(x) = J0(x) =
∑

n≥0

(−1)n

22n(n!)2
x2n, x > 0.

(In this case, note that the normalization factor is 1.)
To find the second solution, we must differentiate the a2n(r) wrt r, and then

put r = 0. Using the method outlined earlier to calculate the derivatives of rational
functions,

a′2n(r) = −2a2n(r)
( 1

r + 2
+

1

r + 4
+ · · ·+ 1

r + 2n

)

.

Now setting r = 0, we obtain

a′2n(0) =
(−1)n−1Hn

22n(n!)2
a0,

where Hn is the harmonic sum (3.19). Thus, the second solution is

y2(x) = J0(x) log x−
∑

n≥1

(−1)nHn

22n(n!)2
x2n, x > 0.

It is customary to take the following linear combination of y2(x) and J0(x) as the
second solution.

Y0(x) =
2

π
[y2(x) + (γ − log 2)J0(x)],(4.13)

=
2

π

[(

γ + log
x

2

)

J0(x)−
∑

n≥1

(−1)nHn

22n(n!)2
x2n

]
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where γ is the Euler constant defined by

(4.14) γ := lim
m→∞

(Hm − logm).

Its value is γ ≈ 0.57721566490.... It is an open problem in number theory to deter-
mine whether γ is rational or not.

4.1.5. Case when p is a positive integer. Suppose p is a positive integer.
Recall from (3.24) that the second solution is of the form

y2(x) = Ky1(x) log x+ xr2(1 +

N−1
∑

n=1

an(r2)x
n) + xr2

∑

n≥N

Anx
n.

(We assume a0 = 1.) In the present situation N = 2p. Since only the even powers
show up, the solution can be written as

y2(x) = Ky1(x) log x+ x−p(1 +

p−1
∑

n=1

a2n(−p)x2n) + x−p
∑

n≥p

A2nx
2n.

Rewriting (4.2),

(4.15) a2n(r) =
(−1)n

(r + 2 + p) . . . (r + 2n+ p)(r + 2− p) . . . (r + 2n− p)
.

For n < p,

a2n(−p) =
(−1)n

2 . . . 2n.2(1− p) . . . 2(n− p)
=

(−1)n

22nn!(1− p) . . . (n− p)
.

Note that if n ≥ p, then p−p would appear in the denominator. So we indeed have a
singularity and there will be a log term. The constant K is computed by cancelling
the r+p which appears in the denominator of (4.15) and then substituting r = −p:

K =
(−1)p

2 . . . 2p.2(1− p) . . . 2(−1)
= − 1

22p−1p!(p− 1)!
.

Similarly, to compute A2n for n ≥ p, we multiply a2n(r) by r + p, take derivative
wrt r (using the method outlined before) and finally substitute r = −p:

d

dr
(r + p)a2n(r) =

(r + p)a2n(r)

[

1

r + 2 + p
+ · · ·+ 1

r + 2n+ p
+

1

r + 2− p
+ · · ·+ 1

r + 2n− p

]

with the understanding that the troublesome term 1
r+p is absent from the sum

written inside the brackets. Now substituting r = −p and simplifying, we obtain,

A2n =
(−1)n+1(Hn−p +Hn −Hp−1)

22nn!(n− p)!(1− p) . . . (−1)
=

(−1)n−p(Hn−p +Hn −Hp−1)

22nn!(n− p)!(p− 1)!
,

where Hn is the harmonic sum (3.19). We follow the convention that H0 = 0.



36 4. BESSEL EQUATION AND BESSEL FUNCTIONS

Putting all these values in, the second solution is

y2(x) = − 1

22p−1p!(p− 1)!
y1(x) log x

+ x−p(1 +

p−1
∑

n=1

(−1)n

22nn!(1− p) . . . (n− p)
x2n)

+ x−p
∑

n≥p

(−1)n−p(Hn−p +Hn −Hp−1)

22nn!(n− p)!(p− 1)!
x2n.

Note that the first term above is

− 1

22p−1p!(p− 1)!
y1(x) log x = − 1

2p−1(p− 1)!
Jp(x) log x.

In particular, for p = 1, the second solution is

−J1(x) log x+ x−1(1 +
∑

n≥1

(−1)n−1(Hn−1 +Hn)

22nn!(n− 1)!
x2n).

The above analysis up to some language translation is given in [7, Section 120].

4.2. Identities

Note that the second solution (4.9) makes no sense if p is a positive integer (since
we start getting zeroes in the denominator. However, J−p(x) defined in (4.10) does
make sense for all p after imposing the natural condition that the reciprocal of Γ
evaluated at a nonpositive integer is 0. (How did this happen?) Further, J−p(x) is
a solution of the Bessel equation (4.1) for all p. However, in the integer case, one
can see that

J−p(x) = (−1)pJp(x),

so this is not linearly independent of the first solution.

In the following discussion, we prove four important identities involving Jp(x)
where p is any real number. The observation (4.8) will end up being a special case.

(4.16)
d

dx
[xpJp(x)] = xpJp−1(x).

We calculate using (4.4).

(xpJp(x))
′ =



2p
∑

n≥0

(−1)n

n! Γ(n+ p+ 1)

(x

2

)2n+2p





′

= 2p
∑

n≥0

(−1)n(2n+ 2p)

n! Γ(n+ p+ 1)

1

2

(x

2

)2n+2p−1

= 2p
∑

n≥0

(−1)n

n! Γ(n+ p)

(x

2

)2n+2p−1

= xp
(x

2

)p−1 ∑

n≥0

(−1)n

n! Γ(n+ p)

(x

2

)2n

= xpJp−1(x).



4.2. IDENTITIES 37

In the third step, we used (A.3). In the second step, we differentiated a series
termwise. Can you justify this? We know that a power series can be differentiated
termwise, but this is not a power series unless p is a nonnegative integer.

A companion identity is

(4.17)
d

dx

[

x−pJp(x)
]

= −x−pJp+1(x).

The proof is a similar calculation given below.

(x−pJp(x))
′ =



2−p
∑

n≥0

(−1)n

n! Γ(n+ p+ 1)

(x

2

)2n





′

= 2−p
∑

n≥0

(−1)n(2n)

n! Γ(n+ p+ 1)

1

2

(x

2

)2n−1

= 2−p
∑

n≥1

(−1)n

(n− 1)! Γ(n+ p+ 1)

(x

2

)2n−1

(since 0-th term vanishes)

= 2−p
∑

n≥0

(−1)n+1

n! Γ(n+ p+ 2)

(x

2

)2n+1

(relabelling the terms)

= −x−p
(x

2

)p+1 ∑

n≥0

(−1)n

n! Γ(n+ p+ 2)

(x

2

)2n

= −x−pJp+1(x).

These lead to two more identities

(4.18) Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

and

(4.19) Jp−1(x)− Jp+1(x) = 2J ′
p(x).

as follows.

Jp−1(x)± Jp+1(x) = x−p[xpJp(x)]
′ ∓ xp[x−pJp(x)]

′

= J ′
p(x) +

p

x
Jp(x)∓ [J ′

p(x)−
p

x
Jp(x)]

=
2p

x
Jp(x), 2J

′
p(x) respectively.

The identity (4.18) can be thought of as a 3-step recursion in p. In other words,
Jp+n(x) can be computed algorithmically from Jp(x) and Jp+1(x) for all integer n.
For example, using (4.11):

J 3
2
(x) =

1

x
J 1

2
(x)− J− 1

2
(x) =

√

2

πx

( sinx

x
− cosx

)

J−3/2(x) = − 1

x
J− 1

2
(x)− J 1

2
(x) = −

√

2

πx

(cosx

x
+ sinx

)

J 5
2
(x) =

3

x
J 3

2
(x)− J 1

2
(x) =

√

2

πx

(3 sinx

x2
− 3 cosx

x
− sinx

)

J− 5
2
(x) = − 3

x
J− 3

2
(x)− J− 1

2
(x) =

√

2

πx

(3 cosx

x2
+

3 sinx

x
− cosx

)
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and so on. Thus we see that all Bessel functions of the form Jn+1/2(x) can be
expressed using sin, cos, powers and square-roots. These are sometimes called the
spherical Bessel functions. Liouville showed that these are the only cases for which
Jp(x) is an elementary transcendental function. This result is discussed in [12,
Section 4.74].

4.3. Orthogonality

We now look at the orthogonality property of the Bessel functions wrt an inner
product on square-integrable functions. This property allows us to expand any
square-integrable function on [0, 1] into a Bessel series.

4.3.1. Zeroes of the Bessel function. Fix p ≥ 0. The equation (4.12) suggests
that for large values of x, Jp(x) should behave like a sine or cosine function. A
precise fact (without proof) is stated below.

(4.20) Jp(x) =

√

2

πx
cos

(

x− π

4
− pπ

2

)

+
ǫ(x)

x3/2
,

where ǫ(x) is bounded as x→ ∞. This fact is stated in [10, Section 34]. Plenty of
information on such asymptotic expansions of Jp(x) is given in [12, Chapter VII].

Let Z(p) denote the set of zeroes of Jp(x). It follows from (4.20) that the set
of zeroes is a sequence increasing to infinity. (For p = 1/2, this is also clear from
the formula (4.11). In this case, (4.20) holds with ǫ(x) = 0.) This fact can be
established by Sturm-Liouville theory which is not discussed in these notes.

The first five positive zeroes of some Bessel functions are given below.

J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

The first row gives the value of the first positive zero, and so on. Compare with
the graphs drawn earlier.

Proposition 4.2. Let x1 and x2 be successive positive zeroes of a nontrivial solu-
tion yp(x) of the Bessel equation.

• If 0 ≤ p < 1/2, then x2 − x1 is less than π and approaches π as x1 → ∞.
• If p = 1/2, then x2 − x1 = π.
• If p > 1/2, then x2 − x1 is greater than π and approaches π as x1 → ∞.

The result is clear for p = 1/2. The other two cases can be proved using the
Sturm comparison theorem. For details, see [10, Section 23].

4.3.2. Orthogonality. Define an inner product on square-integrable functions on
[0, 1] by

(4.21) 〈f, g〉 :=
∫ 1

0

xf(x)g(x)dx.
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This is similar to (2.5) except that f(x)g(x) is now multiplied by x, and the interval
of integration is from 0 to 1. The multiplying factor x is called a weight function.
We could instead work on the interval 0 ≤ x ≤ R, and the formulas below could be
adapted accordingly.

Fix p ≥ 0. The set of scaled functions

{Jp(zx) | z ∈ Z(p)}
indexed by the zero set Z(p) form an orthogonal family wrt the inner product (4.21).
More precisely:

Proposition 4.3. If k and ℓ are any two positive zeroes of the Bessel function
Jp(x), then

∫ 1

0

xJp(kx)Jp(ℓx)dx =

{

1
2 [J

′
p(k)]

2 = 1
2J

2
p±1(k) if k = ℓ,

0 if k 6= ℓ.

The identity

J ′
p(k)

2 = Jp±1(k)
2

can be shown as follows: The identities (4.16) and (4.17) evaluated at x = k ∈ Z(p)

yield

J ′
p(k) = Jp−1(k) and J ′

p(k) = −Jp+1(k).

Proof. We begin with the fact that Jp(x) is a solution of the Bessel equation

y′′ +
1

x
y′ +

(

1− p2

x2
)

y = 0.

For any positive constants a and b, the functions u(x) = Jp(ax) and v(x) = Jp(bx)
satisfy

u′′ +
1

x
u′ +

(

a2 − p2

x2
)

u = 0 and v′′ +
1

x
v′ +

(

b2 − p2

x2
)

v = 0

respectively. Multiplying the first equation by v, the second by u and subtracting,

(u′v − v′u)′ +
1

x
(u′v − v′u) = (b2 − a2)uv.

Multiplying by x, we obtain

[x(u′v − v′u)]′ = (b2 − a2)xuv.

Note that x(u′v − v′u) is bounded on the interval (0, 1): The only problem is near
0 where u′ and v′ may blow up if 0 < p < 1, however multiplying by x tempers
this, and in fact the value goes to 0 as x approaches 0.

Integrating from 0 to 1, we get

(b2 − a2)

∫ 1

0

xuv dx = u′(1)v(1)− v′(1)u(1).

Suppose a = k and b = ℓ are distinct zeroes of Jp(x). Then u(1) = v(1) = 0, so
the rhs is zero. Further, b2 − a2 6= 0, so the integral in the lhs is zero. This proves
orthogonality.

Now let a = k, and b be close to but not equal to k. Then
∫ 1

0

xJp(kx)Jp(bx) dx =
kJ ′

p(k)Jp(b)

b2 − k2
.
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Now take limit as b approaches k. Since the integrand in the lhs is bounded, the
limit can be pushed inside the integral to obtain

∫ 1

0

xJp(kx)Jp(kx) dx.

On the other hand, the rhs reads

lim
b→k

kJ ′
p(k)Jp(b)

b2 − k2
= lim

b→k

k

b+ k
J ′
p(k)

Jp(b)− Jp(k)

b− k
=

1

2
J ′
p(k)

2.

�

4.3.3. Fourier-Bessel series. Fix p ≥ 0. Any square-integrable function f(x) on
[0, 1] can be expanded in a series of scaled Bessel functions Jp(zx)

(4.22) f(x) ≈
∑

z∈Z(p)

czJp(zx),

where

(4.23) cz =
2

J2
p±1(z)

∫ 1

0

x f(x) Jp(zx) dx.

This is called the Fourier-Bessel series of f(x). The formula for the coefficients
is derived from Proposition 4.3. The series converges to f(x) in norm (see the
parallel discussion for Legendre polynomials.) By general Sturm-Liouville theory,
the scaled functions form a maximal orthogonal set.

For pointwise convergence, the following result is useful.

Theorem 4.4. If both f(x) and f ′(x) have at most a finite number of jump dis-
continuities in the interval [0, 1], then the Bessel series converges to

1

2
(f(x−) + f(x+))

for 0 < x < 1. At x = 1, the series always converges to 0 irrespective of f , and at
x = 0, it converges to f(0+). In particular, the series converges to f(x) at every
interior point of continuity.

This is sometimes called the Bessel expansion theorem. This is stated in [10,
Section 35, Theorem A]. A more general statement with a proof is given in [12,
Section 18.24].

Example 4.5. Let us compute the Fourier-Bessel series (for p = 0) of the function
f(x) = 1 in the interval 0 ≤ x ≤ 1. Theorem 4.4 applies. Using (4.8),

∫ 1

0

xJ0(zx) dx =
1

z
x J1(zx)

∣

∣

1

0
=
J1(z)

z
,

so using (4.23),

cz =
2

zJ1(z)
.

It follows that

1 =
∑

z∈Z(0)

2

zJ1(z)
J0(zx), 0 ≤ x < 1.



4.5. NEUMANN FUNCTIONS 41

4.4. Schlomilch’s formula

Consider the function
ϕ(x, t) := ex/2(t−1/t).

This is a function of two variables defined for all x and t except for t = 0.

ext/2 =
∑

j≥0

1

j!

xj

2j
tj and e−x/2t =

∑

k≥0

(−1)k

k!

xk

2k
t−k.

Both series are absolutely convergent. If we multiply them, we obtain a double
series whose terms are all possible products of a term from the first series with a
term in the second series. Absolute convergence allows us to rearrange the terms of
the double series in any manner that we like. Let us group terms together according
to powers of t. Observe that the coefficient of t0 is

∑

n≥0

(−1)n

(n!)2

(x

2

)2n

and this is precisely J0(x) from (4.6). More generally, one can show by a simple
explicit calculation that the coefficient of tn is Jn(x). This yields:

Proposition 4.6. For any x and t such that t 6= 0,

ex/2(t−1/t) =

∞
∑

n=−∞
Jn(x)t

n.

This is known as Schlomilch’s formula. One can use this to deduce the addition
formula

(4.24) Jn(x+ y) =

∞
∑

k=−∞
Jn−k(x)Jk(y).

In particular, putting n = 0,

J0(x+ y) = J0(x)J0(y)− 2J1(x)J1(y) + 2J2(x)J2(y)− . . . .

If we replace y by −x and use the fact that Jn(x) is even or odd according as n is
even or odd, then we obtain

1 = J0(x)
2 + 2J1(x)

2 + 2J2(x)
2 + . . . .

We deduce that |J0(x)| ≤ 1 and |Jn(x)| ≤ 1√
2
for n ≥ 1.

4.5. Neumann functions

Let p be any real number. For noninteger values of p, the Neumann function
(or Weber function) is defined by

(4.25) Yp(x) :=
cos pπJp(x)− J−p(x)

sin pπ
.

This is linearly independent of Jp(x) and provides a second solution to the Bessel
equation (since J−p(x) is a linearly independent solution).

If p = n is a nonnegative integer, then the denominator in Yn(x) is 0, but so is
the numerator. In this case, the Neumann function is defined as

(4.26) Yn(x) := lim
p→n

Yp(x) = lim
p→n

cos pπJp(x)− J−p(x)

sin pπ
.
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The graphs of some Neumann functions are given below. They are all unbounded
near 0.

The rhs of (4.26) can in principle be evaluated by L’Hôpital’s rule. This results in
a second solution linearly independent of Jn(x). Actual computation is very hard.

We illustrate by computing Y0(x). For that, we need to find
[

∂
∂pJ±p

]

p=0
. So

for 0 < p < 1, write

Jp(x) :=
(x

2

)p ∑

n≥0

(−1)n

n! Γ(n+ p+ 1)

(x

2

)2n

It is imperative to compute
[

∂Γ(n+p+1)
∂p

]

p=0
. By definition,

Γ(n+ p+ 1) =

∫ ∞

0

tn+pe−tdt.

Therefore,
[

∂Γ(n+ p+ 1)

∂p

]

p=0

=

∫ ∞

0

tn(log t)e−tdt,

and hence
[

∂[Γ(n+ p+ 1)]−1

∂p

]

p=0

= − 1

(n!)2

∫ ∞

0

tn log te−tdt =
γn
n!
,

where

(4.27) γn := − 1

n!

∫ ∞

0

tn(log t)e−tdt.

Using the above computation, we now differentiate the series for Jp wrt p to obtain
[

∂

∂p
Jp

]

p=0

= log
x

2
J0(x) +

∑

n≥0

γn
(−1)n

(n!)2

(x

2

)2n

.

Similarly,
[

∂

∂p
J−p

]

p=0

= − log
x

2
J0(x)−

∑

n≥0

γn
(−1)n

(n!)2

(x

2

)2n

.

Therefore applying L’Hôpital’s rule, we finally get,

(4.28) Y0(x) =
2

π



log
x

2
J0(x) +

∑

n≥0

γn
(−1)n

(n!)2

(x

2

)2n



 .



4.5. NEUMANN FUNCTIONS 43

This proves that the solution Y0 which is independent of J0 has a free logarithmic
term since the power series for J0 starts with 1. Thus Y0 is unbounded as x → 0
and it cannot be a power series in x.

We note that integrating (4.27) by parts establishes the recurrence:

γn+1 = γn − 1

n+ 1
.

Hint: First we need to establish the easy indefinite integral
∫

tn(log t)dt =
tn+1 log t

n+ 1
− tn+1

(n+ 1)2
.

This implies that

γn = γ0 −
1

n
− 1

n− 1
− · · · − 1

2
− 1 = −

∫ ∞

0

(log t)e−tdt−Hn.

This allows us to write (4.28) in a more conventional form,

(4.29) Y0(x) =
2

π





(

log
x

2
+ γ0

)

J0(x)−
∑

n≥0

Hn
(−1)n

(n!)2

(x

2

)2n



 .

The constant γ0 = −
∫∞
0

(log t)e−tdt can be shown to be the Euler constant (4.14),
see (B.1). Hence the above expression equals (4.13).

Remark 4.7. For the fastidious reader, note that the integral Γ(s+1) =
∫∞
0
tse−tdt

is convergent for s > −1. Since we restricted p to be in (0, 1), all the integral
expressions for Γ(m± p+ 1) that we used above are valid.





CHAPTER 5

Fourier series

We have seen the Fourier-Legendre series and the Fourier-Bessel series for
square-integrable functions on a closed interval. We now look at another series
of this kind called simply the Fourier series. The role of the Legendre polynomials
and the scaled Bessel functions is now played by the trigonometric functions.

The book by Brown and Churchill [3] is well-suited for our purposes. It gives
an elementary treatment of Fourier analysis, and explains their role in the theory
of differential equations. A nice but slightly advanced book is [11].

5.1. Orthogonality of the trigonometric family

Consider the space of square-integrable functions on [−π, π]. Define an inner
product by

(5.1) 〈f, g〉 := 1

2π

∫ π

−π

f(x)g(x)dx.

Note that we are integrating only between −π and π. This ensures that the integral
is always finite. The norm of a function is then given by

(5.2) ‖f‖ =

(

1

2π

∫ π

−π

f(x)f(x)dx

)1/2

.

(Some books follow a different normalization convention for the inner product.)
The result below shows that the set {1, cosnx, sinnx}n≥1 is an orthogonal

family wrt the inner product (5.1).

Proposition 5.1. Let m and n denote any positive integers. Then

〈1, 1〉 = 1.

〈cosmx, cosnx〉 =
{

0 if m 6= n,

1/2 if m = n.

〈sinmx, sinnx〉 =
{

0 if m 6= n,

1/2 if m = n.

〈sinmx, cosnx〉 = 〈1, cosnx〉 = 〈1, sinmx〉 = 0 for all m,n ≥ 1.

Proof. Assuming m 6= n,

〈cosmx, cosnx〉 = 1

4π

∫ π

−π

cos(m+ n)x+ cos(m− n)x dx

=
1

4π

sin(m+ n)x

(m+ n)
+

sin(m− n)x

(m− n)

∣

∣

∣

∣

π

−π

= 0.
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Ifm = n, then the second term in the integral above is identically 1, so it contributes
1/2 (instead of 0).

The remaining formulas can be proved by similar calculations. �

Alternatively, one may also prove orthogonality using the differential equation
satisfied by the sine and cosine functions:

Proposition 5.2. For each integer n ≥ 1, let yn be a nontrivial solution of

y′′ + n2y = 0.

(Explicitly, yn is a linear combination of sinnx and cosnx.) Then for any m 6= n,

〈ym, yn〉 = 0.

Proof. Multiply the ODE for yn by ym, the one for ym by yn, and subtract:

(y′nym − yny
′
m)′ = (m2 − n2)ymyn.

Integrating from −π to π yields

(m2 − n2)

∫ π

−π

ymyndx = y′nym − yny
′
m

∣

∣

π

−π
.

For any integer k, yk and y′k are 2π-periodic, so rhs is zero. Since m 6= n, the
integral in the lhs must be zero, as required. �

5.2. Fourier series

Any square-integrable function f(x) on [−π, π] can be expanded in a series of
the trigonometric functions

(5.3) f(x) ≈ a0 +

∞
∑

1

(an cosnx+ bn sinnx)

where the an and bn are given by

(5.4) a0 =
1

2π

∫ π

−π

f(x)dx, an =
1

π

∫ π

−π

f(x) cosnxdx, and

bn =
1

π

∫ π

−π

f(x) sinnx dx, n ≥ 1.

This is called the Fourier series of f(x), and the an and bn are called the Fourier
coefficients. The formulas (5.4) are derived from Proposition 5.1. They are some-
times called the Euler formulas.

5.2.1. Convergence in norm and Parseval’s identity. The Fourier series of
f(x) converges to f(x) in the sense that

‖f(x)− a0 −
m
∑

n=1

(an cosnx+ bn sinnx)‖ → 0 as m→ ∞.

This is known as convergence in norm. The reason this works is that the trigono-
metric functions form a maximal orthogonal set in the space of square-integrable
functions. In general, we get a Fourier-type series and convergence in norm when-
ever we have a maximal orthogonal set in any Hilbert space [9, Chapter 4]. The
convergence in norm of the Fourier-Legendre series and the Fourier-Bessel series
are instances of this general result.
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Recall: Suppose V is a finite-dimensional inner product space and {v1, . . . , vk}
is an orthogonal basis. If v =

∑k
i=1 aivi, then ‖v‖2 =

∑k
i=1 a

2
i ‖vi‖2. This is the

Pythagoras theorem. There is an infinite-dimensional analogue which says that the
square of the norm of f is the sum of the squares of the norms of its components
wrt any maximal orthogonal set. Thus, we have

(5.5) ‖f‖2 = a20 +
1

2

∑

n≥1

(a2n + b2n).

This is known as Parseval’s identity.

Theorem 5.3. Given any a0, an and bn such that the sum in the rhs of (5.5) is
finite, there is a square-integrable function f with these Fourier coefficients.

Further, f is unique up to a values on a set of measure zero (such as the
rationals).

This is known as the Riesz-Fischer theorem.

5.2.2. Pointwise convergence. Pointwise convergence is more delicate. There
are two issues here: Does the series on the right in (5.3) converge at x? If yes, then
does it converge to f(x)? A convergence result is given below. To discuss what
happens at the endpoints, it is better to deal with periodic functions.

Definition 5.4. A function f : R → R is periodic (of period 2π) if

f(x+ 2π) = f(x)

for all x.

A function defined on [−π, π] can be extended to a periodic function. There
may be a problem if f(π) 6= f(−π). In this case, we can choose say one of the two
values for the extension. Note that changing the value of f at one point does not
change its Fourier series (since the Fourier coefficients stay the same as before).

Theorem 5.5. Let f(x) be a periodic function of period 2π which is integrable on
[−π, π]. Then at a point x, if the left and right derivative exist, then the Fourier
series of f converges to

1

2
[f(x+) + f(x−)].

By definition, the right derivative at x exists if f(x+) exists and

lim
y→x,y>x

f(y)− f(x+)

y − x

exists. The left derivative at x is defined similarly.

Example 5.6. Consider the function

f(x) =

{

1 if 0 < x < π,

−1 if − π < x < 0.

The value at 0, π and −π is left unspecified. Its periodic extension is the square-
wave.

Since f is an odd function, a0 and all the an are zero. The bn for n ≥ 1 can be
calculated as follows.

bn =
1

π

∫ π

−π

f(x) sinnx dx =
2

π

∫ π

0

sinnx dx =
2

nπ
(1−cosnπ) =

{

4
nπ if n is odd,

0 if n is even.
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Thus the Fourier series of f(x) is

4

π

(

sinx+
sin 3x

3
+

sin 5x

5
+ . . .

)

.

By Theorem 5.5, this series converges to f(x) at all points except integer multiples
of π where it converges to 0. The partial sums of the Fourier series wiggle around
the square wave.

In particular, evaluating at x = π/2,

f(
π

2
) = 1 =

4

π

(

1− 1

3
+

1

5
− 1

7
+ . . .

)

.

Rewriting,

1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.

(This can also be proved by evaluating the Taylor series of tan−1(x) at x = 1.)
What would we get if we applied Parseval’s identity to f?

Example 5.7. Consider the function

f(x) = x2, −π ≤ x ≤ π.

Since f is an even function, the bn are zero.

a0 =
1

2π

∫ π

−π

x2 dx =
π2

3
.

an =
1

π

∫ π

−π

x2 cosnx dx =
2

π

∫ π

0

x2 cosnx dx =
4

n2
cosnπ =

{

4
n2 if n is even,

− 4
n2 if n is odd.
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Thus the Fourier series of f(x) is

π2

3
− 4

(

cosx− cos 2x

4
+

cos 3x

9
− . . .

)

.

By Theorem 5.5, this series converges to f(x) at all points. Evaluating at x = π,

π2 =
π2

3
+ 4

(

1 +
1

4
+

1

9
+ . . . ).

This yields the identity
∑

n≥1

1

n2
=
π2

6
.

5.2.3. Fourier sine and cosine series. If f is an odd (even) function, then
its Fourier series has only sine (cosine) terms. This allows us to do something
interesting. Suppose f is defined on the interval (0, π). Then we can extend it as
an odd function on (−π, π) and expand it in a Fourier sine series, or extend it as
an even function on (−π, π) and expand it in a Fourier cosine series. For instance,
consider the function

f(x) = x, 0 < x < π.

Then the Fourier sine series of f(x) is

2
(

sinx− sin 2x

2
+

sin 3x

3
− . . .

)

while the Fourier cosine series of f(x) is

π

2
− 4

π

(cosx

12
+

cos 3x

32
+ . . .

)

The two series are equal on 0 < x < π (but different on −π < x < 0). What
happens if we put x = π/2 in either series?

The Fourier cosine series above is the same as the Fourier series of g(x) = |x|.
Note that g′(x) equals the function f(x) in Example 5.6, and the Fourier series
of the square wave is precisely the term-by-term derivative of the Fourier series of
g(x). This is a general fact which can be seen by applying derivative transfer on
the Euler formulas.

One can deduce from the maximal orthogonality of the trigonometric functions
that

{sinx, sin 2x, . . . } and {1, cosx, cos 2x, . . . }
are maximal orthogonal sets in (0, π). This should not be surprising.

Every functions f(x) can be expressed uniquely as a sum of an even function
and an odd function:

f(x) = [
f(x) + f(−x)

2
] + [

f(x)− f(−x)
2

].

The Fourier series of f(x) is the sum of the Fourier cosine series of its even part
and the Fourier sine series of its odd part.

One can also expand a function on 0 < x < π in a Fourier sine quarter-wave
series and a Fourier cosine quarter-wave series using the fact that

{sinx/2, sin 3x/2, . . . } and {cosx/2, cos 3x/2, . . . }
are maximal orthogonal sets in (0, π). This can be done by extending sin as even
function, and cos as odd function around x = π, and then extending them as a
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odd function and as an even function respectively around x = 0. So quarter-wave
expansions are also special cases of usual Fourier expansions.

5.2.4. Fourier series for arbitrary periodic functions. One can also consider
Fourier series for functions of any period not necessarily 2π. Suppose the period is
2ℓ. Then the Fourier series is of the form

a0 +

∞
∑

n=1

an cos
nπx

ℓ
+ bn sin

nπx

ℓ
.

The Fourier coefficients are given by

a0 =
1

2ℓ

∫ ℓ

−ℓ

f(x)dx, an =
1

ℓ

∫ ℓ

−ℓ

f(x) cos
nπx

ℓ
dx, and

bn =
1

ℓ

∫ ℓ

−ℓ

f(x) sin
nπx

ℓ
dx, n ≥ 1.

It should be clear that by scaling the independent variable, one can transform the
given periodic function to a 2π-periodic function, and then apply the standard
theory.



CHAPTER 6

Heat equation

The heat equation is a PDE in the space variables and one time variable which
governs how heat condution occurs in solids (under some idealized conditions). We
derive the heat equation using Fourier’s law. However the main emphasis here
to introduce the method of separation of variables, and use it to solve the one-
dimensional heat equation of a thin rod of finite length under a variety of boundary
conditions. The solution is expressed as a Fourier expansion in the space variable,
whose coefficients decay exponentially with time.

All the above ideas first occurred in work of Fourier around 1805. He later
published them in 1822 in a book titled ‘Heat conduction in solids’. However,
Fourier paid no attention to the mathematical aspects of his theory. The first
result along the lines of Theorem 5.5 was obtained by Dirichlet in 1830 (who also
clarified the notion of a function).

We also consider briefly the two-dimensional heat equation and its solution on
the circular disc using separation of variables which leads to a Fourier-Bessel series.
(Fourier apparently had also looked at this.) The form of the heat equation on
other domains and in higher dimensions is also discussed.

6.1. Method of separation of variables

Given a linear PDE in two variables say x and t, it is often very fruitful to first
look for solutions of the type

(6.1) u(x, t) = X(x)T (t)

and combine them to find the general solution. In many classical equations, the
variables ‘separate’ and we are reduced to solving two linear ODEs, one each for
X(x) and T (t).

Give some examples.

6.2. Fourier’s law of heat condution

Let u(x, t) denote the temperature at point x at time t of a solid body. Here x
stands for three spatial directions.

Fourier’s law of thermal conduction says that the heat flux density −→q is equal
to the product of thermal conductivity K of the solid, and the negative of the
temperature gradient −∇u:

(6.2) −→q = −K∇u.

For simplicity, we assume that K is a constant.

51



52 6. HEAT EQUATION

By Fourier’s law, the amount of heat energy that flows out of an oriented surface−→
S per unit time is

∫

S

−→q · d−→S = −K
∫

S

∇u · d−→S .

Now suppose S is the boundary of a solid region D. Then, using the divergence
theorem of Gauss,

−K
∫

S

∇u · d−→S = −K
∫

D

div(∇u)dx = −K
∫

D

∆udx.

In the last step, we used that the divergence of the gradient is the Laplacian oper-
ator.

The specific heat σ of a material is the amount of heat energy required to raise
the temperature of a unit mass by one temperature unit. Let δ denote the density
of the material. Then the heat density is

σδut(x, t)

and the amount of heat energy that flows out of
−→
S per unit time is

−σδ
∫

D

ut(x, t)dx.

By equating the integrals, we obtain

(6.3) K

∫

D

∆udx = σδ

∫

D

ut(x, t)dx.

This is the integral form of the heat equation. Since D is arbitrary, we obtain the
differential form

(6.4) ut(x, t) = k∆u, k = K/σδ.

This is provided there are no external sources. If there is an external source, then
the equation needs to be modified to

ut(x, t) = k∆u+ f(x, t), k = K/σδ.

The function f(x, t) is positive or negative depending on whether it is a source or
a sink.

6.3. One-dimensional heat equation

We now solve the one-dimensional heat equation

(6.5) ut = kuxx, 0 < x < ℓ, t > 0.

This describes the temperature evolution of a thin rod of length ℓ. The temperature
at t = 0 is specified. This is the initial condition. We write it as

(6.6) u(x, 0) = u0(x).

Adopting the method of separation of variables, write u(x, t) = X(x)T (t) as
in (6.1). Substitution in (6.5) does indeed separate the variables:

X ′′(x)

X(x)
=

T ′(t)

kT (t)
= λ (say).

The equality is between a function of x and a function of t. So both must be
constant. Denote this constant by λ.
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In addition to the initial condition, there are conditions specified at the two
endpoints of the rod. These are the boundary conditions. We consider four different
kinds of boundary conditions one by one.

6.3.1. Dirichlet boundary conditions. The Dirichlet boundary conditions re-
quire

(6.7) u(0, t) = u(ℓ, t) = 0.

In other words, the endpoints of the rod are maintained at temperature 0 at all
times t. (The rod is isolated from the surroundings except at the endpoints from
where heat will be lost to the surroundings.)

We need to consider three cases:

(1) λ > 0: Write λ = µ2 with µ > 0. Then

X(x) = Aeµx +Be−µx and T (t) = Ceµ
2kt.

Hence
u(x, t) = eµ

2kt(Aeµx +Be−µx),

where the constant C has been absorbed in A and B. The boundary
conditions (6.7) imply that A = 0 = B. So there is no nontrivial solution
of this form.

(2) λ = 0: In this case we have X(x) = Ax+B and T (t) = C. Hence

u(x, t) = Ax+B.

The boundary conditions (6.7) give A = 0 = B. Thus this case also does
not yield a nontrivial solution.

(3) λ < 0: Write λ = −µ2 with µ > 0. It follows that

X(x) = A cosµx+B sinµx and T (t) = Ce−µ2kt.

Hence
u(x, t) = e−µ2kt[A cosµx+B sinµx].

The boundary conditions (6.7) now imply that A = 0. Also B = 0 unless
µ = nπ/ℓ, n = 1, 2, 3, . . . . Thus

un(x, t) = e−n2(π/ℓ)2kt sin
nπx

ℓ
, n = 1, 2, 3, . . .

are the nontrivial solutions.

The general solution is obtained by taking an infinite linear combination of
these solutions:

(6.8) u(x, t) =

∞
∑

n=1

bne
−n2(π/ℓ)2kt sin

nπx

ℓ
.

The coefficients bn remain to be found. For this we finally make use of the initial
condition (6.6) which can be written as

u(x, 0) = u0(x) =

∞
∑

n=1

bn sin
nπx

ℓ
, 0 < x < ℓ.

It is natural to let the rhs be the Fourier sine series of u0(x) over the interval (0, ℓ).
Hence the coefficients are

(6.9) bn =
2

ℓ

∫ ℓ

0

u0(x) sin
nπx

ℓ
dx.
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Thus (6.8) with bn defined by (6.9) is the unique solution to the heat equation
with the Dirichlet boundary conditions. As t increases, the temperature of the rod
rapidly approaches 0 everywhere.

6.3.2. Neumann boundary conditions. The Neumann boundary conditions
are

(6.10) ux(0, t) = 0 = ux(ℓ, t).

In other words, there is no heat loss at the endpoints. Thus the rod is completely
isolated from the surroundings.

As in the Dirichlet case, we need to consider three cases:

(1) λ > 0: Write λ = µ2 with µ > 0. Then

X(x) = Aeµx +Be−µx and T (t) = Ceµ
2kt.

The boundary conditions (6.10) imply that A = 0 = B. So there is no
nontrivial solution of this form.

(2) λ = 0: In this case we have X(x) = Ax+B and T (t) = C. Hence

u(x, t) = Ax+B.

The boundary conditions (6.10) give A = 0. Hence this case contributes
the solution u(x, t) = constant.

(3) λ < 0: Write λ = −µ2 with µ > 0. It follows that

u(x, t) = e−µ2kt[A cosµx+B sinµx].

The boundary conditions (6.10) now imply that B = 0. Also A = 0 unless
µ = nπ/ℓ, n = 1, 2, 3, . . . . Thus

un(x, t) = e−n2(π/ℓ)2kt cos
nπx

ℓ
, n = 1, 2, 3, . . .

are the nontrivial solutions.

The general solution will now be of the form

(6.11) u(x, t) = a0 +
∞
∑

n=1

ane
−n2(π/ℓ)2kt cos

nπx

ℓ
.

The coefficients an remain to be determined. For this we finally make use of the
initial condition (6.6) which can be written as

u(x, 0) = u0(x) = a0 +

∞
∑

n=1

an cos
nπx

ℓ
, 0 < x < ℓ.

We decide that the rhs must be the Fourier cosine series of u0(x) over the interval
(0, ℓ) and calculate the coefficients accordingly:

(6.12) a0 =
1

ℓ

∫ ℓ

0

u0(x)dx, an =
2

ℓ

∫ ℓ

0

u0(x) cos
nπx

ℓ
dx.

Thus (6.11) with an as in (6.12) is the unique solution to the heat equation with
the Neumann boundary conditions.

Remark 6.1. In the solution, all terms except for the first one tend rapidly to
zero as t → ∞. So one is left with a0, which is the mean or average value of
u0. Physically, this means that an isolated rod will eventually assume a constant
temperature, which is the mean of the initial temperature distribution.
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6.3.3. Mixed boundary conditions. Consider the mixed boundary conditions

(6.13) u(0, t) = 0 = ux(ℓ, t).

Thus, the left endpoint is maintained at temperature 0 (so there will be heat loss
from that end), while there is no heat loss at the right endpoint.

We proceed as before and using the boundary conditions (6.13) conclude that
there is no contributions from cases (1) and (2). Case (3) forces

X(x) = sin
(n+ 1/2)πx

ℓ
, n ≥ 0 and T (t) = e−(n+1/2)2(π/ℓ)2kt.

The general solution then is a sine quarter-wave:

u(x, t) =
∑

n≥0

bne
−(n+1/2)2(π/ℓ)2kt sin

(n+ 1/2)πx

ℓ
.

The coefficients are computed using the initial condition (6.6) and are given by

bn =
2

ℓ

∫ ℓ

0

u0(x) sin
(n+ 1/2)πx

ℓ
dx.

If the mixed boundary conditions are instead

ux(0, t) = 0 = u(ℓ, t),

then we need the cosine quarter-wave expansion on (0, ℓ), namely

∑

n≥0

an cos
(n+ 1/2)πx

ℓ
,

where

an =
2

ℓ

∫ ℓ

0

u0(x) cos
(n+ 1/2)πx

ℓ
dx.

6.3.4. Periodic boundary conditions. Consider the periodic boundary condi-
tions

(6.14) u(0, t) = u(ℓ, t), ux(0, t) = ux(ℓ, t).

We proceed as before. Yet again there is no contribution from case (1). Case (2)
yields constant solutions and case (3) yields (after a small calculation) a nontrivial
solution for each µ = 2nπ/ℓ:

un(x, t) = e−4n2(π/ℓ)2kt

[

A cos
2nπx

ℓ
+B sin

2nπx

ℓ

]

, n = 1, 2, 3, . . . .

The general solution then is

u(x, t) = a0 +
∑

n≥1

e−4n2(π/ℓ)2kt

[

an cos
2nπx

ℓ
+ bn sin

2nπx

ℓ

]

.

The coefficients are determined from the initial condition (6.6) using the full Fourier
expansion on (0, ℓ), or equivalently on (−ℓ/2, ℓ/2):

a0 =
1

ℓ

∫ ℓ

0

u0(x)dx, an =
2

ℓ

∫ ℓ

0

u0(x) cos
2nπx

ℓ
dx

and

bn =
2

ℓ

∫ ℓ

0

u0(x) sin
2nπx

ℓ
dx.
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6.4. Nonhomogeneous case

We now consider the nonhomogeneous one-dimensional heat equation

(6.15) ut − kuxx = f(x, t), 0 < x < ℓ, t > 0,

with initial condition (6.6). We indicate how to solve this for each of the boundary
conditions discussed earlier. For simplicity, we assume ℓ = 1.

6.4.1. Dirichlet boundary conditions. Due to (homogeneous) Dirichlet bound-
ary conditions, we expand everything in a Fourier sine series over (0, 1). Thus let

u(x, t) =
∑

n≥1

Yn(t) sinnπx,

f(x, t) =
∑

n≥1

Bn(t) sinnπx, u0(x) =
∑

n≥1

bn sinnπx,

where the Bn(t) and the bn are known while the Yn(t) are to be determined. Sub-
stituting, we obtain

∑

n≥1

[Ẏn(t) + kn2π2Yn(t)] sinnπx =
∑

n≥1

Bn(t) sinnπx.

This implies that Yn(t) solves the following IVP

Ẏn(t) + kn2π2Yn(t) = Bn(t), Yn(0) = bn.

To do a concrete example, suppose

f(x, t) = sinπx sinπt and u0(x) = 0.

Thus, the initial temperature of the rod is 0 everywhere but there is a heat source.
(Due to the sinπt term, it a sink as well depending on the value of t.) Then bn = 0
for all n ≥ 1, and

Bn(t) =

{

0 for n 6= 1,

sinπt for n = 1.

Therefore, for n 6= 1,

Ẏn(t) + kn2π2Yn(t) = 0, Yn(0) = 0

which implies Yn ≡ 0. For n = 1,

Ẏ1(t) + kπ2Y1(t) = sinπt, Y1(0) = 0.

By the method of undetermined coefficients,

Y1(t) = Ce−π2kt +A cosπt+B sinπt.

The initial condition Y1(0) = 0 implies C +A = 0. Substituting this back into the
ODE yields

kπ2B − πA = 1 and kπ2A+ πB = 0.

Solving for A and B, we get

u(x, t) =
1

π(k2π2 + 1)

[

e−π2kt − cosπt+ kπ sinπt
]

sinπx.
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6.4.2. Neumann boundary conditions. Due to (homogeneous) Neumann bound-
ary conditions, we expand everything in a cosine series over (0, 1). Thus let

u(x, t) =
∑

n≥0

Yn(t) cosnπx,

f(x, t) =
∑

n≥0

An(t) cosnπx, u0(x) =
∑

n≥0

an cosnπx,

where the An(t) and the an are known while the Yn(t) are to be determined. Sub-
stituting, we obtain

∑

n≥0

[Ẏn + kn2π2Yn] cosnπx =
∑

n≥0

An(t) cosnπx.

This implies that Yn solves the following linear IVP

Ẏn(t) + kn2π2Yn(t) = An(t), Yn(0) = an.

The case n = 0 is included.
To do a concrete example, suppose

f(x, t) = x(x− 1) and u0(x) = 0.

Thus, the initial temperature of the rod is 0 everywhere but there is a heat sink.
Due to Neumann conditions, the rod is isolated, so we expect the temperature to
decrease with time. This is verified by the precise calculations below.

Note that an = 0, and since f(x, t) is independent of t, the An are constants
(with no dependence on t). Explicitly, A0 = −1/6 and for n ≥ 1,

An = 2

∫ 1

0

x(x− 1) cosnπxdx =

{

4
n2π2 if n is even,

0 if n is odd.

This check is left to the tired reader. We now need to solve

Ẏn(t) + kn2π2Yn(t) = An, Yn(0) = 0.

For n = 0, Ẏ0(t) = A0 and Y0(0) = 0, so Ẏ0(t) = − t
6 . By the method of undeter-

mined coefficients,

Yn(t) = Cn +Dne
−n2π2t, n ≥ 1.

Solving we get Cn +Dn = 0 and Cn = An

kn2π2 . Thus

u(x, t) = − t

6
− 1

4kπ4

∑

n≥1

1− e−4kn2π2t

n4
cos 2nπx.

6.4.3. Mixed boundary conditions. In the case when the left endpoint is main-
tained at 0, while the right endpoint is insulated, we require sine quarter-wave
expansion on (0, 1). Thus we let

u(x, t) =
∑

n≥0

Yn(t) sin(n+
1

2
)πx,

f(x, t) =
∑

n≥0

Bn(t) sin(n+
1

2
)πx, u0(x) =

∑

n≥0

bn sin(n+
1

2
)πx.

As before, the Bn(t) and the bn are known quantities, while the Yn(t) are unique
solutions of

Ẏn(t) + k(n+
1

2
)2π2Yn(t) = Bn(t), Yn(0) = bn.
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If instead left endpoint is insulated, while the right endpoint is maintained at
0, then we need cosine quarter-wave expansion on (0, 1).

6.4.4. Periodic boundary conditions. In this case, we require the full Fourier
expansion on (0, 1), or equivalently on (− 1

2 ,
1
2 ). So let

u(x, t) = Y0(t) +
∑

n≥1

[Yn(t) cos 2nπx+ Zn(t) sin 2nπx]

f(x, t) = A0(t) +
∑

n≥1

[An(t) cos 2nπx+Bn(t) sin 2nπx]

u0(x) = a0 +
∑

n≥1

[an cos 2nπx+ bn sin 2nπx].

These yield the linear first order ODEs

Ẏn(t) + 4kn2π2Yn(t) = An(t), Yn(0) = an, for all n ≥ 0.

Żn(t) + 4kn2π2Zn(t) = Bn(t), Yn(0) = bn, for all n ≥ 1.

Thus Yn(t), Zn(t) and hence u(x, t) is uniquely determined.

6.5. Temperature in a circular plate

We now consider the two-dimensional heat equation. The heat equation in a
two-dimensional region is given by

(6.16) ut = k(uxx + uyy),

assuming that there are no sources or sinks inside the region.

6.5.1. Heat equation in polar coordinates. We solve this equation when the
region is the disc of radius R centered at the origin (under suitable initial and
boundary conditions). Due to the rotational symmetry, it is convenient to use polar
coordinates (r, θ). Further we assume for simplicity that the initial temperature is
independent of the angle θ. We write

u(r, θ) = f(r).

That is, the temperature at a point at distance r from the origin is f(r). The heat
equation in polar coordinates (assuming no dependence on θ) is given by

(6.17) ut = k(urr + r−1ur).

This can be derived from (6.16) by repeated application of the chain rule.
There are many different boundary conditions one can consider. Let us assume

the Dirichlet boundary condition

u(R, t) = 0.

Thus the temperature on the boundary circle of radius R is maintained at 0 at all
times. As in the case of the thin rod, there is heat loss from the boundary, and we
expect that the temperature of the disc will go to zero everywhere.
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6.5.2. Boundary conditions leading to the Bessel function. We employ the
method of separation of variables. Accordingly, let u(r, t) = X(r)T (t). Substituting
and separating variables, we obtain

X ′′(r)

X(r)
+

1

r

X ′(r)

X(r)
=

T ′(t)

kT (t)
.

Since lhs is a function of r and rhs that of t only, both must have a common constant
value, say λ. Write λ = −µ2, µ > 0. (The reason why this constant cannot be
zero or positive is explained in detail in the context of the wave equation. See
Section 7.4.) Then the equation in the r variable is

r2X ′′(r) + rX ′(r) + µ2r2X(r) = 0

This is the scaled Bessel equation of order 0. The general solution is

X(r) = AJ0(µr) +BY0(µr),

where J0 and Y0 are the Bessel and Neumann functions of order 0. Due to bound-
edness at r = 0, B = 0. Moreover, the condition X(R) = 0 implies µ = z

R for

z ∈ Z(0). For these values of µ, we have

T (t) = De−µ2kt.

Therefore, the general solution of the heat equation under Dirichlet boundary con-
dition is

u(r, t) =
∑

z∈Z(0)

cze
−(z/R)2ktJ0

(zr

R

)

.

6.5.3. Initial condition and Fourier-Bessel series. We now invoke the initial
condition to find that

f(r) =
∑

z∈Z(0)

czJ0

(zr

R

)

is the Fourier-Bessel expansion of f(r) over the interval [0, R] in terms of J0. This
allows us to compute the coefficients

cz =
2

R2J1(z)2

∫ R

0

f(r)J0

(zr

R

)

rdr =
2

z2J1(z)2

∫ z

0

f

(

Rt

z

)

J0(t).tdt.

Example 6.2. For f(r) = 100(1− r2/R2), if the temperature along the circumfer-
ence of the disc is suddenly raised to 100 and maintained at that value, then find
the temperature in the disc subsequently.

Let the temperature distribution be

U(r, t) = 100u(r, t) + 100.

Then u must solve the equations

ut = k(urr + r−1ur), (Heat equation),

u(R, t) = 0 (Homogeneous boundary condition),

u(r, 0) = −r2/R2 (Initial condition).

From the above analysis, it only remains to find cz, z ∈ Z(0). We know that
∫ z

0

t2J0(t).tdt = z2.zJ1(z)−
∫ z

0

2t.tJ1(t)dt = z3J1(z)− 2z2J2(z)

= z3J1(z)− 2z2
2

z
J1(z) = (z3 − 4z)J1(z).
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On substitution,

cz =
2

z2J1(z)2

∫ z

0

(−t2/z2)J0(t).tdt =
8− 2z2

z3J1(z)
, z ∈ Z(0).

Thus

U(r, t) = 100 + 100
∑

z∈Z(0)

8− 2z2

z3J1(z)
e−z2kR−2tJ0

(zr

R

)

.

6.6. Heat equation in general. Laplacian

One can consider the two-dimensional heat equation on other regions in R
2, or

even on other surfaces in R
3. In this case, the heat equation is of the form

ut = k(∆(u)),

where ∆ is the Laplacian operator. The Laplacian on some important domains
in special coordinate systems are discussed below. In each setting, the method of
separation of variables can be employed to decribe temperature evolution in that
domain.

The abstract setting to define a Laplacian is a Riemannian manifold.

6.6.1. Laplacian on the plane. The Laplacian on the plane is

(6.18) ∆(u) = uxx + uyy.

In polar coordinates, it is given by

(6.19) ∆(u) = urr + r−1ur + r−2uθθ.

This is convenient if there is a rotational symmetry in the problem. In the example
of the circular plate, we had assumed θ independence, so the last term had dropped
out simplifying the Laplacian further.

The expression (6.19) can be derived from (6.18) by repeated use of the chain
rule. It has a radial part and an angular part. The angular part is entirely analogous
to a term such as uww with w = rθ. Since r is fixed while moving on the angular
part, this equals r−2uθθ. In the radial part, we always get the urr term. In addition,
we get a ur term whose coefficient is given by

d

dr
log(2πr) =

2π

2πr
=

1

r
.

(Note that 2πr is the length of the circle of radius r.)

6.6.2. Laplacian on the sphere. The Laplacian on the sphere of radius R in
terms of spherical polar coordinates is

(6.20) ∆ =
1

R2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

,

where θ is the azimuthal angle and ϕ is the polar angle.
This formula can be understood in a similar manner to the polar coordinates

formula above. Consider geodesic circles from the north pole. These are precisely
the latitudes. Consider the latitude corresponding to ϕ. Its geodesic radius is along
the longitude and given by Rϕ. Further the geodesic circle is a usual circle of radius
R sinϕ.
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The Laplacian can be broken into two parts. The azimuthal part given by
r−2uθθ where r = R sinϕ. The radial or polar part we always get the R−2uϕϕ, and
the coefficient of R−1uϕ is

R−1 d

dϕ
log(2πR sinϕ) = R−1 cotϕ.

6.6.3. Laplacian in three-dimensional space. The Laplacian in in three-dimensional
space standard coordinates is given by

(6.21) ∆(u) = uxx + uyy + uzz.

This is a convenient form to solve the heat equation in a cube. If the region is a solid
sphere, then it is convenient to use the Laplacian in spherical polar coordinates. It
is given by

(6.22) ∆R3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

.

This can be derived from (6.21) after a long calculation. Alternatively, one can
apply the method of geodesic spheres (since we are in three dimensions). A geodesic
sphere at distance r is the usual sphere of radius r, whose Laplacian was explained
above. This is one of the term. In the radial part, we always have urr. In addition,
we get a ur term whose coefficient is given by

d

dr
log(4πr2) =

8π

4πr2
=

2

r
.

(Note that 4πr2 is the area of the sphere of radius r.)
The Laplacian in cylindrical coordinates is

(6.23) ∆(u) = (urr + r−1ur + r−2uθθ) + uzz.





CHAPTER 7

Wave equation

The wave equation is a PDE in the space variables and one time variable which
governs vibrations in solids (under some idealized conditions). The solid could be
a string, or a membrane, or an air column, or a mechanical shaft (which vibrates
torsionally). We do not derive the wave equation, most books give a derivation. The
one-dimensional equation was first considered and solved by D’Alembert in 1747.
His solution reveals many interesting phenomena that we associate with waves. We
also independently proceed using the method of separation of variables, and solve
the wave equation under a variety of boundary conditions (always assuming that
the domain is of finite length).

7.1. D’Alembert’s solution

The one-dimensional wave equation is defined by

utt = c2uxx, c 6= 0.

We think of x as the space variable and t as the time variable. To begin with, we
do not impose any restriction on x, thus we are looking at the wave equation on
the real line.

Imagine an infinite string stretched along the x-axis vibrating in the xy-plane,
u(x, t) represents the deflection from the mean position of the particle at position
x at time t.

7.1.1. General solution. Let (ξ, η) be another coordinate system. Consider the
linear change of variables

ξ = x− ct, η = x+ ct.

(This is guesswork.) The determinant of this linear transformation is nonzero (since
c 6= 0), so we can pass back and forth between the two coordinate systems. Let us
express the wave equation in the (ξ, η)-coordinate system.

By the chain rule,

ux = uξ + uη, uxx = uξξ + uξη + uηξ + uηη = uξξ + 2uξη + uηη.

Similarly,

ut = −cuξ + cuη, utt = c2uξξ − c2uξη − c2uηξ + c2uηη = c2(uξξ − 2uξη + uηη).

Substituting in the wave equation,

uξη =
∂

∂η

(∂u

∂ξ

)

= 0.

From here we see that ∂u
∂ξ is a function of ξ alone, and integrating once more, we

see that
u(ξ, η) = ϕ(ξ) + ψ(η),

63
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where ϕ and ψ are arbitrary twice differentiable functions. Plugging back the
original variables, we see that

(7.1) u(x, t) = ϕ(x− ct) + ψ(x+ ct)

is a solution of the wave equation.
It is worthwhile to visualize the above solution. First take ψ = 0, so that

u(x, t) = ϕ(x − ct). Hence u(x, 0) = ϕ(x). Observe that the graph of u(x, t) has
the same shape as ϕ(x) but it is pushed ct units to the right. Hence the term
ϕ(x − ct) describes a wave moving to the right along the x-axis with constant
speed c. Similarly, ψ(x + ct) describes a wave moving to the left along the x-axis
with constant speed c. And the general solution is the superposition of two such
travelling waves.

Imagine ϕ(x) and ψ(x) to be functions of compact support (that is, they are
zero outside of a finite interval.) Further suppose that the support of ϕ(x) lies
entirely to the left of the support of ψ(x). At t = 0, u(x, 0) = ϕ(x) + ψ(x), so we
see ϕ(x) on the left and ψ(x) on the right. With the passage of time ϕ(x) keeps
moving to the right, while ψ(x) keeps moving to the left. For a brief passage of time,
the graphs overlap causing interference, and then later again the two break free of
each other. Their original shape is restored and they move in opposite directions
never to see each other again.

Since the functions only translate without altering their shape, there is no data
loss with the passage of time. So the solution can also be run backwards in time
without running into any singularity.

This is in sharp constrast to the heat equation. At t = 0, the initial temperature
can in principle be any square-integrable function. But for any t > 0 however small,
because of the exponential factor, the temperature distribution becomes smooth,
and it rapidly becomes uniform. You start looking like your neighbor and society
becomes homogeneous very quickly. In this sense, there is individuality or data
loss.

7.1.2. Initial value problem. We now consider the wave equation as before (with
x unrestricted) but subject to the initial conditions

(7.2)
u(x, 0) = f(x) (Initial Position)

ut(x, 0) = g(x) (Initial Velocity).

Imposing these conditions on the general solution (7.1), we obtain

f(x) = ϕ(x) + ψ(x) and g(x) = −cϕ′(x) + cψ′(x).

Let G(x) be an antiderivative of g(x). Integrating the second equation yields

1

c
G(x)−K = −ϕ(x) + ψ(x),

where K is an arbitrary constant. Solving for ϕ and ψ,

ϕ(x) =
1

2

(

f(x)− G(x)

c
−K

)

and ψ(x) =
1

2

(

f(x) +
G(x)

c
+K

)

Substituting in the general solution, we obtain

u(x, t) =
f(x+ ct) + f(x− ct)

2
+
G(x+ ct)−G(x− ct)

2c
(7.3)
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=
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g(s)ds

This is known as D’Alembert’s formula.
Consider the special case when g ≡ 0. (The string is held in some initial

position and released.) The solution in this case is

(7.4) u(x, t) =
f(x+ ct) + f(x− ct)

2
.

Imagine f to be of compact support. Then f breaks into two equal pieces, one
piece moves to the right and the other piece moves to the left, both with velocity c
after a while the pieces break free of each other never to see each other again. For
a concrete example, take

f(x) =
1

1 + x2
.

This is not of compact support, but it is concentrated near the origin. The evolution
with time is given by

u(x, t) =
1

2

( 1

1 + (x+ ct)2
+

1

1 + (x− ct)2
)

.

Visualize this as a function of x evolving in time.

7.1.3. Semi-infinite string with one end fixed. We now consider the wave
equation with initial conditions as in (7.2), but x is now restricted to the interval
x > 0. In particular, the functions f and g are only defined for x > 0. We impose
the Dirichlet boundary condition u(0, t) = 0. This models the semi-infinite string
with one end fixed.

The boundary condition implies

ϕ(−ct) + ψ(ct) = 0.

Hence ϕ(y) = −ψ(−y). So the general solution can be rewritten as

(7.5) u(x, t) = ψ(x+ ct)− ψ(ct− x).

Though x is restricted, the function ψ must be defined for all real numbers since x
and t couple with each other and t is unbounded.

The initial conditions yield

(7.6) f(x) = ψ(x)− ψ(−x) and g(x) = −cψ′(−x) + cψ′(x).

Both the rhs are odd functions, the first is twice the odd part of ψ, while the second
is c times the derivative of the twice the odd part of ψ. Note that the functions
f and g are only defined for x > 0. So extend them as odd functions, so that the
above equations are valid for all x.

The general solution to this initial and boundary value problem is given by (7.3)
with f and g extended as odd functions. (Check directly that (7.3) does satisfy the
boundary condition if f and g are odd.)

Now let us consider the consider the special case when g ≡ 0. Recall that
the solution in this case is given by (7.4). Imagine f to be a small positive pulse
centered around the point x = A. The pulse breaks into two equal pulses with half
the amplitude. One moves to the right and the other to the left with the same
speed. The one moving to the left reaches the endpoint x = 0, and gets reflected
(in such a manner that the value at 0 is always 0) becoming a negative pulse. It
then keeps moving to the right always lagging the other pulse by distance 2A.
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7.1.4. Finite string with both ends fixed. We now consider another boundary
value problem: restrict x to the interval 0 < x < ℓ, and impose the Dirichlet
boundary conditions

(7.7) u(0, t) = u(ℓ, t) = 0.

Now f and g are only defined on this finite interval.
We proceed as above. Substituting the extra boundary condition u(ℓ, t) = 0

in (7.5) yields ψ(ct + ℓ) = ψ(ct − ℓ) showing that ψ in addition must be periodic
of period 2ℓ. In order for (7.6) to be valid for all x, we extend f and g as odd
functions of period 2ℓ, and the general solution to this initial and boundary value
problem is again given by (7.3).

Now let us consider the special case when g ≡ 0. Suppose f is a pulse. Then
it breaks into two pieces one travelling to the right and the other to the left.
Eventually both get reflected (keeping the endpoint values at 0) and this process
continues. After two reflections and travelling a distance of 2ℓ we will be back
at the starting configuration. Since the speed of travel is c, this happens at time
t = 2ℓ/c. Thus the solution is periodic in t with period 2ℓ/c. This can also be seen
directly from the formula (7.4).

For certain f , the two traveling waves can create a very interesting interference
in which certain points on the string called nodes never move. This is called a
standing wave. For example, let ℓ = π, c = 1, and f = sinnx, where n is a fixed
positive integer. Then the solution is

u(x, t) =
1

2

(

sin(n(x− t)) + sin(n(x+ t))
)

= sinnx cosnt.

There are n− 1 points (apart from the two endpoints) which never move.

7.1.5. Semi-infinite or finite string with Neumann boundary conditions.

Now consider the same initial value problem for the semi-infinite string but with
the Neumann boundary condition ux(0, t) = 0. The boundary condition implies
ϕ′(−ct) + ψ′(ct) = 0. Hence ϕ(y) = ψ(−y) + k, where k is a constant. So the
general solution can be rewritten as

u(x, t) = ψ(x+ ct) + ψ(ct− x) + k.

The initial conditions yield

f(x) = ψ(x) + ψ(−x) + k and g(x) = c(ψ′(−x) + ψ′(x)).

Both the rhs are even functions. The general solution to this initial and boundary
value problem is given by (7.3) with f and g extended as even functions.

In the special case when g ≡ 0, and f is a small positive pulse, everything works
as before except the way in which the pulse gets reflected. The reflected wave now
stays positive.

One can also do a similar analysis for the finite string.
There are nice animations on the internet of waves reflecting by odd extensions

or by even extensions.
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7.1.6. Inhomogeneous wave equation. If the equation has an external source
term s(x, t), we can still apply D’Alembert’s method. Consider

utt − c2uxx = s(x, t),

with trivial initial conditions:

u(x, 0) = 0 = ut(x, 0).

The solution is given by

u(x, t) =
1

2c

∫ ∫

∆

s(ζ, τ)dζdτ,

where ∆ is the region of influence at (x, t) for the time interval [0, t] which is defined
as the triangle PQR with vertices P (x, t), Q(x − ct, 0) and R(x + ct, 0). In other
words,

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

s(ζ, τ)dζdτ.

The above result can be verified directly or more naturally by integrating the wave
equation itself over ∆ and applying Green’s theorem to the lhs. This gives 2cu(x, t)
on the lhs and validates the causality principle at the same time.

Finally by combining the homogeneous case with arbitrary initial conditions
and the inhomogeneous case with trivial initial conditions, we can write the general
solution as

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

[

∫ x+ct

x−ct

g(s)ds+

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

s(ζ, τ)dζdτ
]

.

7.2. Solution by separation of variables

We now solve the one-dimensional wave equation

(7.8) utt − c2uxx = 0, 0 < x < ℓ, t > 0.

The initial conditions are

(7.9) u(x, 0) = u0(x) and ut(x, 0) = u1(x).

Adopting the method of separation of variables, let u(x, t) = X(x)T (t) be as
in (6.1). Substitution in (7.8) does indeed separate the variables:

X ′′(x)

X(x)
=

T ′′(t)

c2T (t)
= λ (say).

The equality is between a function of x and a function of t. So both must be
constant. We denote this constant by λ.

In addition to the initial condition, there are conditions specified at the two
endpoints of the rod. These are the boundary conditions.
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7.2.1. Dirichlet boundary conditions. The Dirichlet boundary conditions re-
quire

(7.10) u(0, t) = u(ℓ, t) = 0.

This is the problem of the vibrating string stretched between the points 0 and
ℓ of the x-axis, u0(x) describes the initial position of the string and u1(x) describes
the initial velocity. The constant c2 is the ratio T/ρ, where T is the tension in the
string and ρ is the linear density. In general, ρ will depend on x. We assume for
simplicity that the mass is uniformly distributed and ρ is a constant. Note that c
has the physical units of velocity.

Another physical interpretation is of a shaft vibrating torsionally, u(x, t) is the
angle through which the cross-section at x has rotated at time t from its equilibrium
position. Also note that in this setting ut(x, t) represents angular velocity. The
boundary conditions say that the two ends of the shaft are clamped and cannot
rotate. In this situation, the constant c2 is given in terms of physical constants
such as modulus of elasticity, etc [14].

The boundary conditions can be rewritten as

X(0) = X(ℓ) = 0.

As in the case of the heat equation we consider three cases.

(1) λ > 0: Write λ = µ2 with µ > 0. Then

X(x) = Aeµx +Be−µx.

The boundary conditions imply that A = 0 = B. So there is no nontrivial
solution of this form.

(2) λ = 0: In this case we have X(x) = Ax + B. Again the boundary
conditions give A = 0 = B. Thus this case also does not yield a nontrivial
solution.

(3) λ < 0: Write λ = −µ2 with µ > 0. It follows that

X(x) = A cosµx+B sinµx.

The boundary conditions now imply that A = 0. Also B = 0 unless
µ = nπ/ℓ, n = 1, 2, 3, . . . . For any such µ,

T (t) = C cos cµt+D sin cµt.

Thus

un(x, t) = [C cos
cnπt

ℓ
+D sin

cnπt

ℓ
] sin

nπx

ℓ
, n = 1, 2, 3, . . . .

are the nontrivial solutions.

The general solution (without considering the initial conditions) is

u(x, t) =
∑

n≥1

[Cn cos
cnπt

ℓ
+Dn sin

cnπt

ℓ
] sin

nπx

ℓ
.

Now from the initial conditions,

Cn =
2

ℓ

∫ ℓ

0

u0(x) sin
nπx

ℓ
dx and Dn =

2

cnπ

∫ ℓ

0

u1(x) sin
nπx

ℓ
dx.

Thus the Fourier sine series of u0(x) and u1(x) enter into the solution.
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Suppose u1(x) = 0. In other words, we place the string in position u0(x) and
then let go. In this case, the sine terms in the t variable will be absent. So the
solution is

(7.11) u(x, t) =
∑

n≥1

Cn cos
cnπt

ℓ
sin

nπx

ℓ
,

where Cn are the Fourier sine coefficients of u0(x). This can be rewritten using the
trigonometric addition formulas as

u(x, t) =
1

2

∑

n≥1

Cn sin
nπ

ℓ
(x+ ct) + Cn sin

nπ

ℓ
(x− ct)

=
u0(x+ ct) + u0(x− ct)

2
.

This agrees with D’Alembert’s formula (7.4).
Further, if u0(x) = sin nπx

ℓ , then the solution will be

cos
cnπt

ℓ
sin

nπx

ℓ
.

This was the standing wave discussed in D’Alembert’s solution (with ℓ = π and
c = 1).

Remark 7.1. Bernoulli claimed (correctly) that the most general solution to the
wave equation for a string released from rest is given by (7.11). However Euler and
D’Alembert (wrongly) argued that this was impossible because a function of the
form x(ℓ− x) could never be of the form (7.11). See [13, first page of Chapter IX].

7.2.2. Neumann boundary conditions. The Neumann boundary conditions
require

(7.12) ux(0, t) = 0 = ux(ℓ, t).

These boundary conditions describe a shaft vibrating torsionally in which the
ends are held in place by frictionless bearings so that rotation at the ends is per-
mitted but all other motion is prevented. One can imagine a vibrating string free
to slide vertically at both ends. Another possibility is that of longitudinal waves in
an air column open at both ends.

The nontrivial elementary solutions in this case are

un(x, t) = [C cos
cnπt

ℓ
+D sin

cnπt

ℓ
] cos

nπx

ℓ
, n = 0, 1, 2, . . . ,

and the general solution is

u(x, t) = C0 +D0t+
∑

n≥1

[Cn cos
cnπt

ℓ
+Dn sin

cnπt

ℓ
] cos

nπx

ℓ
.

The initial conditions now imply

C0 =
1

ℓ

∫ ℓ

0

u0(x)dx, Cn =
2

ℓ

∫ ℓ

0

u0(x) cos
nπx

ℓ
dx, n ≥ 1

and

D0 =
1

ℓ

∫ ℓ

0

u1(x)dx, Dn =
2

cnπ

∫ ℓ

0

u1(x) cos
nπx

ℓ
dx, n ≥ 1.

Note the presence of the linear term D0t. It says that the whole wave or the
vibrating interval drifts in the direction of u-axis at a uniform rate. Imposing the
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condition
∫ 1

0
u1(x)dx = 0 can prevent this drift. At the other extreme, if u0(x) = 0

and u1(x) is a constant, then u(x, t) = D0t, in the shaft example, the shaft will
rotate with uniform angular velocity D0, there will be no vibrational motion.

Work out an example.

7.2.3. Mixed boundary conditions. The mixed boundary conditions require

(7.13) u(0, t) = 0 = ux(ℓ, t).

Again similar to as in the heat equation case, the general solution is of the form

u(x, t) =
∑

n≥0

[Cn cos c(n+ 1/2)πt+Dn sin c(n+ 1/2)πt] sin(n+ 1/2)πx.

Invoking the initial conditions now, we are lead to

Cn =
2

ℓ

∫ ℓ

0

u0(x) sin(n+ 1/2)
π

ℓ
xdx

and

Dn =
2

c(n+ 1/2)π

∫ ℓ

0

u1(x) sin(n+ 1/2)
π

ℓ
xdx.

7.2.4. Periodic boundary conditions. The periodic boundary conditions re-
quire

(7.14) u(0, t) = u(ℓ, t) and ux(0, t) = ux(ℓ, t).

The general solution is

u(x, t) = C0+D0t+
∑

n≥1

[Cn cos 2
cnπt

ℓ
+Dn sin 2

cnπt

ℓ
][An cos

2nπx

ℓ
+Bn sin

2nπx

ℓ
].

The initial conditions yield

C0 =
1

ℓ

∫ ℓ

0

u0(x)dx,

CnAn =
2

ℓ

∫ ℓ

0

u0(x) cos
2nπx

ℓ
dx, and CnBn =

2

ℓ

∫ ℓ

0

u0(x) sin
2nπx

ℓ
dx.

And also

D0 =
1

ℓ

∫ ℓ

0

u1(x)dx,

and

DnAn =
1

cnπ

∫ ℓ

0

u1(x) cos
2nπx

ℓ
dx, and DnBn =

1

cnπ

∫ ℓ

0

u1(x) sin
2nπx

ℓ
dx.

Note that An, Bn, Cn and Dn are not uniquely defined, but the above products
are. Note again the presence of the term D0t in the solution.

7.3. Nonhomogeneous case

We now consider the nonhomogeneous one-dimensional wave equation

(7.15) utt − uxx = f(x, t), 0 < x < 1, t > 0

with initial conditions (7.9). For simplicity, we are taking c = ℓ = 1. We indicate
how to solve this for each of the boundary conditions discussed earlier.
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7.3.1. Dirichlet boundary conditions. Due to the homogeneous Dirichlet bound-
ary conditions, we expand in the sine series on (0, 1). So let

f(x, t) =
∑

n≥1

Bn(t) sinnπx and u(x, t) =
∑

n≥1

Yn(t) sinnπx.

Then the functions Yn(t) must satisfy

Ÿn(t) + n2π2Yn(t) = Bn(t), n = 1, 2, 3, . . . .

Also let

u0(x) =
∑

n≥1

bn sinnπx and u1(x) =
∑

n≥1

b1n sinnπx.

These lead to the initial conditions

Yn(0) = bn and Ẏn(0) = b1n.

They determine the Yn(t) uniquely.
To do a concrete example, suppose

f(x, t) = sinπx sinπt and u0(x) = u1(x) = 0.

This problem has homogeneous Dirichlet boundary conditions and zero initial con-
ditions. Thus bn = 0 = b1n for all n ≥ 1, and

Bn(t) =

{

0 for n 6= 1,

sinπt for n = 1.

Therefore we have Yn(t) = 0 for n ≥ 2 while Y1(t) is the solution to the IVP

Ÿ1(t) + π2Y1(t) = sinπt, Y1(0) = 0 = Ẏ1(0).

Solving by the method of undetermined coefficients, we find Y1(t) =
sinπt−πt cosπt

2π2

and hence

u(x, t) =
(sinπt− πt cosπt)

2π2
sinπx.

7.3.2. Neumann boundary conditions. For the homogeneous Neumann bound-
ary conditions, we expand in the cosine series on (0, 1). So let

f(x, t) = A0(t) +
∑

n≥1

An(t) cosnπx and u(x, t) = Y0(t) +
∑

n≥1

Yn(t) cosnπx

Then the functions Yn must satisfy

Ÿn(t) + n2π2Yn(t) = An(t), n = 0, 1, 2, . . . .

Also let

u0(x) = a0 +
∑

n≥1

an cosnπx and u1(x) = a10 +
∑

n≥1

a1n cosnπx.

These lead to the initial conditions

Yn(0) = an and Ẏn(0) = a1n

They determine the Yn(t) uniquely.
To do a concrete example, suppose

f(x, t) = x(x− 1) and u0(x) = u1(x) = 0.



72 7. WAVE EQUATION

Note that an = 0, and since f(x, t) is independent of t, the An are constants (with
no dependence on t). Explicitly, A0 = −1/6 and for n ≥ 1,

An = 2

∫ 1

0

x(x− 1) cosnπxdx =

{

4
n2π2 if n is even,

0 if n is odd.

This same calculation was done for the heat equation. This easily gives

Y0(t) = −t2/12 and Yn(t) = 0 for n odd.

Let n = 2k with k ≥ 1 be even. Then we need to solve

Ÿ2k(t) + 4k2π2Y2k(t) =
1

k2π2

with vanishing initial conditions. Again by the method of undetermined coefficients,

A2k = sin2 kπt
2k4π4 . Thus

u(x, t) = − t2

12
+

1

2π4

∑

k≥1

sin2 kπt

k4
cos 2kπx.

7.3.3. Mixed boundary conditions. For the homogeneous mixed boundary
conditions u(0, t) = 0 = ux(1, t), we expand in the quarter-wave sine series on
(0, 1). So let

f(x, t) =
∑

n≥0

Bn(t) sin(n+
1

2
)πx and u(x, t) =

∑

n≥0

Yn(t) sin(n+
1

2
)πx.

Then the functions Yn must satisfy

Ÿn(t) + (n+
1

2
)2π2Yn(t) = Bn(t), n = 0, 1, 2, . . . .

Also let

u0(x) =
∑

n≥0

bn sin(n+
1

2
)πx and u1(x) =

∑

n≥0

b1n sin(n+
1

2
)πx.

These lead to the initial conditions

Yn(0) = bn and Ẏn(0) = b1n.

They determine the Yn(t) uniquely.

7.3.4. Periodic boundary conditions. For the periodic boundary conditions,
we write the full Fourier series on (0, 1), or equivalently on (− 1

2 ,
1
2 ). Thus ℓ = 1

2 .
So let

f(x, t) = A0(t) +
∑

n≥1

[An(t) cos 2nπx+Bn(t) sin 2nπx]

and

u(x, t) = Y0(t) +
∑

n≥1

[Yn(t) cos 2πx+ Zn(t) sin 2nπx].

Also let

u0(x) = a0 +
∑

n≥1

[an cos 2nπx+ bn sin 2nπx]

and

u1(x) = a10 +
∑

n≥1

[a1n cos 2nπx+ b1n sin 2nπx].
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Then the functions Yn, Zn must satisfy

Ÿn(t) + 4n2π2Yn(t) = An(t), Yn(0) = an, Ẏn(0) = a1n, n ≥ 0,

and
Z̈n(t) + 4n2π2Zn(t) = Bn(t), Zn(0) = bn, Żn(0) = b1n, n ≥ 1.

They determine the Yn(t) and Zn(t) uniquely.

7.4. Vibrations of a circular membrane

In the one-dimensional wave equation, the method of separation of variables
resulted in two identical ODEs, one in the space variable x and one in the time
variable t. This is the ODE of the simple harmonic oscillator whose solution is a
linear combination of sine and cosine.

Now we look at the two-dimensional wave equation. The term uxx must now
be replaced by uxx + uyy. This is the two-dimensional Laplacian. The method of
separation of variables now proceeds in two steps: we have a total of 3 variables
and we need to separate one variable at a time.

The best way to proceed in such situations is determined by the shape of the
domain.

Consider a circular membrane of radius R. The wave equation written in polar
coordinates (using (6.19)) is

(7.16) utt = c2(urr + r−1ur + r−2uθθ)

in the domain
(r, θ, t) ∈ [0, R]× [0, 2π]× R.

The initial conditions are

(7.17) u(r, θ, 0) = f(r, θ) and ut(r, θ, 0) = g(r, θ).

We assume Dirichlet boundary conditions

(7.18) u(R, t) = 0.

Physically u represents the displacement of the point (x, y) at time t in the z-
direction. These are transverse vibrations.

7.4.1. Radially symmetric solutions. We first find solutions which are radially
symmetric. This will happen whenever the initial conditions have radial symmetry,
that is, f and g are functions of r alone. Write u = u(r, t). We apply the method
of separation of variables. Accordingly, let u(r, t) = X(r)Z(t). Substituting in the
simplified wave equation

utt = c2(urr + r−1ur)

and separating variables, we obtain

Z ′′(t)

c2Z(t)
=
X ′′(r) + r−1X ′(r)

X(r)
= λ.

Let the constant λ = −µ2. The explanation why this must be strictly negative is
given below. Then the equation in the r variable is

r2X ′′(r) + rX ′(r) + µ2r2X(r) = 0

This is the scaled Bessel equation of order 0. This implies that X(r) is a scalar
multiple of the scaled Bessel function of the first kind J0(µr). Any solution involving
Y0(µr) has to be discarded since it is unbounded at r = 0, but we require u(0, t)
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to be finite. The Dirichlet boundary condition now implies J0(µR) = 0. So µ
must be R−1 times one of the countably many positive zeroes of J0. These are
the fundamental modes of vibration of the membrane. For any such µ (there are
countably many of them), Z(t) is given by

Z(t) = A cos cµt+B sin cµt.

Thus the elementary solutions are

un(r, t) = (An cos cµnt+Bn sin cµnt)J0(µnr),

where µn is the n-th positive zero of J0. The general solution is given by

(7.19) u(r, t) =
∑

n≥1

(An cos cµnt+Bn sin cµnt)J0(µnr).

Setting t = 0 we obtain,

f(r) = u(r, 0) =
∑

n≥1

AnJ0(µnr).

This is the Fourier-Bessel series of f(r). Explicitly, the coefficient An is given by

(7.20) An =
2

R2J2
1 (µnR)

∫ R

0

rf(r)J0(µnr)dr.

Differentiating (7.19) wrt t termwise and setting t = 0, we obtain

g(r) = ut(r, 0) =
∑

n≥1

cµnBnJ0(µnr).

This is the Fourier-Bessel series of g(r). The coefficient cµnBn is determined by
the above formula with g instead of f . Dividing by cµn,

(7.21) Bn =
2

cµnR2J2
1 (µnR)

∫ R

0

rg(r)J0(µnr)dr.

[Remember: J2
i must be evaluated at a zero of J0. So the argument µnR is correct.]

Thus, the solution to (7.16) under radially symmetric initial conditions is given
by (7.19) with the coefficients given by (7.20) and (7.21).

The reasons for not allowing λ to be positive or zero are given below.

• Suppose the constant λ = µ2 > 0. Then we get the Bessel equation scaled
by the imaginary number iµ. The general solution is AJ0(iµr)+BY0(iµr).
Since u must be bounded as r → 0, B must vanish. Further, since

J0(iµr) =
∑

k≥0

(µr)2k

4k(k!)2

is a series of positive terms only, it cannot satisfy X(R) = 0. Hence A = 0
too. (J0 is an entire function on the complex plane. On the real axis, it
behaves like a damped cosine function and is bounded. On the imaginary
axis, it behaves like the exponential function and is bounded. Observe
that the above power series is similar to that of ex. Also by Liouville’s
theorem, entire functions can never be bounded.)

• Suppose the constant λ = 0. Then we need to solve r2X ′′+ rX ′ = 0. The
general solution is A log r +B and again we get A = B = 0.
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7.4.2. General solution. We solve for u(r, θ, t) = X(r)Y (θ)Z(t). Substituting
in the wave equation (7.16) and separating variables, we obtain

Y ′′(θ)

Y (θ)
= −r

2X ′′(r) + rX ′(r)

X(r)
+
r2Z ′′(t)

c2Z(t)
.

Since Y (θ) as well as its derivative must be 2π-periodic (that is, we have periodic
boundary conditions in the θ-variable), the common constant has to be −n2 for
n = 0, 1, 2, 3, . . . and correspondingly,

Y (θ) = A cosnθ +B sinnθ.

Now the rhs gives
Z ′′(t)

c2Z(t)
=
X ′′(r) + r−1X ′(r)

X(r)
− n2

r2
,

with variables again separated. Let the common constant be λ = −µ2. Then the
equation in the r variable is

r2X ′′(r) + rX ′(r) + (µ2r2 − n2)X(r) = 0.

This is the scaled Bessel equation of order n. This implies that X(r) is a scalar
multiple of the scaled Bessel function of the first kind Jn(µr) (the other solutions
involving the Neumann function Yn being discarded for the same reason as before).
The Dirichlet boundary condition implies that X(r) = 0 which means that µR
must be a zero of Jn. For any such µ (there are countably many of them), Z(t) is
given by

Z(t) = C cos cµt+D sin cµt,

and we have the elementary solution

(A cosnθ +B sinnθ)(C cos cµt+D sin cµt)Jn(µr).

The general solution is given by summing these. Note that there are two quan-
tizations here: n and µ. The two initial conditions can be used to determine the
products AC, BC, AD and BD.

In any of the n = 0 modes, the center of the membrane is vibrating with the
maximum amplitude. (This is the radially symmetric case.) In any of the n 6= 0
modes, the center of the membrane is a node. Try to visualize the amplitude
sin θJ1(µr), where µ is the first zero of J1. There is a nodal line along a diameter,
when the membrane on one side of the diameter is up, the membrane on the other
side is down.

There is a must-see animation on wikipedia of these initial modes of vibration
of a circular membrane.

The reasons for not allowing λ to be positive or zero are similar to the n = 0
case explained above.

• Suppose the constant λ = µ2 > 0. Then we get the Bessel equation scaled
by the imaginary number iµ. The general solution is AJn(iµr)+BYn(iµr).
Since u must be bounded as r → 0, B must vanish. Further, since Jn(iµr)
is a series of positive terms only, it cannot satisfy X(R) = 0. Hence A = 0
too.

• Suppose the constant λ = 0. Then we need to solve r2X ′′+rX ′−n2X = 0.
The n = 0 case was done earlier. This is a Cauchy-Euler equation, roots
of its indicial equation are n and −n, so for n 6= 0, rn and r−n are two
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independent solutions. The first cannot be zero at r = R while the second
has a singularity at r = 0.

The frequencies of the vibrations of a drum arise from the zeroes of the Bessel
functions Jn. These frequencies are not well-separated. As a result, the sound of a
drum is a complicated noise in contrast to the sound of a string instrument. In the
latter, there is only one quantization and the frequencies are well-separated.

7.5. Vibrations of a spherical membrane

We now look at another two-dimensional wave equation. We consider the vi-
brations of a spherical membrane of unit radius. The vibrations are in the radial
direction. The term uxx + uyy must now be replaced by the Laplacian of the
sphere (6.20). For simplicity, let us take the radius to be 1 and also c to be 1. Thus
we need to solve the wave equation

utt = ∆S2u,

where

∆S2u = uϕϕ + cotϕuϕ +
1

sin2 ϕ
uθθ.

Terminology: θ is called the azimuthal angle, and ϕ is called the polar angle.
Physically, u denotes the radial displacement from the mean position. There are
issues with this interpretation.

A possible physical situation: the sphere is the surface of the earth, and the
phenomenon is waves with high tides and low tides.

The sphere S2 has no boundary, so there are no boundary conditions to consider.
Let us first find the pure harmonics and their associated frequencies. (So we do not
worry about initial conditions for the moment.) These are solutions of the form

u(θ, ϕ; t) = X(θ)Y (ϕ)Z(t).

As usual on substituting in

uϕϕ + cotϕuϕ +
1

sin2 ϕ
uθθ = utt,

we get

X ′′(θ)

X(θ)
= sin2 ϕ

Z ′′(t)

Z(t)
− sin2 ϕ

(

Y ′′(ϕ)

Y (ϕ)
+ cotϕ

Y ′(ϕ)

Y (ϕ)

)

.

Since the lhs is depending only on θ while rhs only on (ϕ, t), so the two sides must
be equal to a common constant. Further due to the implicit periodic boundary
conditions X(0) = X(2π) and X ′(0) = X ′(2π), the common constant must be
−m2, m = 0, 1, 2, . . . and

X(θ) = Am cosmθ +Bm sinmθ.

Next from the rhs we also have a further separation of variables

Z ′′(t)

Z(t)
=
Y ′′(ϕ)

Y (ϕ)
+ cotϕ

Y ′(ϕ)

Y (ϕ)
− m2

1− cos2 ϕ
= µ.

Again both sides equal a common constant µ, say.
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7.5.1. Latitudinally symmetric solution. Let us first look at the case m = 0
in detail. The equation in Y (ϕ) that we obtain is

Y ′′(ϕ) + cotϕY ′(ϕ)− µY (ϕ) = 0.

This is the polar form of the Legendre equation. One obtains the standard form
by the substitution x = cosϕ, with ϕ = π and ϕ = 0 corresponding to x = −1 and
x = 1. (The substitution x = cosϕ is natural, x represents the z-axis variable. In
other words, the ϕ-variable travels along the longitude, the x-variable travels along
the axis.) Since we want the solution to be bounded at the north and south poles,
and the Legendre polynomials are the only bounded solutions in (−1, 1), we see
that µ = −n(n+ 1) for some integer n, in which case

Y (ϕ) = Pn(cosϕ),

the n-th Legendre polynomial. The corresponding Z(t) for n ≥ 1 are

Z(t) = Cn cos(
√

n(n+ 1)t) +Dn sin(
√

n(n+ 1)t)

yielding the pure harmonics

(Cn cos(
√

n(n+ 1)t) +Dn sin(
√

n(n+ 1)t))Pn(cosϕ).

They have no dependence on the azimuthal angle, that is, they have rotational
symmetry around the z-axis. The maximum amplitudes of vibrations are at the
north and south poles. There are n values of ϕ for which Pn(cosϕ) = 0, the
corresponding latitudes are the nodal lines. The case n = 0 yields the solution

C0 +D0t.

This is a linear (not oscillatory) motion; if D0 6= 0, then the membrane is expand-
ing/shrinking at the rate D0. I do not find this realistic.

You should visualize these vibrations. For n = 1, the equator is a nodal line,
the maximum amplitudes are at the pole. When the north pole starts moving in
towards the center along the z-axis, the south pole starts moving down the z-axis.
The opposite happens in the other part of the cycle.

Suppose the initial position and initial velocity have no θ dependence and are
given by f(cosϕ) and g(cosϕ). Then the Cn and Dn are determined by the Fourier-
Legendre series of f and g. In particular,

C0 =

∫ 1

−1

f(x)dx and D0 =

∫ 1

−1

g(x)dx.

To get a physically realistic solution, we should have both these to be zero. Math-
ematically everything is fine. We do not need such assumptions. The action is
happening in S

2 × R (which does not isometrically embed in R
3).

7.5.2. General solution. Now we consider the case of nonzero integer m. This
gives an associated Legendre equation for Y (ϕ) in polar form, and nontrivial
bounded solutions can exist iff µ = −n(n + 1) with n = m,m + 1,m + 2, . . . .
Recall that these solutions are

(1− x2)m/2DmPn(x)

in the standard form, which in polar form is

Y (ϕ) = sinm ϕP (m)
n (cosϕ).
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For each n, Z(t) is as before. So the pure harmonics are

(A cosmθ+B sinmθ) sinm ϕP (m)
n (cosϕ)(Cn cos(

√

n(n+ 1)t)+Dn sin(
√

n(n+ 1)t)),

where 0 ≤ m ≤ n are nonnegative integers and n 6= 0. The n = 0 case was already
discussed above. Thus for each frequency ωn :=

√

n(n+ 1), there are 2n+1 linearly
independent amplitudes with a basis

cosmθ sinm ϕP (m)
n (cosϕ); m = 0, 1, 2, . . . n

sinmθ sinm ϕP (m)
n (cosϕ); m = 1, 2, . . . n.

The above amplitudes are eigenfunctions for the Laplacian operator on the sphere.
The eigenvalues are n(n+ 1).

Explicitly, for n = 1, we get three amplitudes

cosϕ, sin θ sinϕ and cos θ sinϕ.

These are nothing but z, y and x in spherical-polar coordinates. The nodal lines
for these vibration modes are z = 0 (which is the equator), y = 0 and x = 0. These
are the eigenfunctions for the Laplacian with eigenvalue 2.

Another more useful (but complex) basis for the eigenfunctions is

{eimθ sinm ϕP |(m)|
n (cosϕ) : m = 0,±1,±2, · · · ± n}.

Try to visualize these modes of vibrations. For m ≥ 1, the north and south poles
are nodes, and we start getting longitudinal nodal lines from the cosmθ or sinmθ
factors.

Remark 7.2. The integer n corresponding to the frequency ωn is known as the
principal quantum number. Confirm terminology. The numbers m ∈ {−n,−n +
1, . . . , 0, . . . , n} which describe the (complex) amplitudes are known as the magnetic
quantum numbers underlying the corresponding principal quantum number n.



CHAPTER 8

Laplace equation

The Laplace equation ∆u = 0 governs any kind of steady state of any system.
An evolving conservative system is governed by ut = ∆u which is known variously
as heat equation, diffusion equation or evolution equation. In the steady state, the
system does not change with time t, and we get the Laplace equation.

In one variable, the Laplacian is the second derivative. Recall that

f ′′(x) ≈ 1

h2
(f(x+ h) + f(x− h)− 2f(x)).

Note that the Laplacian is zero iff f(x) = ax+ b. In this case, the average value at
two points is precisely the value at their midpoint.

The Laplacian in higher dimensions has a similar interpretation. For instance,
in two variables, the Laplacian of a function f at a point x, namely fxx + fyy, is
proportional to the average value of f on a small circle around x minus f(x). One
can show that the solutions to the Laplace equation are precisely those functions f
where the average value of f on any circle around x equals f(x), which is the value
at the center. Such functions are called harmonic functions.

8.1. Solution by separation of variables

The Laplace equation in the plane is

(8.1) uxx + uyy = 0.

We solve it on a rectangular domain [0, a] × [0, b] by employing the method of
separation of variables.

8.1.1. General boundary conditions. The boundary of the rectangle consists
of four edges. The Dirichlet boundary conditions specifies the value of u on the
boundary edges. The Neumann boundary conditions specifies the value of partial
derivative of u on the boundary edges in the direction normal to the boundary edge.
More generally, one can take a linear combination of these two types of conditions:

α1u(x, 0) + β1uy(x, 0) = f1(x),

α2u(a, y) + β2ux(a, y) = f2(y),

α3u(x, b) + β3uy(x, b) = f3(x),

α4u(0, y) + β4ux(0, y) = f4(y),

where αi, βi are constants with (αi, βi) 6= (0, 0) for all i.
Let us solve this general problem. In particular, it will solve the problem with

Dirichlet or Neumann boundary conditions. The idea is quite simple. We split the
boundary conditions into two parts:
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Part 1:

α1u(x, 0) + β1uy(x, 0) = f1(x),

α2u(a, y) + β2ux(a, y) = 0,

α3u(x, b) + β3uy(x, b) = f3(x),

α4u(0, y) + β4ux(0, y) = 0.

Part 2:

α1u(x, 0) + β1uy(x, 0) = 0,

α2u(a, y) + β2ux(a, y) = f2(y),

α3u(x, b) + β3uy(x, b) = 0,

α4u(0, y) + β4ux(0, y) = f4(y).

We seek solutions by separation of variables for Part 1, using the two homoge-
neous boundary conditions. As expected, we get elementary solutions of the type
X(x)Y (y), where X(x) solves the Sturm-Liouville problem

X ′′(x) = λX(x), α4X(0) + β4X
′(0) = 0 = α2X(a) + β2X

′(a).

• The boundary conditions rule out the case λ > 0.
• For λ = 0, the general solution is X(x) = A+ Bx. The boundary condi-
tions yield

α4A+ β4B = 0 and α2(A+Ba) + β2B = 0.

This has a nontrivial solution iff (α4, β4) and (α2, α2a+β2) are multiples.
The other function Y (y) is also linear and given by C +Dy.

• For λ < 0, say λ = −µ2, with µ > 0, the general solution is

X(x) = A cosµx+B sinµx.

The boundary conditions yield

α4A+ β4µB = 0 and α2(A cosµa+B sinµa) + β2µ(B cosµa−A sinµa) = 0.

This has a nontrivial solution, that is (A,B) 6= (0, 0) iff

(8.2)

∣

∣

∣

∣

α4 µβ4
α2 cosµa− β2µ sinµa α2 sinµa+ β2µ cosµa

∣

∣

∣

∣

= 0.

Whenever this happens, the pair (A,B) is determined up to a scalar mul-
tiple.

The equation (8.2) is called the characteristic equation of the problem.
By general Sturm-Liouville theory (which we have not discussed), this
equation has a countable set of solutions

{µn, n = 1, 2, 3, . . . }
(and the resulting eigenfunctions are orthogonal). In the case that the
boundary conditions are of Dirichlet or Neumann types only, the charac-
terstic equation is easily solved by hand.

The other function Y (y) solves the equation

Y ′′(y) = µ2Y (y).

So
Y (y) = Ceµy +De−µy.
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Hence the general solution is of the form

U1(x, y) = (A0+B0x)(C0+D0x)+
∑

n≥1

[An cosµnx+Bn sinµnx][Cne
µny+Dne

−µny].

The coefficients An and Bn have already been determined (up to a scalar). The
remaining coefficients Cn and Dn are now determined by the remaining nonhomo-
geneous boundary conditions. (These work somewhat like initial conditions in the
wave equation.)

In an exactly analogous manner we solve Part 2 and get a series solution
U2(x, y), say. Finally due to linearity of the Laplace equation, we see that

u(x, y) = U1x, y) + U2(x, y)

is the required solution.
Akhil has worked out an example.

8.1.2. Dirichlet boundary conditions. The Dirichlet boundary conditions for
the rectangle specify the value of u(x, y) on the four boundary edges. For simplicity,
let us consider the unit square [0, 1] × [0, 1], and for concreteness, consider the
boundary conditions

u(x, 0) = 0 = u(x, 1) and u(0, y) = sinπy = u(1, y).

This matches Part 2 rather than Part 1. Interchange the roles of x and y if you
want to match Part 1.

Observe that the boundary conditions in the y variable are homogeneous. Hence
it is obvious that any elementary solution will be

un(x, y) = Xn(x) sinnπy, n = 1, 2, 3, . . . ,

with

X ′′
n(x) = n2π2Xn(x), Xn(0) = an, Xn(1) = bn.

The general solution then is

u(x, y) =
∑

n≥1

Xn(x) sinnπy.

From the boundary conditions in x variable,

sinπy =
∑

n≥1

Xn(0) sinnπy =
∑

n≥1

Xn(1) sinnπy.

This implies that an = 0 = bn for n ≥ 2. This in turn implies Xn = 0, n ≥ 2.
While a1 = 1 = b1 implies

X1(x) =
sinhπx+ sinhπ(1− x)

sinhπ
≈ 0.08659(sinhπx+ sinhπ(1− x)).

Thus

u(x, y) =
(sinhπx+ sinhπ(1− x)) sinπy

sinhπ

=
cosh[π(x− 1/2)] sinπy

cosh(π/2)

≈ 0.3985368 cosh[π(x− 1/2)] sinπy.
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8.1.3. Neumann boundary conditions. The Neumann boundary conditions
specify the values of the normal derivatives along the four boundary edges. Consider
the following special case.

ux(0, y) = ux(a, y) = 0, uy(x, 0) = f(x), uy(x, b) = g(x).

In other words, the boundary conditions in the first variable x are homogeneous.
Therefore by the method of separation of variables, we have

u(x, y) = Y0(y) +
∑

n≥1

cos
nπx

a
Yn(y).

The Yn(y) satisfy the linear ODE

Y ′′
n (y) =

n2π2

a2
Yn(y), Y ′

n(0) = an, Y
′
n(b) = bn, n ≥ 0,

where an, bn are the coefficients of the Fourier cosine series of f, g respectively over
the domain (0, a). Note that for n = 0

Y0(y) = a0y + C = b0y +D,

so no solution will exist if a0 6= b0. Assuming a0 = b0 = c say, Y0(y) = cy+D. For
n ≥ 1,

Yn(y) = Cne
nπy/a +Dne

−nπy/a,

where Cn, Dn are uniquely determined from the system:

Cn −Dn =
aan
nπ

and enπCn − e−nπDn =
abn
nπ

.

Therefore,

u(x, y) = D + (a0 = b0)y +
∑

n≥1

cos
nπx

a
[Cne

nπy/a +Dne
−nπy/a]

We see that solution is unique only upto an additive constant D. The condition
a0 = b0 shows that the total energy or fluid or whatever flowing in through the
lower edge equals that flowing out through the upper edge, since the PDE ∆u = 0
is a steady state equation. (The side edges are sealed as per the homogeneous
Neumann boundary conditions in x.)

As a concrete example, take f(x) = x(x − a) and g(x) = 0. Then g(x) = 0
implies bn = 0 for all n, while

a0 =
1

a

∫ a

0

x(x− a)dx = −a
2

6
6= b0.

Hence no solution can exist.

8.1.4. Partly Dirichlet and partly Neumann boundary conditions. Now
consider

u(0, y) = u(a, y) = 0, uy(x, 0) = f(x), uy(x, b) = g(x).

Thus we have Dirichlet boundary conditions on two edges, and Neumann boundary
conditions on the other two edges. It is by now routine to deduce that

u(x, y) =
∑

n≥1

sin
nπx

a
Yn(y),

where
Y ′′
n (y) = (n2π2/a2)Yn(y), Y ′

n(0) = cn, Y
′
n(a) = dn.
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Here cn and dn are defined by

f(x) =
∑

n≥1

cn sin
nπx

a
, and g(x) =

∑

n≥1

dn sin
nπx

a
.

The initial conditions in the ODE involve derivatives since

uy(x, y) =
∑

n≥1

sin
nπx

a
Y ′
n(y).

The unique solution to the ODE is

Yn(y) = Cne
nπy/a +Dne

−nπy/a,

where the constants are determined from

Cn −Dn =
acn
nπ

and enπCn − e−nπDn =
adn
nπ

.

As a concrete example, take f(x) = x(x− a) and g(x) = 0.

cn =
2

a

∫ a

0

x(x− a) sin
nπx

a
dx =

{

0 if n is even,
−8a2

n3π3 if n is odd,

while dn = 0 for all n. This implies that Yn = 0 for even n. For odd n,

Cn −Dn =
−8a3

n4π4
and enπCn − e−nπDn = 0,

which yields

Cn =
4a3e−nπ

n4π4 sinhnπ
and Dn =

4a3enπ

n4π4 sinhnπ
.

8.2. Laplacian in three dimensions

The three-dimensional Laplacian in polar coordinates is given by

∆R3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[

∂2

∂ϕ2
+ cotϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂θ2

]

.

Consider the steady state equation

∆u(r, θ, ϕ) = 0.

As usual we apply the method of separation of variables. So let u = X(r)Y (θ)Z(ϕ).
The domain of the equation is

[0,∞)× [0, 2π]× [0, π]

and the implicit homogeneous boundary conditions are
(i) u(r, θ, ϕ) remains bounded as ϕ→ 0, π, and
(ii) u(r, 0, ϕ) = u(r, 2π, ϕ), uθ(r, 0, ϕ) = uθ(r, 2π, ϕ).
On substituting u = XY Z in the steady state equation and simplifying, we get

r2X ′′(r)

X(r)
+

2rX ′(r)

X(r)
= −

[

Z ′′(ϕ)

Z ′(ϕ)
+ cotϕ

Z ′(ϕ)

Z(ϕ)
+

1

sin2 ϕ

Y ′′(θ)

Y (θ)

]

.

The lhs is a function of r alone while rhs is that of (θ, ϕ), hence both sides must
equal to a common constant. This constant must be of the form n(n+1), where n
is a nonnegative integer. (This is forced by the rhs equation.) The lhs leads to the
equation

r2X ′′(r) + 2rX ′(r)− n(n+ 1)X(r) = 0.

This is a Cauchy-Euler equation, whose independent solutions are rn and 1
rn+1 .
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The rhs leads to another separation of variables,

Y ′′(θ)

Y (θ)
= − sin2 ϕ

[

Z ′′(ϕ)

Z(ϕ)
+ cotϕ

Z ′(ϕ)

Z(ϕ)
+ n(n+ 1)

]

.

Solving for Y (θ) and Z(ϕ) under the boundary conditions stated above is solving
for the amplitudes of the fundamental harmonics of the unit sphere S2. This would
be clearer if we separate out the time variable first in the harmonics problem, the
equation in ϕ and θ would then be the same as what we have above.

The periodic boundary conditions in θ imply that the common constant is −m2,
for m = 0, 1, 2, . . . . The equation for Z(ϕ) is the associated Legendre equation in
polar form. This has bounded solutions at ϕ = 0, π since we chose the previous
constant to be n(n+ 1).

Let us concentrate on the elementary solutions for m = 0, that is, no θ depen-
dence. They are given by

(Anr
n +Bn

1

rn+1
)Pn(cosϕ), n = 0, 1, 2, . . . .

Suppose on the sphere of radius R, we are given

u(R,ϕ) = f(r).

Then (since the solution must be bounded near the origin) the steady state in the
interior of the sphere is given by

∑

n≥0

Anr
nPn(cosϕ),

where the An are the coefficients of the Fourier-Legendre series of f . Explicitly,
they are given by

An =
2n+ 1

2Rn

∫ π

0

f(ϕ)Pn(cosϕ) sinϕdϕ.

Similarly, the steady state in the exterior of the sphere is given by
∑

n≥0

Bn
1

rn+1
Pn(cosϕ),

with coefficients

Bn =
2n+ 1

2
Rn+1

∫ π

0

f(ϕ)Pn(cosϕ) sinϕdϕ.

Remark 8.1. The gravitational potential due to a point mass at distance a on
the z-axis can be determined using the above method. The potential on the sphere
of radius a is the reciprocal of 2a sinϕ/2 (undefined at ϕ = 0. Expand this into a
Legendre series, the coefficients will be related to integer powers of a. Now relate
this to the generating function of the Legendre polynomials.



APPENDIX A

Gamma function

We provide here some background on the gamma function which extrapolates
the factorial function on nonnegative integers to all real numbers except the non-
positive integers.

Define for all p > 0,

(A.1) Γ(p) :=

∫ ∞

0

tp−1e−tdt.

(Note that there is a problem at p = 0 since 1/t is not integrable in an interval
containing 0. The same problem persists for p < 0. For large values of p, there is
no problem because e−t is rapidly decreasing.) Note that

Γ(1) =

∫ ∞

0

e−tdt = 1.

For any integer n ≥ 1,

Γ(n+ 1) = lim
x→∞

∫ x

0

tne−tdt = lim
x→∞

(

− tne−t
∣

∣

x

0
+ n

∫ x

0

tn−1e−tdt

)

= n

(

lim
x→∞

∫ x

0

tn−1e−tdt

)

= nΓ(n).

(The boundary term vanishes. So we have transferred the derivative from e−t to
tn as in (2.7). This process can be iterated.) It follows from this identity that

Γ(n) = (n− 1)!.

Thus the gamma function extends the factorial function to all positive real numbers.
The above calculation is valid for any real p > 0, so

(A.2) Γ(p+ 1) = pΓ(p).

We use this identity to extend the gamma function to all real numbers except 0
and the negative integers: First extend it to the interval (−1, 0), then to (−2,−1),
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and so on. The graph is shown below.

Though the gamma function is now defined for all real numbers (except the non-
positive integers), remember that formula (A.1) is valid only for p > 0. The iden-
tity (A.2) can be rewritten in the form

(A.3)
1

Γ(p)
=

p

Γ(p+ 1)
.

If we impose the natural condition that the reciprocal of Γ evaluated at a nonpositive
integer is 0, then (A.3) holds for all p.

A well-known value of the gamma function at a non-integer point is

Γ(1/2) =

∫ ∞

0

t−1/2e−tdt = 2

∫ ∞

0

e−s2ds =
√
π.

(We used the substitution t = s2.) Using the identity (A.2), we deduce that

Γ(−3/2) = 4
3

√
π ≈ 2.363

Γ(−1/2) = −2
√
π ≈ −3.545

Γ(3/2) = 1
2

√
π ≈ 0.886

Γ(5/2) = 3
4

√
π ≈ 1.329

Γ(7/2) = 15
8

√
π ≈ 3.323.

More information on the gamma function can be found in[13, Chapter XII], also
see wikipedia.



APPENDIX B

Euler constant

We show that

(B.1) γ0 := −
∫ ∞

0

(log t)e−tdt = γ,

the Euler constant (4.14).
We divide the proof into four steps.

(1) Since 1
n =

∫∞
0
e−ntdt, by summing a geometric progression,

Hn :=

n
∑

j=1

1

j
=

∫ ∞

0

e−t(1− e−nt)

1− e−t
dt =

∫ ∞

0

1− e−nt

et − 1
dt.

(2) Next we claim that

log n =

∫ ∞

0

e−t − e−nt

t
dt.

This is a Frullani integral. It can be expressed as a double integral
∫ ∞

0

1

t

[∫ nt

t

e−sds

]

dt.

On changing the order of integration we obtain

∫ ∞

0

[

∫ n

s/n

dt

t

]

e−sds

which is clearly log n. This proves the claim.

Aliter : Let f(n) =
∫∞
0

e−t−e−nt

t dt. Then f ′(n) = 1/n and f(1) = 0.
So f(n) = log n. The technical point is that the truncated derived integral
∫ T

0
e−ntdt = 1

n

(

1− e−nT
)

converges to 1
n uniformly for n ∈ [a, b] ⊆ (0,∞)

as T → ∞.
(3) Now we can write

Hn − log n =

∫ ∞

0

[

1

et − 1
− e−t

t

]

−
∫ ∞

0

[

e−nt

t
− e−nt

et − 1

]

dt

As n → ∞, the second integral converges to 0 by the dominated conver-

gence Theorem. [It can be easily seen that fn(t) :=
e−nt

t − e−nt

et−1 is pointwise

decreasing to 0 on (0,∞) in other words, monotonically decreasing and
bounded below by 0.] Therefore we conclude that

γ =

∫ ∞

0

[

1

et − 1
− e−t

t

]

.
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(4) For the last step we first compute indefinite integrals.
∫

1

et − 1
dt =

∫

e−t/2

et/2 − e−t/2
dt = −2

∫

xdx

1− x2
= log(1− e−t).

∫

e−tdt

t
= e−t log t+

∫

e−t log tdt.

Putting together,

γ =
[

log(1− e−t)− e−t log t
]∞

0
−
∫ ∞

0

e−t log tdt

= 0−
[

log(1− e−t)− e−t log t
]

t=0
+ γ0

= −
[

log

(

1− e−t

t

)

+ (1− e−t) log t
]

t=0
+ γ0

= [0 + 0] + γ0 = γ0 as required.
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