

1. Following two wave trains are approaching each other. $y_1 = a \sin 200 \pi t$ $y_2 = a \sin 208 \pi t$ The number of beats heard per second is :				
A. 8	B. 4	C. 1	D. 0	
-	onary satellites of India is	•		
A. New Delhi	B. Mumbai	C. Allahabad	D. None of these	
3. Light of wavelength 2400 x 10^{-10} m in air will become light of wavelength in glass ($\mu = 1.5$) equal to				
A. 1600 x 10 ⁻¹⁰ m	B. 7200 x 10 ⁻¹⁰ m	C. $1080 \ge 10^{-10} = m$	D. none of these	
4. The ratio of secondary to primary turns is 4:5. If power input is <i>P</i> , what will be the ratio of power output (neglect all losses) to power input ?				
A. 4:9	B. 9:4	C. 5:4	D. 1:1	
5. Lenz's law applies toA. electrostaticsC. electro-magnetic inc		B. lenses D. cinema slides		
6. If a proton and anti- released ?	proton come close to each	h other and annihilate, h	ow much energy will be	
A. 1.5 x 10 ⁻¹⁰ J	B. 3 x 10 ⁻¹⁰ J	C. 4.5 x 10 ⁻¹⁰ J	D. none of these	
7. If <i>Sn</i> is doped with <i>A</i> ?	s, what will be the result	:		
	C. intrinsic semi- conductor			
8. A charge is placed at faces?	t the centre of a cube, wh	at is the electric flux pas	ssing through one of its	
A. (1/6) x (q/ϵ_0)	B. q/ε_0	C. $6q/\varepsilon_0$	D. None of these	
9. What is the degree o	f freedom in case of a me	ono atomic gas ?		
A. 1	B. 3	C. 5	D. None of these	
10. The ratio of secondary to primary turns is 4:5. If power input is <i>P</i> , what will be the ratio of power output (neglect all losses) to power input ?				

11. Speed of recession of galaxy is proportional to its distance

A. directly	B. inversely	C. exponentially	D. none of these	
12. If a substance goes in a magnetic field and is pushed out of it, what is it ?				
A. Paramagnetic	B. Ferromagnetic	C. Diamagnetic	D. Antiferromagnetic	
13. Which is not a scalar quantity?				
A. Work	B. Power	C. Torque	D. Gravitational Constant	
14. Minimum energy r A13.6 eV	equired to excite an elect B. 13.6 eV	cron in a Hydrogen atom C. 10.2 eV	In ground state is : D. 3.4 eV	
11. 15.000	D . 15.0 C V	0. 10.2 0 0	D. 5.101	
15. If Gravitational Co satellite orbiting aroun	nstant is decreasing in tind earth?	me, what will remain und	changed in case of a	
A. Time period		C. Tangential velocity	D. Angular velocity	
	1 1	15 1411	0.5 10-5	
1	dium of refractive index lits of Young's Double S	•		
interference pattern?	The distance between the	slits is 5.0×10^{-3} cm and	that between slits and	
screen is 100 cm. A. 5 cm	B. 2.5 cm	C. 0.25 cm	D. 0.1 cm	
17. How does light pro A. Total internal	pagate in optical fibres?			
reflection	B. Refraction	C. Reflection	D. None of these	
18. Dispersion of light	is due to			
A. wavelength	B. intensity of light	C. density of medium	D. none of these	
	ving conclusions is corre	ct regarding		
a stationary body? A. No force is acting o	n the body			
•	s acing on the body is ze	ro		
C. The body is in vacu				
D. The forces acting of	n the body do not constitu	ute a couple		
20. Energy released in				
A. Fission	B. Fusion	C. Combustion	D. Chemical reaction	
21. 13 days is the half- 1/16th of the original s	life period of a sample. A ubstance ?	After how many days, the	e sample will become	
A. 52	B. 3.8	C. 3	D. none of these	
22. Absolute zero is th	e temperature at which			

		B. all gases become liquidD. everything solidifies			
23. Motion of liquid in a tube is described by					
-	B. Poiseuille Equation	C. Stoke's Law	D. Archimedes' Principle		
24. Molecular motion sl A. Temperature	hows itself as B. Internal Energy	C. Friction	D. Viscosity		
25. Which is this gate ? A. AND C. OR	B. NAND D. NOR				
26. Energy bands in solids are a consequence ofA. Ohm's LawC. Bohr's Theory		B. Pauli's Exclusion Pri D. Heissenberg's Uncer	-		
27. A boy of mass M stands on the floor of an elevator moving downwards with an accelerationa which is less than g. The force exerted by the boy on the floor of the elevator isA. Mg x MaB. $g + a$ C. Mg - MaD. Mg + Ma					
-	n ₁ exerts a force on anoth ((in magnitude) of A is	ner body B of mass m ₂ . I	f the acceleration of B be		
A. m_2/m_1 (a_2)	B. $m_1m_2 a_2$	C. m_1/m_2 (a ₂)	D. $(m_1 + m_2) a_2$		
29. What does not chan A. Wavelength	ge when sound enters fro B. Speed	om one medium to anoth C. Frequency	er ? D. none of these		
30. Resolving power of A. wavelength of light us C. frequency of light us		upon B. wavelength of light used, inversely D. focal length of objective			
31. An astronaut of wei apparent weight of the a	0 0	elerating upward with an	n acceleration of 4g. The		
A. 5Kg	B. 4Kg	C. Mg	D. zero		
	nters a magnetic field of at is the radius of the circ	10 ⁻⁴ m/s normally, sp. ch ele describe by it ?	$arge = 10^{11} \text{ C/kg},$		
A. 0.1 m	B. 100 m	C. 10 m	D. none of these		
33. If a black body radiates 20 calories per second at 227°C, it will radiate at 727°C					

A. 10 calories per second	B. 80 calories per second	C. 320 calories per second	D. none of these	
34. If a carnot engine is temperature is at 27°C,	working with source ter its efficiency will be	nperature equal to 227°C	C and its sink	
A. 20%	B. 10%	C. 67%	D. 50%	
35. If the frequency of a energy is	an oscillating particle is <i>i</i>	n, then the frequency of o	oscillation of its potential	
A. n	B. 2n	C. n/2	D. 4n	
36. If an electron oscillaA. X-raysC. Infra-red rays	ates at a frequency of 1 C	GHz, it gives : B. Micro-waves D. None of these		
37. Earth's atmosphere	is richest in			
A. Ultra-violet rays	B. Infra-red rays	C. X-rays	D. Micro-waves	
38. Cathode rays consis A. Photons	st of B. Electrons	C. Protons	D. α -particles	
39. A body of mass m_1 is moving with a velocity V. It collides with another stationary body of mass m_2 . They get embedded. At the point of collision, the velocity of the system A. increasesA. increasesB. decreases but does not become zero D. becomes zero			e system	
	ing with velocity V in space of the space of the second stationary. What			
A. 4V	B. V	C. 4V/3	D. 2V/3	
41. A thief steals a box of weight W & jumps from the third floor of a building. During jump, he experiences a weight of				
A. W	B. 3W	C. 1.5W	D. zero	
42. Two electron beams A. they will attract each C. no interaction will ta		pace but in opposite dire B. they will repel each o D. none of these		
43. Two wires with resi 2R and R is	istances R and 3R are con	nnected in parallel, the ra	atio of heat generated in	
A. 1 : 3	B. 2 : 1	C. 1 : 4	D. 4 : 1	
44. A wire is drawn suc	ch that its radius changes	from r to $2r$, the new res	sistance is	

A. 2 times	B. 4 times	C. 8 times	D. 1/16 times
45. In solids, inter-atom A. totally repulsive C. combination of (a) a		B. totally attractive D. none of these	
A. he is taken abackB. he is afraidC. due to inertia of rest	running all of a sudden, the upper part of his bo tion, the lower part of his	dy remains at rest	k falls backward because
47. What should be the the string just does not	e minimum velocity at the	e highest point of a body	tied to a string, so that
A. $\sqrt{(Rg)}$	B. $\sqrt{(5Rg)}$	C. $(R/g)^{3/2}$	D. $\sqrt{(2Rg)}$
48. If a person standing on a rotating disc stretches out his hands, the speed will:A. increaseB. decreaseC. remain sameD. none of these			
49. EMF is most closel A. mechanical force	y related to B. potential difference	C. electric field	D. magnetic field
50. Planetary system in the solar system describesA. conservation of energyB. conservation of linear momentumC. conservation of angular momentumD. none of these			
51. Lenz's law is based A. energy	upon B. momentum	C. angular momentum	D. inertia
52. Faraday's second la	w states that mass depos	ited on the electrode is d	irectly proportional to
A. atomic mass	B. atomic mass x velocity	C. atomic mass/valency	D. valency
53. Unit of power is A. kilowatt hour	B. kilowatt per hour	C. kilowatt	D. erg
54. Power can be expre A. F.v	essed as B. 1/2 (Fv ²)	C. F.t	D. F x v
55. Units of coefficient A. Nms ⁻¹	t of viscosity are B. Nm ² s ⁻¹	C. Nm ⁻² s	D. Nms ⁻²

56. Dimensions of torq A. MLT ⁻²	ue are B. ML^2T^{-2}	$C. M^2 L^2 T^{-2}$	D. $ML^{-2}T^{-2}$	
57. A body of weight mg is hanging on a string, which extends its length by l . The work done i extending the string is				
A. mg l	B. mg l/2	C. 2 <i>mg l</i>	D. none of these	
58. The water droplets	in free fall are spherical	due to		
A. gravity	B. viscosity	C. surface tension	D. inter-molecular attraction	
59. A ball of mass 1Kg is accelerating at a rate of 1ms ⁻² . The rate of change of momentum is				
A. 1 Kg ms ⁻²	B. 2 Kg ms ⁻²	C. 3 Kg ms ^{-2}	D. 4 Kg ms ^{-2}	
60. A body orbitting ar orbit of a satellite. The	ound earth at a mean rad period of the body is	ius which is two times a	s great as the parking	
A. 4 days	B. $2\sqrt{2}$ days	C. 16 days	D. 64 days	
61. Gamma rays areA. high energy electronsC. high energy electro-magnetic waves		B. low energy electronsD. high energy positrons		
62. Which is the most a	abundant metal in the ear	th's crust?		
A. Fe	B. Al	C. Ca	D. Na	
63. Which one does no	t give a precipitate with o	excess of NaOH?		
A. ZnSO ₄	B. FeSO ₄	C. AgNO ₃	D. HgCl ₂	
64. What volume of CO oxygen?	D ₂ will be liberated at NT	TP of 12 gm of carbon is	burnt in excess of	
A. 11.2 litres	B. 22.4 litres	C. 2.24 litres	D. 1.12 litres	
65. Which base is foun A. Adenine	d only in nucleotides of l B. Uracil	RNA? C. Guanine	D. Cytosine	
66. Ascorbic acid is the				

67. A hydrocarbon has carbon and hydrogen. Its molecular weight is 28. Its possible formula would be

A. C ₃ H ₆	B. C ₂ H ₄	C. CH ₄	D. C ₄ H ₈		
68. The first Noble Priz A. Faraday	ze in chemistry was give B. Cnrizzaro	n to C. Mendeleevs	D. Moseley		
69. Four different collo	ids have the following g	old number. Which one	has its most effective		
A. 10	B. 30	C. 20	D. 40		
70. Which is an examp A. Polythene	le of thermosetting poly B. PVC	ner? C. Neoprene	D. Bakelite		
71. The number of unp A. 3	aired electrons in ferrous B. 2	c. 4	D. 5		
72. Strongest reducing A. K	agent is B. Mg	C. Al	D. Ba		
73. Which of the follow A. Ra	ving is man-made eleme B. U	nt? C. Np	D. C – 4		
74. Which of the following statements is/are correct? A. Boiling point of alkylhalide is greater than its corresponding alkane B. In water, solubility of $CH_3OH > C_2H_5OH >$ C_6H_5OH C. Aniline is a weaker base than NH_3 D. All of the above					
75. Which amine of the A. Ethylamine	e following will not answ B. Methylamine	ver Carbylamine reactior C. Dimethylamine	n? D. Phenylamine		
76. Tollen's reagent can A. (CH ₃) ₂ – CHOH	n be used to detect B. CH ₃ – CO.CH ₃	C. CH ₃ CH ₂ CHO	D. CH ₃ OCH ₃		
77. Glycerol on heating A. Acetone	g with Potassium bisulph B. Glyceraldehyde	ate yields C. Acrolein	D. Propanol		
78. Salicylic acid on he A. Benzene	eating with sodalime give B. Calcium salicylate		D. Phenol		
79. Which one of the fo A. Ethanol	ollowing will not give io B. Ethanal	doform test? C. 2-propanone	D. None of these		

80. The rusting of iron A. Fe	is catalysed by B. O ₂	C. Zn	$D. H^+$	
81. 100 ml of a liquid A mixture. The volume of A. 75 mlC. fluctuating between		of a liquid B to give non B. 125 ml exact D. close to 125 ml but		
 82. IUPAC name of a c A. 3, 3 - dimethyl - 1 - 1 C. 1,1, 1 - dimethyl - 2 		rmula (CH ₃) ₃ C - CH = C B. 1, 1 - dimethyl - 3 - D. 3, 3, 3 - dimethyl - 1	butene	
83. Which of the follow A. $(OH_3)_2 - CHOH$	ving compounds will be B. CH ₃ - CH ₂ - CH ₂ - CH ₃	optically active? C. CH ₃ – CHCl.COOH	D. (CH ₃) ₃ .C.Cl	
84. The major compon- A. Zn and Sn	ents of brass are B. Cu and Zn	C. Fe and Ni	D. Zn and Fe	
85. Lunar castic is A. Silver Chloride	B. Silver Nitrate	C. Sodium Hydroxide	D. Potassium Nitrate	
86. When hot iron is exposed in hot water vapour, the compound formed is A. FeO B. Fe_2O_4 C. Fe_3O_4 D. Fe_2 (OH) ₂				
87. Which of the follow A. F	ving halide is not oxidise B. Cl ⁻	ed by MnO ₂ ? C. Br	D. I ⁻	
	tronic configuration of th B. ns ² np ⁴	-		
89. Shape of CO ₂ is A. tetrahedral	B. trigonal	C. bent	D. linear	
90. The catalyst used in A. Al_2O_3	n the manufacture of H ₂ S B. Cr ₂ O ₃	C. V ₂ O ₅	D. MnO ₂	
91. The composition of	-		D.	
A. $Na_2O.CaO.6SiO_2$	B. $Na_2O.Al_2O_3.2SiO_2$	C. CaO.Al ₂ O ₃ .2SiO ₂	$Na_2O.CaO.Al_2O_3.6SiO_2$	

92. In a borax lead test.A. Chromium	, the brown colour is due B.Cobalt	to C. Manganese	D. Iron	
93. Which of the follow A. Urea	ving is not a fertiliser? B. Superphosphate of lime	C. Benzene Hexachloride	D. Potassium	
94. Which one of the for Table?	ollowing belongs to repre	esentative group of elem	ents in the Periodic	
A. Lanthanum	B. Argon	C. Chromium	D. Aluminium	
95. Which one of the fo A. Tritium	ollowing is not an isotopo B. Deuterium	e of Hydrogen? C. Ortho-hydrogen	D. None of the above	
96. In the reaction $I_2 + 2S_2O_3^{2^-} = 2I^- + S_4O_6^{2^-}$, equivalent weight of iodine will be equal to A. its molecular weight B. 1/2 of its molecular weight C. 1/4 the molecular weight D. twice the molecular weight				
97. Which of the follow A. F ₂ C. Br ₂	ving is the most powerfu	l oxidising agent? B. Cl ₂ D. I ₂		
98. From the following strongest acid?	values of dissociating co	onstants of four acids, w	hich value represents the	
A. 2×10^{-2}	B. 0.02 x 10 ⁻¹	C. 3 x 10 ⁻³	D. 2.0 x 10 ⁴	
99. In which of the foll A. $K = 10^3$	owing cases, does the rea B. K = 10^{-2}	action go the farthest for C. K = 10	completion? D. K = 1	
100. The reaction whic	h proceeds in the forward	d direction is		
A. $Fe_2O_3 + 6HCl \rightarrow 2F$ C. $SnCl_4 + Hg_2Cl_2 \rightarrow S$	$FeCl_3 + 3H_2O$	B. $NH_3 + H_2O + NaCl$ D. $2CuI + I_2 + 4K^+ \rightarrow$		
101. The substance cap A. malleable	able of being drawn into B. tensile	fine wire is called C. ductile	D. mild	
102. The idea that most is given by	t of the mass of an atom	is concentrated in a very	small core, i.e., nucleus	
A. Amedo Avogadro	B. Rutherford	C. Bohr	D. Henery Mosley	
103. Which of the follow A. $N_2H_5^+$	owing does contain a co-o B. BaCl ₂	ordinate covalent bond? C. HCl	D. H ₂ O	

104. Which of the follo A. CCl ₄	owing contains both cova B. CaCl ₂	llent and ionic bonds? C. NH4Cl	D. H ₂ O	
105. Keeping in view the periodic law and the periodic table, suggest which of the following elements should have the maximum electronegative character?				
A. Oxygen	B. Nitrogen	C. Fluorine	D. Astatine	
106. The electronic con A. (2, 8) 3s ² 3p ⁶ 3d ¹⁰ 4s ² C. (2, 8) 3s ² 3p ⁶ 4s ² 3d ⁹ 5		omic number 37 is B. $(2, 8) 3s^2 3p^6 3d^{10} 4s^2$ D. none of these	5s ⁶ 4p ⁵	
107. The pH of 0.1 M solution of a weak acid is 3. What is the value of ionisation constant for the acid?				
A. 0.1	B. 10 ⁻³	C. 10 ⁻⁵	D. 10 ⁻⁷	
108. Pure Aniline is a A. brown coloured liquid	B. colourless liquid	C. brown coloured solid	D. colourless solid	
109. Sulphide ores are A. roasting	generally concentrated b B. froth floatation	y C. reducing by carbon	D. tempering	
110. One mole of CO_2 containsA. $6.02 \ge 10^{23}$ atoms of CB. $6.02 \ge 10^{23}$ atoms of OC. $18.1 \ge 10^{23}$ molecules of CO_2 D. 3 gm atom of CO_2				
111. The Avogadro Nu	mber or a mole represen	ts		
A. 6.02×10^{23} ions	_	C. 6.02×10^{23} molecules	D. 6.02 x 10^{23} entities	
112. What is the weigh A. 6.0×10^{-23} gm	t of one molecule of a m B. 6.02×10^{23} gm		hose atomic weight is 36? D. 36 x 10 ⁻²³ gm	
113. When α -particles because	are set through a thin m	etal foil, most of them g	o straight through the foil	
	ch heavier than electrons rith high velocity	B. α -particles are posided D. α -particles move w		
114. The reaction, which proceeds in the forward direction, isA. $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$ B. $NH_3 + H_2O + NaCl \rightarrow NH_4Cl + NaOH$ C. $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$ D. $2CuI + I_2 + 4K \rightarrow 2Cu^+ + 4KI$				

115. The first order constant for the decomposition of N_2O_5 is 6.2 x 10 ⁻⁴ sec ⁻¹ . The half-life period for this decomposition in second is			
A. 1117.7	B. 111.7	C. 223.4	D. 160.9
116 When the same at	nount of zinc is treated s	enarately with excess of	H_2SO_4 and excess of
NaOH, the ratio of vol		eparatery with excess of	
A. 1 : 1	B. 1 : 2	C. 2 : 1	D. 9 : 4
117. Calcium does not	•		
A. oxygen	B. nitrogen	C. hydrogen	D. carbon
118. Carbon differs fro	om other elements of its s	ub-group due to	
A. availability of d-orb	Ũ		-ordination number four
C. its tendency to cater	nate	D. its unique ability to	form multiple bonds
119. Iodine reacts with	cold dil. NaOH to give		
A. NaI + $H_2O + O_2$	B. NaI + NaIO + O_2	C. NaI + NaIO + H_2O	D. NaI + NaIO ₃ + H_2O
120. The number of iso	omers for the atomic com	pound of the formula C	₇ H ₈ O is
A. 2	B. 3	C. 4	D. 5
	owing is not true in linear	r programming problem	?
A. A column in the simplex table that			
contains all of the			
variables in the solutio	n		
is called pivot or key			
column.			
B. A basic solution which is also in the			
feasible region is called	d		
a basic feasible			
solution.			
C. A surplus variable i	S		
a variable subtracted from the left hand side			
of a greater than or			
equal to constraint to			
convert it into an			
equality.			
D. A slack variable is a	7		

D. A slack variable is a variable added to the

left hand side of a less than or equal to constraint to convert it into an equality.

122. The equation of the circle whose diameter lies on 2x + 3y = 3 and 16x - y = 4 and which passes through (4, 6) is A. $x^2 + y^2 = 40$ B. $5(x^2 + y^2) - 4x - 8y = 200$ C. $x^2 + y^2 - 4x - 8y = 200$ D. $5(x^2 + y^2) - 3x - 8y = 200$ 123. Let n(A) = 4 and n(B) = 5. The number of all possible injections from A to B is B. 9 A. 120 C. 24 D. none 124. If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are relatively prime, then A. c = bdB. b = cdC. d = bcD. none of the above 125. A square root of 3 + 4i is A. $\sqrt{3} + i$ B. 2 - i C.2 + iD. none of the above 126. Which of the following is not applicable for a complex number? B. Division C. D. Subtraction Addition D. A. Inequality 127. | maximum amp (z) - minimum amp (z) | is equal to A. $\sin^{-1}(3/5) - \cos^{-1}(3/5)$ B. $\pi/2 + \cos^{-1}(3/5)$ D. $\cos^{-1}(3/5)$ C. π - 2 cos ⁻¹ (3/5) 128. If e, e' be the eccentricities of two conics S and S' and if $e^2 + e'^2 = 3$, then both S and S' can be A. hyperbolas C. parabolas D. none of the above B. ellipses 129. A stick of length 'l' rests against the floor and a wall of a room. If the stick begins to slide on the floor, then the locus of its middle point is A. an ellipse B. a parabola C. a circle D. a straight line 130. The eccentricity of the ellipse which meets the straight line x/y + y/2 = 1 on the axis of x and the straight line x/3 - y/5 = 1 on the axis of y and whose axes lie along the axes of coordinates is C. √6/7 A. 2√6/7 B. $3\sqrt{2}/7$ D. none of the above 131. A and B are positive acute angles satisfying the equations $3\cos^2 A + 2\cos^2 B = 4$ and $3\sin^2 B = 4$ A/sin B = $2 \cos B/\cos A$, then A + 2B is equal to A. $\pi/3$ B. $\pi/2$ C. $\pi/6$ D. $\pi/4$

132. At a point 15 metres away from the base of a 15 metres high house, the angle of elevation of the top is				
A. 90°	B. 60°	C. 30°	D. 45°	
133. If $tan(\pi \cos \theta) = c$	$\cot(\pi \sin \theta), 0 < \theta < 3\pi/4$, then $\sin(\theta + \pi/4)$ equals	3	
A. 1/√2	B. 1/2	C. 1/(2√2)	D. √2	
134. In a triangle ABC (sin \angle BAD)/(sin \angle C.		and D divides BC international divides BC international divides BC international divides and the second divides an	ally in the ratio1 : 3. Then	
A. $\sqrt{2/3}$	B. 1/√3	C. 1/√6	D. 1/3	
A. $x + y - 2 = 0$, $3x + 4$	•	B. $x - y = 0, x + y = 0$	on of the lines	
C. $x + 2y - 10 = 0, 2x - 2x = 0$	+ y + 5 = 0	D. none of the above		
136. The number of co A. 4	mmon tangents of the cir B. 1	rcles $x^2 + y^2 - 2x - 1 = 0$ C. 3	and $x^2 + y^2 - 2y - 7 = 0$ is D. 2	
137. If the product of t	he roots of the equation of	$\alpha x^2 + 6x + \alpha^2 + 1 = 0$ is	-2, then α equals	
A2	B1	C. 2	D. 1	
	$a^{2} + b_{1}x + c_{1} = 0$ and $a_{2}x^{2}$			
A. $a_1/a_2 = b_1/b_2 = c_1/c_2$		B. $a_1 = b_1 = c_1$, $a_2 = b_2 = b_2 = b_2$	$= c_2$	
C. $a_1 = a_2, b_1 = b_2, c_1 =$	c_2	D. $c_1 = c_2$		
139. The roots of the e	quation $(3 - x)^4 + (2 - x)^4$	$^{4} = (5 - 2x)^{4}$ are		
A. two real and two im	naginary	B. all imaginary		
C. all real		D. none of the above		
140. The value $\sum_{n=1}^{10} (-1)^n$ is				
of $x = 1$	-1)" is			
of $x = 1$ A. 10	-1)" is B. 0	C. 1	D1	
A. 10	B. 0			
A. 10				
A. 10 141. If the 10th term o A. $9/4$ 142. 1 - $1/2 + 1/3 - 1/4$	B. 0 f a G.P. is 9 and 4th term B. 4/9 + to ∞ equals	i is 4, then its 7 th term is C. 6	D. 36	
A. 10 141. If the 10th term o A. 9/4	B. 0 f a G.P. is 9 and 4th term B. 4/9	is 4, then its 7 th term is	3	
A. 10 141. If the 10th term of A. 9/4 142. 1 - 1/2 + 1/3 - 1/4 A. log 2	B. 0 f a G.P. is 9 and 4th term B. 4/9 + to ∞ equals	is 4, then its 7 th term is C. 6 C. e ⁻¹	D. 36	

144. How many different arrangements can be made out of the letters in the expansion $A^2B^3C^4$, when written in full?

A. 9!/(2! + 3! + 4!) B. 9!/(2! 3! 4!) C. 2! + 3! + 4! (2! 3!) D. 2! 3! - 4!4!) D. 2! 3! - 4!

145. The number of straight lines that can be drawn out of 10 points of which 7 are collinear isA. 23B. 21C. 25D. 24

146. 1/n! + 1/[2! (n - 2)!] + 1/[4! (n - 4)!] + isA. $(2^{n-1}/n!$ B. $2^n/[(n + 1)!]$ C. $2^n/n!$ D. $2^{n-2}/[(n - 1)!]$

147. The term independent of x in $(x^2 - 1/x)^9$ isC. -1D. none of the above

148. The 9th term of an A.P. is 499 and 499th term is 9. The term which is equal to zero isA. 501thB. 502thC. 500thD. none of the above

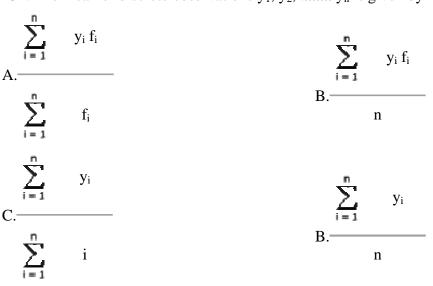
149. If A
$$\begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix}$$
, B = $\begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix}$ then $(A + B)^{-1}$

A. is a skew symmetric matrixB. AC. does not existD. no

B. $A^{-1} + B^{-1}$ D. none of the above

150. If AB = A and BA = B, then B^2 is equal to A. B B. A C. 1 D. 0

151. If the determinant $\begin{vmatrix} a & b & 2a\alpha + 3b \\ b & c & 2b\alpha + 3c \\ 2a\alpha + 3b & 2b\alpha + 3c & 0 \end{vmatrix} = 0$, then


A. a, b, c are in H.P. B. α is a root of $4ax^2 + 12bx + 9c = 0$ or a, b, c are in G.P. C. a, b, c are in G.P. only a, b, c are in A.P.

152. The value of K so that (x - 1)/-3 = (y - 2)/2K = (z - 3)/2 and (x - 1)/3K = (y - 1)/1 = (z - 6)/-55 may be perpendicular is given byA. -7/10B. -10/7C. -10D. 10/7

153. The equation of the plane containing the line $\vec{r} = \vec{i} + \vec{j} + \lambda (2\vec{i} + \vec{i} + 4\vec{k}) \vec{is}$ A. $\vec{r} \cdot (-\vec{i} - 2\vec{j} + \vec{k}) = 0$ $\vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$ $\vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$ $\vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$

D. none of the above

154. The mean of discrete observations y_1 , y_2 , y_n is given by

155. For a poisson distribution whose mean is λ , the standard deviation will be A. λ^2 B. $1/\lambda$ C. $\sqrt{\lambda}$ D. λ

coefficient between x and y, then the correlation coefficient between $(ax + b)$ and $(cy + d)$ is equal to					
A. $(a/c)r$	B. c/a	C r	D. r		
157. A person draws a card from a pack of 52 playing cards, replaces it and shuffles the pack. He continues doing this until he draws a spade, the chance that he will fail in the first two draws is					
A. 1/16	B. 9/16	C. 9/64	D. 1/64		
158. In tossing 10 coin A. 193/256	s, the probability of getti B. 9/128	ng exactly 5 heads is C. 1/2	D. 63/256		
159. Four tickets marked 00, 01, 10, 11 respectively are placed in a bag. A ticket is drawn at random five times, being replaced each time, the probability that the sum of the numbers on tickets thus drawn is 23, is					
A. 100/256	B. 231/256	C. 25/256	D. none of the above		
160.The value $\int_{0}^{\pi/4} \tan^2 x dx$ is equal to					
Α. π/4	B. $1 + (\pi/4)$	C. 1 - (π/4)	D. none of the above		
161. Let $f[x + (1/x)] = [x^2 + (1/x^2)](x \neq 0)$, then $f(x)$ is equal to A. $x^2 - 1$ B. $x^2 - 2$ C. x^2 D. none of the above 162. Let $f(x) = [\tan(\pi/4 - x)]/\cot 2x$, $x \neq \pi/4$. The value which should be assigned to f at $x = \pi/4$, so that it is continous everywhere is					
A. 1	B. 1/2	C. 2	D. none of the above		
163. If $f_1(x)$ and $f_2(x)$ are defined on domains D_1 and D_2 respectively, then domain of $f_1(x) + f_2(x)$ is					
A. $D_1 \cap D_2$	B. $D_1 \cup D_2$	C. D ₁ - D ₂	D. D ₂ - D ₁		
164. The derivative of sin x^3 with respect to cos x^3 is equal to					
A $\tan x^3$	B $\cot x^3$	C. $\cot x^3$	D. $\tan x^3$		
165. If $y = f(x)$ is an odd differentiable function defined on (∞, ∞) such that $f'(3) = -2$, then $f'(-3)$ equals					
A. 4	B. 2	C2	D. 0		
166. The line $(x/a) + (y/b) = 1$ touches the curve $y = be^{-x/a}$ at the point					
A. (a, ba)	B. (a, a/b)	C. (a, b/a)	D. none of the above		

156. If a, b, c, d are constants such that a and c are both negative and r is the correlation

167. The least value of 'a' for which the equation $(4/\sin x) + [1/(1 - \sin x)] = a$ has at least one solution on the interval $(0, \pi/2)$ is					
A. 4	B. 1	C. 9	D. 8		
168. The area bounded A. 32/7	by the curve $y^2 = 8x$ and B. 24/5	$1 x^2 = 8y is$ C. 72/3	D. 64/3		
169. The integrating factor of the differential equation $[(dy/dx)(x \log x)] + y = 2 \log x$ is given					
by A. log (log x)	B. e ^x	C. log x	D. x		
170. If y = tan ⁻¹ [(sin x A. 1/2	+ cos x)/(cos x - sin x)], B. 0	then dy/dx is equal to C. 1	D. none of the above		
171. The length of tang A. 81	gent from (5, 1) to the cir B. 29	cle $x^2 + y^2 + 6x - 4y - 3 = $ C. 7	= 0 is D. 21		
172. The equation of the straight line which is perpendicular to $y = x$ and passes through (3, 2)					
will be given by A. $x - y = 5$	B. $x + y = 5$	C. $x + y = 1$	D. x - y = 1		
173. If the imaginary part of $(2z + 1)/(iz + 1)$ is - 2, then the locus of the point representing z in the complex plane is					
A. a circle	B. a straight line	C. a parabola	D. none of the above		
174. The sum of 40 terms of an A.P. whose first term is 2 and common difference 4, will beA. 3200B. 1600C. 200D. 2800					
	P., then a/bc, 1/c, 2/b are B. G.P.		D. none of the above		
176. The term independent of x in $[x^2 + (1/x^2)]$ is					
A. 1	B1	C. 48	D. none of the above		
177. The equation of a A. $y = -3$	line through $(2, -3)$ paral B. y = 2		D. x = -3		
178. The value $\int_{-2}^{2} (ax^3 + bx + c) dx$ depends of $\int_{-2}^{2} on$					
A. the value of b	B. the value of c	C. the value of a	D. the value of a and b		

179. The range of the function $f(x) = (1 + x^2)/x^2$ is equal to A. [0, 1] B. [1, 0] C. $(1, \infty)$

D. [2, ∞]

180. Two vectors are said to be equal if

A. their magnitudes are same

C. they meet at the same point

B. direction is same

D. they have magnitude and same sense of direction