Shivaji University, Kolhapur (To be implemented from Academic year 2014-2015) Revised Syllabus Structure of Second Year Engineering (SE) Electronics and Telecommunication Engineering

Scheme of Teaching and Examination

Semester-III

Sr.	Subject	Teaching Scheme (Hrs.)				Examination Scheme(Marks)				
No.		L	Т	Р	Total	Theory	TW	POE	OE	Total
1	Engineering Mathematics- III	3	1		4	100	25			125
2	Analog Circuits –I	4		2	6	100	25	50		175
3	Digital Electronics	4		2	6	100	25	50		175
4	Network Analysis	3	1		4	100	25			125
5	Transducers & Measurement	4		2	6	100	25			125
6	Programming Languages (C, C+ +)	2		2	4		25	50		75
		20	2	8	30	500	150	150		800

Semester- IV

	Semester 17										
Sr. No.	Subject	Sche	Teaching Scheme(Hrs.)				Examination Scheme(Marks)				
		L	Т	Р	Total	Theory	TW	POE	OE	Total	
1	Analog Circuits -II	4		2	6	100	25	50		175	
2	Linear Integrated Circuits	4		2	6	100	25	50		175	
3	Data Structure	3		2	5	100	25			125	
4	Electromagnetic Engineering	4	1		5	100	25			125	
5	Analog Communication Systems	4		2	6	100	25	50		150	
6	Circuit Simulation			2	2		25				
		19	1	10	30	500	175	100	25	800	

Shivaji University, Kolhapur Revised Syllabus Structure of Third Year Engineering (TE) Electronics and Telecommunication Engineering Course Scheme of Teaching and Examination

				36	emester-	·V				
Sr.	Subject	Teaching Scheme(Hrs.)				Examination Scheme (Marks)				
No.		L	Т	Р	Total	Theory	TW	POE	OE	Total
1	Microprocessors & Microcontrollers	4		2	6	100	25	50		175
2	Control Systems	3	1		4	100	25			125
3	Signals & Systems	3	1		4	100	25			125
4	Power Electronics	4		2	6	100	25			125
5	Digital Communication	4		2	6	100	25	50		175
6	Simulation LAB	2	-	2	4		25	50		75
		20	2	08	30	500	150	150		800

Semester-V

Semester-VI

	Semester-V1									
Sr.		Teac	hing S	Schem	e(Hrs.)	Examination Scheme(Marks)				
No.	Subject	L	Т	Р	Total	Theory	TW	POE	OE `	Total
1	Digital Signal Processing	4		2	6	100	25			125
2	VLSI Design	3		2	5	100	25	50		175
3	Antenna Wave Propagation	4		2	6	100	25	50		175
4	Optical Communication & Network	4		2	6	100	25			125
5	Industrial Management	3			3	100	25			125
6	Electronic System Design	2		2	4		25		50	75
		20		10	30	500	150	100	50	800

Note:-Industrial training for 15 days is mandatory during summer vacation (after TE-II) & the assessment of the same will be carried out in project phase-I, By project guide in BE-I

Shivaji University, Kolhapur Revised Syllabus Structure of Final Year Engineering (BE) Electronics and Telecommunication Engineering Course Scheme of Teaching and Examination

				Sei	mester-`	VII				
Sr.	Subject	Teaching Scheme (Hrs.)				Examination Scheme(Marks)				
No.	Subject	L	Т	T P,		Theory	TW	POE	OE	Total
1	Satellite Communication	3	1		4	100	25			125
2	Embedded System	4		2	6	100	25	50		175
3	Computer Communication Networks	4		2	6	100	25		25	150
4	RF & Microwave Engineering	4	-	2	6	100	25			125
5	Elective-I	3	1		4	100	25			125
6	Industrial Training						25*			25
7	Project Phase-I			2	2		25		50	75
		18	2	08	28	500	175	50	75	800

* Assessment will be carried out with Project Phase – I By Internal Guide. Semester-VIII

Sr.	~	Teac	ching Scheme(Hrs.)			Examination Scheme(Marks)				
No.	Subject	L	Т	Р	Total	Theory	TW	POE	OE	Total
1	Video Engineering	4		2	6	100	25	50		175
2	Wireless Mobile Communication	4		2	6	100	25			125
3	Digital Image Processing	4		2	6	100	25		50	175
4	Elective-II	3	1		4	100	25			125
5	Project Phase - II			4	4		100	100	-	200
		15	01	10	26	400	200	150	50	800

BE Part-I

Elective-I

- 1. Robotics
- 2. Speech processing
- 3. MEMS
- 4. Radar & Navigation Aids

BE Part-II

Elective-II

- 1. Mechatronics
- 2. Artificial Neural Network
- 3. Remote Sensing & GPS
- 4. Operating System

SHIVAJI UNIVERSITY, KOLHAPUR S.E. (Electronics and Telecommunication) Part- I

w. e. f July 2014

1. Subject: Engineering Mathematics - III

Teaching Scheme	Examination Scheme
Lectures : 3 hrs / week	Theory: 100 Marks
Tutorial: 1 hrs / week	TW:25 Marks

Course Objectives:

The c	The course aims to:					
1	To describe Linear Differential Equation with constant coefficient.					
2	To discuss, importance of Fourier series and Fourier Transform in engineering.					
3	To introduce Laplace Transform & Inverse Laplace transform and its Application.					
4	To explain Z – Transform and Vector differential calculus.					

Cours	Course Outcomes:					
Upon	Upon successful completion of this course, the student will be able to:					
1	An ability to identify, formulates, and solves Linear differential equation with constant					
	coefficient.					
2	Understand application of Linear differential equation with constant coefficient which					
	are related to Electrical engineering Systems.					
3	Find the solution by Z- Transform.					
4	Understand basic of inverse Laplace transform, Periodic & Heaviside function.					
5	Knowledge of periodic function, Euler formulae, Fourier series and their different					
	possible forms.					

Unit No		No. of Hours
I	Linear Differential Equations (LDE) and Applications: Linear Differential Equations with constant coefficients, Cauchy's and Legendre's differential equation, Applications of Linear Differential Equations with constant coefficients to Electrical systems.	07
II	Fourier Series: Definition, Euler's formulae, Conditions for a Fourier expansion, Functions having points of discontinuity, change of interval, expansions of odd and even periodic functions and Half range series.	07
III	Fourier Transforms: Fourier Transforms, Fourier Sine and Cosine Transforms, Complex form of Fourier Integral, Finite Fourier Sine and Cosine Transform.	07
IV	Laplace Transform and Applications: Definition, properties of Laplace transforms, transforms of derivatives, transforms of integral. Inverse Laplace transforms, Convolution theorem. Applications to initial value boundary problems, Heaviside Unit step Function, Dirac-delta function, and Periodic function.	07
V	Z Transform: Definition, properties of z transform, Z Transform of basic sequences, Z transform of some standard discrete function inverse Z transform	07
VI	Vector Differential Calculus: Differentiation of vectors, Gradient of scalar point function, Directional derivative, Divergence of vector point function, Curl of a vector point function. Irrotational and solenoidal vector field.	07

Reference Books:

1	Advance Engineering Mathematics, 9e, by Erwin Kreyszig (Wiley India.)					
2	Mathematical Methods of Science and Engineering, by Kanti B. Datta (Cengage					
	Learning.)					
3	Advanced Engineering Mathematics, 3e, by Jack Goldberg (Oxford University Press.)					
4	Engineering Mathematics, 6e, V. Sundaram (Vikas Publication.)					
5	Higher Engineering Mathematics, by B. S. Grewal (Khanna Publication Delhi.)					
6	Higher Engineering Mathematics, by B. V. Ramana (Tata McGraw-Hill)					
7	Advanced Engineering Mathematics, by H. K. Das (S. Chand Publication.)					

Note: Any 10 experiments/Tutorials based on above syllabus.

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- I w.e.f July 2014 2. Subject : Analog Circuits -I

Teaching Scheme	Examination Scheme
Lectures : 4 hrs / week	Theory : 100 Marks
Practical: 2 hrs / week	TW: 25 Marks POE: 50 Marks

Course	Course Objectives:		
The cou	The course aims to:		
1	Provide an introduction and basic understanding of Semiconductor Devices viz. diodes		
	and bipolar junction transistors.		
2	Provide basic analog electronic circuit design techniques using diodes and bipolar		
	junction transistors and to develop analytical skills.		
3	Develop student ability to apply basic engineering sciences to understand the operation		
	& analysis of electronic circuits using diodes and bipolar junction transistors.		
4	Design electronic circuits to meet the desired specifications.		

Cour	Course Outcomes:		
Upon	on successful completion of this course, the student will be able to:		
1	Apply knowledge of mathematics, science, and engineering to design, analyze and		
	operation of electronic devices and circuits.		
2	Explain basic analog electronic circuit design techniques using diodes and bipolar		
junction transistors.			
3	Explain the hybrid model of transistor and analyze the transistor amplifier (CE, CB,		
	CC) using h-parameters.		
4	Analyze and design electronic circuits such as rectifiers, voltage regulators and		
	transistorized amplifiers.		

Unit No		No. of Hours
I	Wave Shaping Circuits: Low pass & high pass RC circuits (analysis for square ,step, ramp, exponential input), High pass RC circuit as a differentiator, Low pass RC circuit as integrator. Clipping circuits: diode clippers, transistor clippers, Transfer characteristics, Clamping circuits: Classification, clamping operations, Clamping circuit theorem, practical clamping circuits, multistage voltage multipliers. Circuit design is expected.	09
п	Unregulated Power Supplies: Rectifiers: Half wave, full wave: center tap and bridge type, analysis for different parameters: PIV, TUF, efficiency, ripple factor, regulation, form factor etc. Filters: Need of filters, Types: capacitor, inductor, LC, CLC, Analysis for ripple factor. Design of unregulated power supply with filter using full wave rectifier.	09
ш	Voltage Regulators : Need of voltage regulator, Stabilization factors, Analysis & Design of Shunt regulator (using Zener diode & BJT),emitter follower regulator, series pass voltage regulator (using BJT), Pre- regulator & Overload protection circuit.	08

IV	Voltage Amplifiers:H-Parameters, Hybrid model for transistor (CE, CB& CC configuration),amplifier equations for Voltage Gain, Current gain, Input resistance &Output resistance taking Rg of source into account.	06
v	Frequency Response of Single Stage RC Coupled Amplifier: Low frequency response: Effect of emitter bypass capacitor(CE) & Coupling capacitor(CC), Amplifier response to square wave, percentage Sag calculation, (Numerical are expected) High frequency response: Hybrid π model, Derivation for CE short circuit & resistive current gain, β cutoff, α cutoff frequency, approximate amplifier high freq. response to square wave, gain bandwidth product, (Numerical are expected). Design of single stage RC coupled amplifier.	09
VI	FET & MOSFET: Basic construction and operation of JFET and MOSFET, parameters of FET, Biasing of JFET, Common source FET amplifier. Design of self biased CS amplifier.	09

Books:

DUUKS.		
Pulse digital and switching	Millman Taub	Tata MCGraw hill 2 nd edition
circuits		
Electronic devices & circuits	Allen Mottershed	Prentice- Hall India
Electronic devices & circuits	J. Millman & C.Halkias	Tata McGraw Hill
		Publication
Electronic devices & circuits	David A. Bell	Oxford University
Electronic devices & circuits'	S Salivahanan	Tata McGraw Hill
	N Sureshkumar	Publication
Electronic devices & circuit	Robert L. Boylsted, Louis	Pearson Education
theory	Nashelsky	
Electronic Principles	Malvino	
Electronic devices & circuits'	A.K. Maini and Varsha	Wiley publications
	Agarwal	
A Monograph on Electronics	N.C. Goyal & R.K. Khetan-	Khanna Publishers
DesignPrinciples		
National Semiconductor Data		
Manual		

List of Experiments(Minimum 10):

	Ense of Experiments(())				
1.	Design and study of Low pass filter a. Frequency response (sinusoidal)				
	b. integrator (Square wave input)				
2.	Design and study of High pass filter a Frequency response (sinusoidal)				
	b. Differantiator (Square wave input)				
3.	Study of different types of clipper circuits.				
4.	Study of different types of clamping circuits.				
5.	Design and analysis of full wave rectifier with capacitive filter.				
6.	Design and analysis of full wave rectifier with inductive filter.				
7.	Design and analysis of zener shunt regulator				
8.	Design and analysis of transistorized shunt regulator				
9.	Design and analysis of emitter follower regulator				
10.	Design and analysis of series pass voltage regulator				
11.	Determination of H-parameter for CE configuration using input and output				
	characteristics.				

1	2.	Design and frequency response of single stage RC coupled amplifier.	
1	3.	Calculation of sag and rise time for low and high frequency square wave response of	
		single stage RC amplifier	
1	4.	Calculation of performance parameters using characteristics of JFET.	

Note for paper setter: 40% theory and 60% numerical and Design

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- I w.e.f July 2014 3. Subject : Digital Electronics

Teaching Scheme	Examination Scheme
Lectures : 4 hrs / week	Theory : 100 Marks
Practical : 2 hrs / week	TW : 25 Marks POE: 50 Marks

Course Educational Objectives(CEOs):

1

1 logic circuits. 2 Design combinational circuits by using logic gates, MSI circuits, PLDs. 3 Explain Boolean algebra and the various methods of Boolean function reduction, K map reduction and Quine McCluskey method 4 To design, implement and analyze, asynchronous and synchronous sequential circuits(FSM) using flip flops. 5 Explain the various 74XX series components and their applications in designing				
2 Design combinational circuits by using logic gates, MSI circuits, PLDs. 3 Explain Boolean algebra and the various methods of Boolean function reduction, K map reduction and Quine McCluskey method 4 To design, implement and analyze, asynchronous and synchronous sequential circuits(FSM) using flip flops. 5 Explain the various 74XX series components and their applications in designing	1	Understand principles, characteristics and operations of combinational & sequential		
3 Explain Boolean algebra and the various methods of Boolean function reduction, K map reduction and Quine McCluskey method 4 To design, implement and analyze, asynchronous and synchronous sequential circuits(FSM) using flip flops. 5 Explain the various 74XX series components and their applications in designing	1	logic circuits.		
5 map reduction and Quine McCluskey method 4 To design, implement and analyze, asynchronous and synchronous sequential circuits(FSM) using flip flops. 5 Explain the various 74XX series components and their applications in designing	2	Design combinational circuits by using logic gates, MSI circuits, PLDs.		
4To design, implement and analyze, asynchronous and synchronous sequential circuits(FSM) using flip flops.5Explain the various 74XX series components and their applications in designing	2	Explain Boolean algebra and the various methods of Boolean function reduction, K-		
 4 circuits(FSM) using flip flops. 5 Explain the various 74XX series components and their applications in designing 	5	map reduction and Quine McCluskey method		
5 Explain the various 74XX series components and their applications in designing	4	To design, implement and analyze, asynchronous and synchronous sequential		
	4	circuits(FSM) using flip flops.		
combinational & low complexity sequential circuits	5	Explain the various 74XX series components and their applications in designing		
completion of templeticity sequential encarts.	5	combinational & low complexity sequential circuits.		

Course Outcomes (COs):

Upon successful completion of this course, the student will be able to:

-			
	1.	Apply Boolean laws/K-Map-method, Quine McCluskey method to reduce a given	
		Boolean function.	
Design & realize combinational logic circuits using logic gate		Design & realize combinational logic circuits using logic gates, MSI circuits, PLDs for	
	Ζ.	various practical applications.	
	3.	Demonstrate the operation of flip-flops, counters and shift registers.	
	4.	Design Synchronous sequential machine using Moore and Mealy machine	
	5.	Distinguish between various memories and implementation of digital circuits using	
		PLA	
	6.	Demonstrate logical skills, debugging skills in designing small digital circuits for	
		industrial applications	

Unit No		No. of Hours
I	Digital CMOS Logic Family Characteristics of digital ICs-Speed of operation, power dissipation, figure of merit, fan in, fan out, current and voltage parameters, noise immunity, operating temperatures and power supply requirements, comparison of TTL and CMOS logic family characteristics CMOS logic – CMOS inverter, CMOS inverter static and dynamic	06

	characteristics, NAND, NOR gates, Implementation of simple Boolean equations using CMOS logic.	
п	Combinational Logic Circuits Adder, Subtractor, code converters (binary to gray & gray to binary, BCD to Excess 3 and vice versa, BCD to 7 segment display)(IC 7447, 7448), Multiplexer and Demultiplexer, encoder, priority encoder, decoder, adder with look ahead carry generator, Parallel adder (IC 7483), subtractor using adder, 4 bit Magnitude Comparator (7485), ALU (74181)	08
ш	Combinational Logic Optimization and Design Boolean optimization, K-map optimization, Quine McCluskey method, Designs using combinational components.	10
IV	Sequential Logic Circuits 1 Bit Memory Cell, Latches (SR, JK, D and T), Clocked latches (SR, JK, D and T), flips flop (JK, T and D). Designing FF using latches, Use of preset and clear terminals, Excitation Table for flip flops, and Conversion of flip flops, Timing parameters of FF Application of Flip flops: Registers, Shift registers, Universal Shift Registers, Counters - ripple counters (74190/7490), synchronous counters (74193), Up/down counters, ring counters, Johnson Counter, MOD-N counter	10
v	Synchronous Sequence Machines FSM, Moore/Mealy machines, representation techniques, state diagram, state table, state assignment and state reduction, implementation using D flip flop, Application like sequence detector, priority resolver, industrial controller etc., Effect of clock skew and clock jitter on synchronous designs (Metastability)	10
VI	Semiconductor Memories and Programmable Logic Devices Memory devices: ROM, PROM, EPROM, EEPROM, RAM, SRAM, DRAM, NVRAM, Programmable logic devices: PAL and PLA, Implementing combinational and sequential circuits using PLA,	05

1	Digital Design - M. Morris Mano - Pearson Education (3rd Edition) (Unit 1,2,3,4)	
2	Digital Principles – Leach, Malvino, TMH (6th Edition). (Unit 1,2,3,4)	
3	R. P. Jain, "Modern digital electronics", 3rd edition, 12 th reprint TMH Publication, 2007. (Unit 1,2,3,4)	
4	Digital Design Principles and Application - Wakerly – Pearson Education (Unit 5,6)	
Dofe	Defense Deeles	

Reference Books:

1	Roth Kinney, "Fundamentals of Logic Designs", 6 th edition, CENGAGE learning (For Lab Design Problems)
2	Willim I. Fletcher', An Engineering Approach to Digital Design'—PHI/ Pearson

3	A. Anand Kumar, "Fundamentals of digital circuits" 1 st edition, PHI publication, 2001 (for question bank)
4	Anil K. Maini, "Digital Electronics principles and Integrated Circuits" Wiley Publications
5	G. K. Kharate, "Digital Electronics", Oxford University Press (Tutorials and practical)
6	S. Shalivahanan, "Digital Circuits and Design", Vikas Publication House
7	Subrata Ghoshal, "Digital Electronics" CENGAGE learning (Tutorials)

List of Experiments:

1.	Prototyping of source to destination communication using MUX (IC 74151) and DEMUX(IC 74138)
2.	BCD adder using IC 7483(extend to BCD subtractor)
3.	Design and build 8 bit magnitude comparator using IC 7485
4.	Design and build 4 bit comparator using IC 74181
5.	Implement and evaluate using oscilloscope Mod-N counter (IC 7490)
6.	Design, Implement and evaluate using oscilloscope 4-bit synchronous counter using IC
	7476
7.	Study of all modes of universal shift register using IC 7495(right, left, clockwise,
	anticlockwise, circular)
8.	Design, implement and test 4 bit sequence detector using IC 7474
9.	Mini Project:
	Fairly complex application oriented mini-project with digital input and output and
	appropriate display
10.	Prototyping of source to destination communication using MUX (IC 74151) and
	DEMUX(IC 74138)

Note:

- 1. At least 3 Experiments should be design on bread board
- Mini project should be carried out by group of students not more than 3
 Mini project should be judged by at least two faculty members for understanding practical skills, written communication skills, team work skills etc.

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- I w.e.f July 2014 4. Subject: Network Analysis

Teaching Scheme	Examination Scheme
Lectures : 3 hrs / week	Theory: 100 Marks
Tutorial: 1 hrs / week	TW: 25 Marks

Cours	Course Objectives:	
The course aims to:		
1	To understand basic theorems used for network analysis.	
2	To understand two port networks and its parameters	
3	To understand series and parallel resonance and its effects	
4	To understand system behavior using pole zero plot	
5	To understand and implement filter approximations	

Cour	Course Outcomes:		
Upor	Upon successful completion of this course, the student will be able to:		
1	Students can use different network theorems for network analysis		
2	Students can find different parameters of two port networks.		
3	Students can demonstrate knowledge of resonance in a series and parallel circuits		
4	Students can analyze and formulate network function of a network using pole and zero concepts.		
5	Students can apply filter approximations to design analog passive filters.		

Unit No		No. of Hours
I	Network Fundamentals: Basic Definitions: Passive Network, Active Network, Linear Element, non- linear elements, Unilateral, bilateral, lumped & distributed elements. Representation of voltage & current sources.(Ideal & practical), source transformation, series & parallel connection of passive elements(R,L,C), graph of network & its parts, loops & trees, linear graphs & incidence matrix, cutsets, planner & non-planner graph loop matrix. Star- Delta transformation, reduction of networks: Mesh analysis, Node analysis. Supermesh and supernode analysis.	06
II	Network Theorems: D.C. and A.C. network solution using dependent and independent sources: Superposition Theorem, Millman's Theorem, Norton's Theorem, Thevenin's Theorem, Maximum Power Transfer Theorem, Reciprocity Theorem, Duality theorem	08

111	Two Port Network & Network Functions: Two port network: Open circuit impedance (Z) parameters, Short circuit admittance (Y) parameters, Hybrid (H) parameter, Transmission parameters(ABCD), Interrelation of different parameters, Interconnections of two port network (Series, Parallel, Cascaded, Series- Parallel) Network Functions: Network functions for one port & two port networks, Driving point impedance and admittance of one port network, Driving point impedance, admittance & different transfer function of two port network (Z,Y,H & T parameters). Concept of complex frequency, significance of poles & zeros. Restrictions on poles & zeros for transfer & drawing points function, stability concept in passive circuit using Routh- Hurwitz criterion, pole zero diagram.	07
	Resonance :	
IV	Defination, Types: series & parallel resonance. Series resonance- resonant frequency, variation of impedance, admittance, current & voltage across L & C with respect to. frequency, Effect of resistance on frequency response, Selectivity, B.W.& Quality factor. Parallel resonance – Anti resonance frequency, variation of impedance & admittance with frequency, . Selectivity & B.W.	06
v	Filters Definitions, classification & characteristics of different filters, filter fundamental such as attenuation constant (O), phase shift (N) propagation constant (S) characteristic impedance (Zo), decibel ,neper. Design & analysis of constant K, M derived & composite filters (low pass, high pass, band pass & band stop filters): T & Pi sections.	06
VI	Transient Response: Network Solution using Laplace transforms, Initial Conditions of elements. Steady state & transient response (Voltage & Current) DC response of RL circuit DC response of RC circuit DC response of RLC circuit Sinusoidal response of RL, RC & RLC circuit	07

1	A. Sudhakar ,Shyammohan S.Palli 'Circuit & Network – Analysis & Synthesis' IIIrd	
	Edition – Tata McGraw Hill Publication (Unit II,IV,VI)	
2	A.Chakrabarti 'Circuit Theory (Analysis & Synthesis)' - IIIrd Edition (Unit I,II)	
	Dhanpat Rai & co	
3	D. Roy Choudhury 'Networks & Systems' - New Age International Publisher (Unit	
3	D. Roy Choudhury 'Networks & Systems' - New Age International Publisher (Unit I,II,III)	
3		
3 4 5	I,II,III)	

Reference Books:

1	William H Hayt, Jack E Kimmerly and Steven M.Durbin, Engineering Circuit Analysis,
	Tata McGraw Hill
2	M.E.Van Valkenburg ' Network Analysis' - IIIrd Edition, Pearson Education / PHI
3	Josheph Edministrar 'Theory & Problems of Electronic Circuit (Schaum's series) - Tata
	McGraw Hill, Publication
4	R.G. Kaduskar, S.O.Rajankar, T.S. Khatavkar, Network Fundamentals and Analysis –

Wiley	/ India
-------	---------

Minimum 08 Tutorials based on above Topics

Note for Paper setter: 40% theory and 60% numerical are expected

Term Work: (Minimum 10 tutorials):

Minimum 10 tutorials based on above syllabus covering all units.

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- I w.e.f July 2014 5. Subject: Transducers and Measurements

Teaching Scheme	Examination Scheme
Lectures : 4 hrs / week	Theory : 100 Marks
Practical: 2 hrs / week	TW: 25 Marks

	Course Objectives: The course aims to:		
1			
1	Provide introduction to different types of Transducers & sensors with their		
	classification, principle, construction & application		
2	Provide knowledge of different parts of Measurement system such as		
	Signal Conditioning & Data Acquisition System along with Transducer		
3	Design of Instrumentation system to meet desired specifications		
4	Provide basic knowledge of measurement system		
5	Provide basic understanding of different Electronic instruments		
6	Provide knowledge of different types of bridges		

Course Outcomes:			
Upon	Upon successful completion of this course, the student will be able to:		
1	Student will able to select appropriate transducer as per required.		
2	Students will get acquainted with different DAS		
3	Student will be able to design instrumentation system		
4	Student will able to understand measurement basics and select proper instrument proper		
	particular measurement of electrical parameters.		

Unit No		No. of Hours
I	Transducers & Sensors: Definition, Various Types of Transducers, Classification of Transducers, Selection Factors and General Applications of Transducers, Detailed Study of Transducers: (i) Motion, (ii) Flow, (iii) Pressure, (iv) Temperature, (v) Force and Torque, (vi) Sound Transducer, Hall Effect Transducers, Digital Transducers, Proximity Devices, optical Sensors, Smart Sensors, Piezo – electric sensors	10
II	Signal Conditioning & Data Acquisition System: Introduction, AC & DC Signal Conditioning, Chopper Stabilized Amplifier, Instrumentation Amplifier, Isolation And Programmable Gain	09

Ш	Amplifier, Grounding And Shielding, Concept of Active Filters, Practical Comparators, Modulators, Demodulators, Sine And Other Waveform Generation, Principles and working of different types of ADC and DACInstrumentation Techniques: Introduction to Process Instrumentation, Instrumentation set up for measurement of non electrical quantity such as weight using strain gauge.	06
IV	Introduction to Measurement: Introduction, Performance Characteristics, Static Characteristics, Error in Measurement, Types of Static Error, Sources of Error, Dynamic Characteristics, Statistical Analysis, Electrical Standards, Atomic Frequency and Time Standards, Graphical Representation of Measurements as a Distribution, Digital voltmeters- Introduction, Types of DVM, general specifications of DVM, digital multimeter, digital measurements of time, digital frequency meter, Q meter, Instrument calibration	10
V	Measurement & Display Devices: CRO: Dual Beam, Dual Trace, sampling, Digital storage, measurement of phase and frequency using Lissajous pattern, CRO probes: active, passive, current, attenuators, LED, LCD, Graphics Display, Signal Generators, Function generators. Spectrum analyzer, logic analyzer	09
VI	Bridges: Measurement of Resistance with Bridges, Wheatstone's Bridge, Kelvin Double Bridge, AC Bridges such as Haye's Bridge, Wein Bridge, Maxwell's-Wein Bridge, Maxwell' L/C Bridge, Descourty's Bridge & Schering Bridge	06

1	A course in Electrical, Electronics measurement and Instrumentation, A.K.Sawhney	
2	Electronic Instrumentation, H. S. Kalsi, MGH, 3rd Edition	

Reference Books:

1	Electronic Instrumentation and Measurement Techniques, Welfrick Cooper.		
2	InstrumeIntation for Engineers And Scientists, John Turner, II Edition, Wiley		
3	3 Electronic Instrumentation and Measurements, David A Bell, Third Edition, Oxford		
4	Instrumentation for Engineering Measurements, James W Dally, II Edition, Wiley		

List of Experiments:

1.	Study of weight measurement using strain gauge
2.	Study of displacement measurement using LVDT.
3.	Study of temperature measurement using RTD PT100/Thermistor/Thermocouple
4.	Study of temperature measurement using IC based sensor LM35.
5.	Study of speed measurement using optical pick up.
6.	Study of measurement of Flow
7.	Study of position measurement using synchro transmitter – receiver.
8.	Study of cathode ray oscilloscope & Measurement of amplitude and frequency using
	CRO
9.	Measurement of phase and frequency by lissajous pattern using CRO.
10.	Study of function generator
11.	Study of of spectrum analyzer
12.	Study of Logic analyzer
1.0	
13.	Study of AC bridges

Note: Any 10 experiments/Tutorials based on above syllabus.

S.E.(Electronics and Telecommunication) Part- I w.e.f July 2014 6. Subject: Programming Languages (C,C++)

Teaching Scheme	Examination Scheme	
Lectures : 2 hrs / week	Theory :	
Practical: 2 hrs / week	TW: 25 Marks POE: 50 Marks	

Course Objectives:

The course aims to:

This course provides students with a comprehensive study of the C programming language. Programming topics include control structures, functions and arrays. And the objective of this course is to learn fundamentals of C and object oriented concepts and build object oriented programming application using C++. Its main objective is to teach the basic concepts and techniques which forms the **programming platform.**

Course Outcomes: Upon successful completion of this course, the student will be able to:		
1	Understand the basic programming concepts.	
2	Understand the use of arrays to store lists and tables of values.	
3	Understand the close relationships among arrays and strings.	
4	Understand how a good program design can reduce coding and debugging time.	
5	Explain the features of object oriented programming such as objects, classes, user	
	defined data types, enumerations, constructors, destructors, overloading, inheritance polymorphism etc.	
6	Design, implement, test, and debug simple programs in an object-oriented programming	
	language.	
7	Demonstrate good programming skills.	

Unit No		No. of Hours
Ι	Introduction to Procedure Oriented Programming Language Introduction, Constants, Variables, Data types, Operators and Expressions, Decision Control statements, Loop control statements	04
II	Functions and Pointers : Functions -Introduction to function, passing values between functions, scope rules of function, calling convention, advanced features of function- return type of function, call by value & call by reference, recursion Pointers -Introduction to pointers, pointer notation	04
III	Arrays and Structures : Arrays -Introduction, Declaration and Initialization of array, types of arrays-two dimensional array, multi dimensional array Structures-Introduction, declaring structure, accessing structure elements, array of structures, additional features & uses of structure.	05

IV	Introduction to Object oriented programming language Introduction to basic concepts of object oriented programming language, classes & objects, defining member function, making an outside function inline, Nesting member function, private member function, Arrays within a class, memory allocation for objects, dynamic memory allocation(<i>new</i> , <i>delete</i>), Array of objects, pointer to members. Pointers to objects this Pointer.	05
V	Constructors and Destructors Introduction, Constructors, types of constructors-default constructor, copy constructor, parameterized constructor, destructors, importance of destructors.	03
VI	 Polymorphism & Inheritance: Polymorphism –Introduction, Function overloading, Unary & binary operator overloading, manipulation of strings using operators. Friend function & friend class. Inheritance –Introduction, types of inheritance-single, multiple, multilevel, hybrid, hierarchical inheritance, virtual base classes 	05

IUA			
1	Yashwant Kanetkar-'Let Us C'-,8 th edition-BPB Publications.		
2	Pradip Dey, Manas Ghosh-'Programming in C'-II edition-OXFORD University Press		
3	E Balgurusamy –'Object oriented programming with C++' -, IIIrd Edition- Tata Mc- Graw Hill Publication		
4	Rajesh K.Shukla-'Object – Oriented Programming in C++'WILEY-INDIA		
Refe	erence Books:		
1	E Balgurusamy – 'Programming in ANSI C' -, Vth Edition- Tata Mc- Graw Hill Publication		
2	Brian W. Kernighan ,Dennis M. Ritchie-'The C Programming Language' –IInd Edition- Prentice Hall of india		
3	Herbert Schildt – 'The Complete Reference C++' - IIIrd Edition - Tata McGraw Hill Publication		
4	D Ravichandran'Programming with C++ '-IInd Edition- Tata McGraw Hill Publication		
5	Rohit Khurana-'Object oriented programming with C++'-second edition-Vikas publication		
6	Sourav Sahay-'Object oriented programming with C++'-second edition-OXFORD university press		

List of Experiments:

- 1. Develop a Program for implementation of decision control statements
 - a. If.....
 - b. If Else
- 2. Develop a Program for implementation of loop control statements
 - a. For....
 - b. Do...while...
 - c. While....
 - d. Switch case
- 3. Develop a Program for implementation of functions
 - a. Call by value
 - b. Call by reference
- 4. Develop a Program for implementation of pointer
- 5. Develop a Program for implementation of array
 - a. One-dimensional array
 - b. Multi-dimensional array
- 6. Develop a Program for implementation of structures
- 7. Develop a Program for implementation of classes and Objects.
- 8. Develop a Program for implementation of pointers to Objects.
- 9. Develop a Program for implementation of types of constructor
 - a. Default constructor
 - b. Parameterized constructor
 - c. Copy constructor
- 10. Develop a Program for implementation of polymorphism
- 11. Develop a Program for implementation of Friend Functions in Class
- 12. Develop a Program for implementation of types of inheritance
 - a. Single level Inheritance
 - b. Multi level Inheritance
 - c. Multiple Inheritance
 - d. Hybrid Inheritance
 - e. Hierarchical inheritance

Note: Any 10 experiments/Tutorials based on above syllabus

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- II w.e.f July 2014 1. Subject : Analog Circuits -II

Teaching Scheme	Examination Scheme	
Lectures : 4 hrs / week	Theory : 100 Marks	
Practical: 2 hrs / week	TW: 25 Marks POE: 50 Marks	

Cours	se Objectives:
The c	ourse aims to:
1	Provide an introduction and basic understanding feedback amplifiers, power amplifiers, oscillators, multivibrators
2	Develop student ability to apply basic engineering sciences to understand the operation & analysis of electronic circuits using diodes, bipolar junction transistors and field effect transistors
3	Provide analog electronic circuit design techniques using diodes, bipolar junction transistors and field effect transistors, and to develop analytical skills.
4	Design electronic circuits to meet desired specifications.
5	Apply knowledge of mathematics, science, and engineering to design, analyze and operation of electronic circuits.

Cours	Course Outcomes:		
Upon	successful completion of this course, the student will be able to:		
1	Explain basic analog electronic circuit design techniques using diodes, bipolar junction		
	transistors and field effect transistors.		
2	Analyze and design electronic circuits such as wave shaping circuits, multistage		
	amplifiers, power amplifiers.		
3	Describe and design different types of oscillators and multivibrators as per given		
	specifications and requirement using bipolar junction transistors and field effect		
	transistors.		
4	Demonstrate the analytical skills developed while designing the electronic circuits		
	using diodes, bipolar junction transistors and field effect transistors.		

Unit		No. of
No		Hours
I	Multistage Amplifiers Need of cascading, Parameter evaluation such as Ri ,Ro, Av, Ai & bandwidth for general multistage amplifier, Design of two stage RC coupled, Direct coupled amplifier using BJT.	08

п	Feedback Amplifiers : General theory of feedback, reasons for negative feedback. Types of negative feedback in transistor circuits: Voltage series, Current series, Voltage shunt, Current shunt feedback amplifiers, Darlington pair, Darlington amplifier using bootstrapping principle, (Numerical are expected) Design of Voltage series feedback amplifier	09
Ш	Power Amplifiers: Need of Power amplifier, classification of power amplifier, Power considerations, Distortion in power amplifiers: Phase, Frequency, amplitude/ harmonic / non linear distortion, amplitude distortion using Three point method. analysis and design of Class A single ended transformer coupled amplifier& class A Push pull amplifiers, Class B amplifier & class B push pull amplifier , crossover distortion, class AB Push pull amplifiers. Complementary symmetry power amplifier.	09
IV	Oscillators: Barkhausen's criteria, Frequency and amplitude stability, Classification, RC oscillators : RC phase shift & Wein bridge oscillator analysis & design using BJT & FET, LC oscillators: Colpit's & Hartely's oscillators analysis and design using BJT, Crystal oscillator.	09
V	Multivibrators : Transistor as a switch, Different transistor switching parameters, overdrive factor, classification of multivibrators, Analysis and design of collector coupled -Astable, Monostable, fixed bias and self bias Bistable multivibrator and Schmitt trigger using BJT considering overdrive factor. Triggering circuits for Multivibrators	09
VI	IC voltage regulator Study and design of regulators using IC's :78XX, 79XX,LM723,LM317 Switching regulator LM3524	06

Books:

_ 0 0 0 0		
Electronic devices & circuits	Allen Mottershed	Prentice- Hall India
Pulse digital and switching	Millman Taub	Tata McGraw Hill
circuits		
A Monograph on Electronics	N.C. Goyal & R.K. Khetan-	Khanna Publishers
DesignPrinciples		
Electronic devices & circuits	David A. Bell	Prentice- Hall India
Electronic devices & circuits	G. K. Mittal	
Electronic devices & circuit	Robert L. Boylsted, Louis	Pearson Education
theory	Nashelsky	
Electronic devices & circuits'	A.K. Maini and Varsha	Wiley publications
	Agarwal	
Electronic devices & circuits'	S Salivahanan	Tata McGraw Hill
	N Sureshkumar	Publication
Microelectronics Circuits	Sedra smith	Oxford International student

	edition
National Semiconductor Data	
Manual	

Note for paper setter: 40% theory and 60% numerical and Design

List of Experiments(Minimum 10):

	List of Experiments(() minute 10).		
1.	Design and frequency response of direct coupled amplifier.		
2.	Design and frequency response of two stage RC coupled amplifier.		
3.	Design and frequency response of voltage series feedback amplifier.		
4.	Design of transformer coupled class A amplifier.		
5.	Design of RC phase shift oscillator using BJT		
6.	Design of wein bridge oscillator using BJT		
7.	Design of colpitts oscillator using BJT		
8.	Design of hartley oscillator using BJT		
9.	Design of Astable multivibrator		
10.	Design of monostable multivibrator using BJT		
11.	Design of bistable multivibrator using BJT		
12.	Design of Schmitt trigger using BJT		
13.	Design of voltage regulator using LM317		
14.	Design of voltage regulator using IC723		

Note: Any 10 experiments/Tutorials based on above syllabus.

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- II w.e.f July 2014 2. Subject : Linear Integrated Circuits

Teaching Scheme	Examination Scheme
Lectures : 4 hrs / week	Theory : 100 Marks
Practical: 2 hrs / week	TW: 25 Marks POE: 50 Marks

Cours	Course Objectives:		
The co	The course aims to:		
1	Explain the internal circuit of operational amplifier and its electrical parameters.		
2	Indicate the importance of an Op-amp in building an analog computer.		
3	Explain the application of Op-amps in building signal conditioning circuits, filters,		
	waveform generators etc.		
4	Develop practical skills for building and testing circuits using analog ICs.		

Cours	Course Outcomes:		
Upon	Upon successful completion of this course, the student will be able to:		
1	Select an appropriate Op-amp for a particular application by referring data sheets.		
2	Design Op-amp based circuit to give specified gain.		
3	Explain the frequency response characteristics of an amplifier using Op-amp.		
4	Compute component values to design different Op-amp based circuits which include		
	arithmetic building blocks, filters, waveform generators etc.		
5	Solve numerical problems related to op-amp circuits.		
6	Explain the working of various circuits for different applications designed using linear		
	integrated circuits such as IC 741, IC555, IC565, IC566, CA3140 and IC177, IC620		
7	Demonstrate circuit design skills using analog ICs.		

Unit No		No. of Hours
I	Introduction to op-amp Definition, symbol, Block diagram of OP-AMP, Explanations of each block, Differential Amplifier configurations, Differential amplifier analysis (AC & DC) for dual-input balanced-output configuration using 'r' parameters, level shifter, current mirror circuits, ideal parameters and practical parameters of OP-AMP and their comparison, internal circuit of IC741, detail circuit analysis of IC CA3140.	09
п	II Op-amp configurations & frequency response: Virtual ground concept, Open loop configuration, closed loop configuration, unity gain amplifier, frequency Response of both configurations, Stability considerations, Frequency Compensation, Slew Rate.	
ш	Applications of Op-amp Summing, Scaling & Averaging Amplifiers using Op-amps, Differential amplifier using op-amp, Subtractor Circuit, Instrumentation amplifier, V to I & I to V Converter, Precision Rectifiers, Log & Anti-log Amplifiers, Study of comparator, Schmitt Trigger, Window Detector, Clippers & Clampers, Peak Detectors, Sample & Hold Circuits.	09

IV	Active Filters Introduction, Analysis & Design of Butterworth filters: High Pass filter, Low Pass filter (First & Second order), Band Pass filter, Band Reject filter, All Pass Filter, Introduction to Chebyshev Filter.	09
v	Waveform GeneratorsAnalysis & Design of Square wave generator, Triangular wave generator, Sawtooth wave generator. Analysis & Design of RC phase shift oscillator, RC wein bridge oscillator, Colpitts oscillator, Hartley oscillator.	09
VI	Special purpose ICs IC 555 Timer: Block Diagram, Operating Principle, Multi-vibrator using IC 555. IC 565 PLL: Operating Principles, applications, Introduction of (block diagram, features, application areas) : IC OP177 op- amp,IC AD620 instrumentation amplifier	06

1	Ramakant A. Gaikwad, "Op Amps and Linear Integrated Circuits", Pearson Education second and latest edition.
Refe	erence Books:
1	Robert Coughlin, Fredric Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Sixth edition, PE, 2006. (Ch-6)
2	David Bell, "Operational Amplifiers and Linear ICs", Third ed, Oxford University Press
3	B. Somanathan Nair, "Linear Integrated Circuits- Analysis, Design & Applications", Wiley India.
4	Datasheets

List of Experiments:

(Minimum 12 experiments should be conducted out of which maximum 2 can be simulation based)

- 1. Measure op-amp parameters and compare with the specifications.
 - (a) Measure input bias current, input offset current and input offset voltage.
 - (b) Measure slew rate (LM/UA741C and LF356)
 - (c) Measure CMRR
 - (d) Compare the result with datasheet of corresponding Op Amp.
- 2. Design of inverting, noninvertion amplifier & their frequency response
- 3. Design of Summing, scaling, and averaging amplifier.
- 4. Design of V to I convertor
- 5. Design, build and test differentiator and integrator
- 6. Design, build and test precision half & full wave rectifier.
- 7. Design, build and test Comparator and Schmitt trigger.
- 8. Design, build and test Sample and hold circuit
- 9. Design of Butterworth filters
- 10. Design, build and test PLL and any one application.
 - a) Study PLL IC 565.
 - b) Find the free running frequency.
 - c) Find lock range and capture range.
- 11. Design, build and test square & triangular wave generator.
- 12. Design of astable & monostable multivibrators using IC555
- 13. Design and implement Wien bridge oscillator using Op-Amp.

14. An application of AD620 instrumentation amplifier.

15. Design, build and test window detector.

Note: Any 10 experiments/Tutorials based on above syllabus.

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- II w.e.f July 2014 Subject : Data Structures

Teaching Scheme	Examination Scheme
Lectures : 3 hrs / week	Theory : 100 Marks
Practical: 2 hrs / week	TW: 25 Marks

Cours	Course Objectives:		
The c	The course aims to:		
1	1 Provide an introduction and basic understanding of Types of Memory data Allocations		
	i.e Data Stucture		
2	Provide basic Knowledge on Algorithms of Operation performed on Linear and Non		
	Linear Data Structure		
3	Provide basic Programming Knowledge of Data Structure with C& C++		
4	Provides the Knowledge of Different Hash Function		

Cours	Course Outcomes:		
Upon	Upon successful completion of this course, the student will be able to:		
1	Apply knowledge of Programming in the Field of Linear and Non Linear data		
	Structure.		
2	Perform the Programs of data Structure using C & C++		
3	Logic Development To Design an algorithm form Operation on Linear and Non Linear		
	data Structure.		
4	Understand The Concept of Hash Function.		

Unit No		No. of Hours
I	Introduction & Overview: Introduction to theory of data structures & its data types, Algorithms: complexity, time space trade-off with example.	02
Π	Arrays, Records & Pointers: Introduction, linear arrays, representation of linear array in memory, traversing linear arrays, inserting & deleting, Sorting: bubble sort, searching: linear search, binary search, Multidimensional arrays, Pointers: pointer arrays, Records: Record structures, representation of records in	07

	memory, parallel arrays, matrices, space matrices.	
ш	Linked Lists: Introduction, linked lists & its representation, Traversing & searching a linked list, memory allocation, Garbage collection, insertion & deletion of nodes of linked list, header linked list, two-way lists, programming problems.	06
IV	Stacks & Queues: Introduction to stacks, stack as an Abstract Data type, representation through Arrays & linked lists, Applications of stacks, stacks & recursion, Queue as an abstract data type representation, cicular, double ended, priority, application of queues	07
V	Trees : Binary Tree: introduction, types, definition, properties, representations, operations, binary tree traversal reconstruction, counting number of binary trees, applications. Advanced trees : AVL trees or height balanced trees, representation operation, Threaded binary trees, Expression trees. Multiway trees: trees, multiway search trees, B+ trees, Heaps, construction of a Heap.	08
VI	Graphs: Introduction, Graph theory terminology, sequential representation of graphs: Adjacency Matrix, Path matrix, Warshall's Algorithm, shortest paths, linked representation. Operations, Traversing, Posets, Topological sorting	07
VII	Hashing: Hashing, Hash functions, collision, chaining	03

Books:

- Data structure using C	ISRD group	Tata McGraw Hill
Data structures	Seymour Lipschautz	Tata McGraw Hil
Data structure using C &	Langsam, Rubenstein,	PHI
C++	Tenenbaun	
Data structure & algorithm	Mark Allen Weiss	Pearson Education (LPE)
analysis in C		
Data Structures &	M.T. Goodrich, R. Tamassia,	Wiley Publication
Algorithms in C++	D. Mount	
Introduction to Data	A.N. Kathie	Pearson Education (LPE)
structures in C		

List of Experiments(Minimum 10):

1.	Program to Insert the Number in an Array
2.	Program to Delete the Number in an Array
3.	Program on Bubble Sort
4.	Program to Perform Linear search
5.	Program to Perform Binary search
6.	Program To Display 2D Array
7.	Program to Insert the Node in Link List
8.	Program to Delete the Node in Link List

9.	Program to Perform Push and Pop Operation on Stack
10.	Program to Perform Operation on Queue
11.	To Study Properties of Binary tree
12.	To Study Traversing operation of Tree
13.	To Study Traversing operation of Graph
14.	To study Hash Function

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- II w.e.f July 2014 4. Subject: Electromagnetic Engineering

Teaching Scheme	Examination Scheme
Lectures : 4 hrs / week	Theory : 100 Marks
Tutorial: 1 hrs / week	TW: 25 Marks

Course Objectives:

course objectives:			
The course aims to:			
1	Provide fundamentals of Static Electromagnetic Fields.		
2	Explain basics of the vector Differential, Integral operators to Electromagnetic theory &		
	Electrostatic & Electromagnetic fields.		
3	Define and derive different laws in Electrostatic & Electromagnetic fields.		
4	Explain Maxwell's equations and concepts of transmission lines.		
5	Analyze techniques for formulating and solving problems in Electrostatic &		
	Electromagnetic fields.		
6	Develop mathematical skills related with differential, integral and vector calculus.		

Cours	Course Outcomes:		
Upon	Upon successful completion of this course, the student will be able to:		
1	Comprehend the fundamentals of Electrostatic and Electromagnetic fields.		
2	Apply Gauss' law, Ampere's Law, Biot-Savart law, Faraday's law and laws related		
	with steady magnetic field while solving problems in Electrostatic and Electromagnetic		
	fields.		
3	Develop field equations from understanding of Maxwell's Equations.		
4	Extend the knowledge of basic properties of transmission lines to analyze		
	electromagnetic wave propagation in generic transmission line geometries.		
5	Demonstrate mathematical skills related with differential, integral and vector calculus.		

Unit No		No. of Hours
I	Co-ordinate systems : Vector Algebra, Co-ordinate systems, Curl, Divergence & Gradient, Stoke's Theorem, Poisson's and Laplace Equations, Coulomb's law, line, Surface & Volume Charge distribution, uniqueness theorem.	08
п	Electrostatic Fields: Electric Field Intensity, Electric Field due to infinite line and surface charges, Electric Flux Density, Gauss law (differential and integral form) and its applications, Divergence Theorem, Electric Potential and gradient. Work done, Energy Density, Electric Dipole and moment09	

III	Dielectrics & Boundary conditions: Polarisation in Dielectrics, Boundary conditions for Dielectric and Dielectric, Conductor and Dielectric, Conductor and free space. Method of Images for point and line charge. Capacitance – parallel, co-axial and spherical. Continuity equation.	09
IV	Magnetostatic Fields: Biot savart law, Magnetic Field Intensity due to infinite and finite line. Ampere's Circuital Law in integral and differential form, Magnetic flux density, Magnetic boundary conditions, vector magnetic potential, Magnetic Torque, moment and dipole.	08
V	Wave Propagation: Maxwell's Equations in point form & Integral form for various fields, Wave equations, wave propagation through different medium, skin depth, Poynting theorem, Reflection of plane wave.	08
VI	Transmission Lines: Transmission Line equations, Characteristic equation of infinite Transmission Line, Uniform terminated Transmission Line, Input impedance, Phase velocity and group velocity, Short circuited and open circuited line, Reflection coefficient VSWR, smith chart (Numerical expected) and applications.	08

IUA	I CAT DOOKS.			
1	<i>Engineering Electromagnetics</i> - William .H. Hayt and J A Buck – 7 th Edition – 2011.			
2	Principles of Electromagnetics - Matthew N O. Sadiku – 4 th Edition, Oxford publication			
	2009.			
3	Electromagnetic Field Theory and Transmission Lines – Gottapu Sasibhushana rao –			
	Wiley India 2013.			
Refe	Reference Books:			
1	Electromagnetic Field Theory- Rakhesh Singh Kshetrimayum – Cengage Publishing –			
	2012.			
2	<i>Electromagnetic with applications</i> - J.D. Kraus. (MGH Publications)- 4th Edition.			
2	Electromagnetic with applications - J.D. Klaus. (MOIT Fublications)- 4th Edition.			
3	Fundamentals of Engineering Elecromagnetics – Sunil Bhooshan – Oxford University			
	press. 2012.			
4	Elements of Electromagnetic fields - Surinder P.Seth (Dhanpat Rai Publications)			

Minimum 08 Tutorials based on above Topics Note for Paper setter: 50% Theory & 50% Problems are expected

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- II w.e.f July 2014 5. Subject : Analog Communication Systems

Teaching Scheme	Examination Scheme
Lectures : 4 hrs / week	Theory : 100 Marks
Practical: 2 hrs / week	TW: 25 Marks POE: 50 Marks

Course Objectives:

The course aims to:

The basic objective of this course is to introduce the students with analog communication, AM, FM modulation techniques, their analysis, bandwidth calculations. It also focuses on the performance analysis of analog communications systems under the presence of noise and finally introduces the pulse and digital modulation techniques.

	course outcomes.			
Cours	Course Outcomes:			
Upon	Upon successful completion of this course, the student will be able to:			
1	Understand and identify the fundamental concepts and various components of analog communication systems.			
2	Understand, analyze and explain various analog modulation schemes.			
3	Understand the performance of analog communications systems under the presence of			
	noise.			
4	Develop the ability to compare and contrast the strengths and weaknesses of various			
	communication systems			
5	Analyze Basic communications systems and their performance under the presence of			
	noise			
6	Differentiate between various pulse modulation techniques			
	- · ·			

Unit No		No. of Hours
I	Amplitude Modulation:Elements of electronic communication systems, Need for modulation, channel, frequency spectrum, time and frequency domain signals, Amplitude Modulation principles, AM envelope, frequency spectrum & BW, phase representation of AM wave, Modulation index, % modulation, AM modulating circuits: Low level AM modulation, medium power AM modulation, AM transmitters: Block of low level DSBFC, High level DSBFC, Trapezoidal patterns Evolution and descriptions of SSB, 	09
II	Angle Modulation: Instantaneous frequency, Concept of angle modulation, frequency spectrum, Narrow band & Wide Band FM, Modulation Index, Bandwidth, Phase modulation, Bessel,s Function and it,s mathematical Analysis, Generation of FM (Direct and Indirect Method), Comparison of FM and	08

	PM.	
III	AM Receiver: Simplified block diagram of AM receiver, receiver parameters: Sensitivity, Selectivity, BW, dynamic range, Tracking, fidelity, Types of AM receiver: TRF and super heterodyne (block diagram), AM detection types: using diode, practical diode detector, distortion in diode detector. Negative peak clipping & diagonal clipping, Demodulation of SSB using : product demodulator & diode balanced modulator, Automatic Gain Control (AGC).	08
IV	FM Receiver: Double conversion FM receivers, block diagram, FM demodulator, tuned circuit frequency discriminators, slope detectors, fosters seeley discriminator, ratio detectors, PLL-FM demodulators, FM noise suppression	08
V	Noise: Sources of noise, Types of noise White noise, shot noise, thermal noise, partition noise, low frequency or flicker noise, burst noise, avalanche noise, signal to noise ratio, SNR of tandem connection. Noise Figure, Noise Temperature, FRISS formula for noise figure, Noise bandwidth	08
VI	Pulse Modulation : Introduction, Sampling theorem: Occurance of allising error, Mathematical proof of sampling thm., PAM: Channel BW for PAM, Natural Sampling, Flat-top Sampling, PAM & TDM, Signal Recovery,; PWM: Uses of PWM, Genration of Analog W/F using PWM, PPM: Generation of PAM, Generation of PWM, Generation of PPM; PCM Basics, PCM Transmitter and Receiver, Quantization	09

1	George Kennedy, "Electronic Communications", McGraw Hill Kennedy.		
2	Wayne Tomasi 'Electronics Communication System' -Fundamentals through Advanced		
	Vth Edition- Pearson Education.		
3	V. Chandra Sekar, "Analog Communication", OXFORD University press.		
Refe	Reference Books:		
1	B.P. Lathi, "Analog and Digital Communication", OXFORD University press.		
2	Simon Haykin, "An introduction to analog & digital communications", John Wiley &		
	Sons		
3	R P Singh, S D Sapre 'Communication System-Analog & Digital' IInd Edition – Tata Mc		
	Graw Hill Publication		
4	Blake"Electronic Communication Systems",2 nd Edition CENGAGE learning		
	•d		
5	Louis E. Frenzel, "Principals of electronic communication system", III rd Ed., TMH Pub		

List of Experiments (Minimum 10)

- 1. Practical implementation of Amplitude modulation and demodulation.
- 2. Calculation of modulation index by graphical method of DSBFC signal & measurement of power of AM wave for different modulating signal.
- 3. SSB modulation using any method (filter method, Phase shift method) and its detection.
- 4. Envelope detector- Practical diode detector.
- 5. Performance and analysis of AM system using trapezoidal method
- 6. Performance and analysis of frequency modulator system and also find the modulation index.
- 7. Experiment on Sampling and reconstruction and also observe aliasing effect by varying sampling frequency.
- 8. Practical implementation of PAM system
- 9. Practical implementation of PPM system
- 10. Practical implementation of PWM system
- 11. Practical implementation of PAM-TDM systems.
- 12. Experiment on Pre-emphasis and De-emphasis.
- 13. Visit to AIR.

Note: 1. There should be compulsory one industrial visit related to this subject.

2.At least one experiment based on simulation software.

(Question Paper should include 70% theory and 30% numerical.)

SHIVAJI UNIVERSITY, KOLHAPUR S.E.(Electronics and Telecommunication) Part- II w.e.f July 2014 6. Subject: Circuit Simulation

Teaching Scheme	Examination Scheme
Lectures : hrs / week	Theory :
Practical: 2 hrs / week	TW: 25 Marks

Course Objectives:

The course aims to:		
1	Provide an introduction to P-Spice & simulation software tools (like OrCAD / Proteus,	
	MultiSim).	
2	Develop the ability to analyze electronic circuits using simulation software for their AC	
	& DC analysis.	
3	Develop skills to design PCB as per required specification.	

Course Outcomes:			
Upon	Upon successful completion of this course, the student will be able to:		
1	Analyze components associated with modelling and simulation of electronic systems.		
2	Demonstrate proficiency in the use of appropriate equipment and devices for simulation of electronic circuit.		
3	Analyze electronics devices and circuits using computer simulations.		
4	Design/model and troubleshoot of electronic systems.		
5	Generate a feasible and efficient PCB layout of the given circuit using software.		

Unit	No. of
No	Hours

	SECTION-I	
I Schematic Design: Introduction, Description of P-Spice, Types of analysis, Description of simulation software tools (like OrCAD / Proteus), Schematic Description: Introduction, Input files, element values, Nodes, circuit elements, sources, output variables, format of circuit and output files, drawing the schematic, Design rule Check (DRC), Netlist details.		04
п	Simulation:04Types of Analysis: Bias point, Time domain, AC Sweep, DC Sweep, Parametric, Monte Carlo, Noise analysis. Cover vertical devices also using Multisim, ORCAD, Proteous, OSCAD04	
ш	PCB Design: IC packages, Types of Connectors, Netlist for layout, Types of PCB's, Description of layout design tool, foot- print creation, Setting board parameter (board template, layer strategies), Component placement considerations, Routing strategies, Design Rule check, back annotation, post processing reports. Software: Express PCB	04

1.	M. H. Rashid 'Introduction to P-spice using OrCAD for circuits and Electronics' -	
	Pearson	
	Education	
2.	Mike Tooley 'Electronic Circuits-Fundamentals and Applications' 3 rd Edition – Vikas	
	Publication (Routledge)	
Reference Books:		

1.	User manuals of PROTEUS, OrCAD, Multisim	
2.	User manuals of OSCAD, Express PCB from IIT, Pawai	

List of Experiment (Minimum 10)

- 30% experiments on Analog Electronics/Linear Integrated Circuit
- 30% experiments on Digital Electronics
- 30% experiments on Network Analysis
- 10% experiments on Transducer & Measurement

S.E.(Electronics & Telecommunication) Comparison of Old and Revised Structure of S.E Electronics & Telecommunication (Effective from 2014-2015)

Sr No.	OLD Structure	Revised Structure
01	Maths-III	Maths-III
02	AECD-1	Analog Circuits-1
03	Digital Design	Digital Electronics
04	Linear Circuits	Network Analysis
05	Electronics Machines &	Transducers & Measurement(First Section
	Measurements	removed ,Second extended to full marks)
06	Programming Tech	Programming Tech

Sr No.	OLD Structure	Revised Structure
01	AECD-2	Analog Circuits-2
02	Data Structure	Data Structure
03	Electromagnetic Fields.	Electromagnetic Engineering
04	Electronics	Analog Communication Systems
	Communication systems	
05	Circuit Simulation	Circuit Simulation
06	Microprocessor and peripherals	Linear Integrated Circuits

Note: Microprocessor and Peripherals & Linear Integrated Circuits are exchanged with third year and syllabus change in Microprocessor and peripherals naming the subject Microprocessors & Microcontrollers.

Dr Mrs S B Patil Chairman BOS(Electronics& Telecommunication)