<u>PAPER – II</u> MATHEMATICS

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{1}{2\sqrt{2}}$ (c) 0 (d) none of these
20. General solution for 0 if $\sin\left(20 + \frac{\pi}{6}\right) + \cos\left(0 + \frac{5\pi}{6}\right) = 2$, is
(a) $2m + \frac{7\pi}{6}$ (b) $2n\pi + \frac{\pi}{6}$ (c) $2n\pi - \frac{7\pi}{6}$ (d) none of these
21. In a AABC if $a^2 \sin (B-C) + b^2 \sin (C-A) + c^2 \sin (A-B) = 0$, then triangle is
(a) right angled (b) obtuse angled (c) isosceles (d) none of these
22. If $||y| < |x|$ and $xy > 0$, then the value of $\tan^{-1} \frac{x}{y} - \tan^{-1} \frac{x-y}{x+y}$ is equal to
(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $-\frac{3\pi}{4}$
23. If a point $P(2, 3)$ is shifted by a distance $\sqrt{2}$ units parallel to the line $y = x$ then coordinates
of P in the new position are
(a) $(3, 4)$ (b) $(2 + \sqrt{2}, 3 + \sqrt{2})$
(c) $(2 - \sqrt{2}, 3 - \sqrt{2})$ (d) none of these
24. The line $(a + b)x + (a - b)y = 2a + 3b$ (where $a, b \neq 0, b \in R$) always passes through the
fixed point
(a) $\left(\frac{5}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{5}{2}, \frac{-1}{2}\right)$ (c) $\left(\frac{-5}{2}, \frac{-1}{2}\right)$ (d) $\left(\frac{-5}{2}, \frac{1}{2}\right)$
25. (0, 0) and $(3, 3\sqrt{3})$ are two vertices of an equilateral triangle, then the third vertex is
(a) $(3, -3)$ (b) $(3, 3)$ (c) $(-3, 3\sqrt{3})$ (d) none of these
26. Equation of a circle through $\mathbf{e}(1, -2)$ and concentric with the circle
 $x^2 + y^2 - 3x + 4y - c = 0$ is
(a) $x^2 + y^2 - 3x + 4y - 1 = 0$ (d) none of these
27. Let the circles $x^2 + y^2 + 6x + k = 0$ and $x^2 + y^2 + 8y - 20 = 0$ touching each other
intermally, then value of k is
(a) 6 (b) 9 (c) 8 (d) none of these

35. The domain of the function $f(x) = \sqrt{\log_{0.5} x}$ is (a) (0, 1] (b) (0, ∞) (c) (.5, ∞) (d) [1, ∞)

36. The inverse of the function
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} + 2$$
 is given by
(a) $\log_e \left(\frac{x-2}{x-1}\right)^{1/2}$ (b) $\log_e \left(\frac{x-1}{3-x}\right)^{1/2}$ (c) $\log_e \left(\frac{x}{2-x}\right)^{1/2}$ (d) $\log_e \left(\frac{x-1}{x+1}\right)^{-2}$
37. $\lim_{x \to x} \left(\frac{x^2 \sin \frac{1}{x} - x}{1-|x|}\right)$ is
(a) 0 (b) 1 (c) -1 (d) none of these
38. The number of points at which the function $f(x) = |x + 1| + |\cos x| + \tan \left(x + \frac{\pi}{4}\right)$ does not
have a derivative in the interval (-1, 2) is
(a) 1 (b) 2 (c) 3 (d) 4
39. $\lim_{x \to 0} \frac{\tan[e^2]x^2 - \tan[-e^2]x^2}{\sin^2 x}$ is (where [:] is greatest integer function)
(a) 0 (b) 8 (c) 15 (d) none of these
40. The function $f(x) = [x]^2 - [x^2]$ (where [y] is the largest integer $\leq y$) is discontinuous at
(a) all integers (b) all integers except 0 and 1
(c) all integers except 0 (d) all integers except 1
41. If $\int_0^x f(t) dt = x^2 + \int_x^t f(t) dt$, then $f(1) =$
(a) 0 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) 1
42. $\int_0^x \frac{x \sin 2x \sin \left[\frac{\pi}{2} \cos x\right]}{2x - \pi} dx =$
(a) $\frac{8}{\pi^2}$ (b) $\frac{2}{\pi}$ (c) $\frac{1}{\pi^2}$ (d) none of these

43. The area bounded by the curves $x^2 + y^2 \le 1$ and $|x| + |y| \ge 1$ is (a) 2 sq. units (b) $\pi + 2$ sq.units (c) $\pi - 2$ sq. units (d) none of these

- 44. Solution of $2y \sin x \frac{dy}{dx} = 2 \sin x \cos x y^2 \cos x, x = \frac{\pi}{2}, y = 1$ is given by (a) $y^2 = \sin x$ (b) $y = \sin^2 x$ (c) $y^2 = \cos x + 1$ (d) none of these
- **45.** The differential equation of all circles which pass through the origin and whose centres lies on *y*-axis is

(a)
$$(x^2 - y^2)\frac{dy}{dx} - 2xy = 0$$

(b) $(x^2 - y^2)\frac{dy}{dx} + 2xy = 0$
(c) $(x^2 - y^2)\frac{dy}{dx} - xy = 0$
(d) $(x^2 - y^2)\frac{dy}{dx} + xy = 0$

46. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C of triangle ABC, the position vector of the point where the bisector of $\angle A$ meets BC is

(a)
$$\frac{2}{3}(-6\hat{i}-8\hat{j}-6\hat{k})$$

(b) $\frac{2}{3}(6\hat{i}+8\hat{j}+6\hat{k})$
(c) $\frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})$
(d) $\frac{1}{3}(5\hat{i}+12\hat{k})$

47. If the difference of two unit vectors is again a unit vector, then the angle between them is (a) 30° (b) 40° (c) 60° (d) 90°

48. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \cdot (\vec{b} + \vec{c}) + \vec{b} \cdot (\vec{c} + \vec{a}) + \vec{c} \cdot (\vec{a} + \vec{b}) = 0$ and $|\vec{a}| = 1, |\vec{b}| = 4, |\vec{c}| = 8$, then $|\vec{a} + \vec{b} + \vec{c}| =$ (a) 13 (b) 81 (c) 9 (d) 5

- **49.** The coordinates of the centre of the sphere (x + 1) (x + 3) + (y 2) (y 4) + (z + 1) (z + 3) = 0 are (a) 1, -1, 1) (b) (-1, 1, -1) (c) (2, -3, 2) (d) (-2, 3, -2)
- 50. The ratio in which the plane $\vec{r} \cdot (\hat{i} 2\hat{j} + 3\hat{k}) = 17$ divides the line joining the points $-2\hat{i} + 4\hat{j} + 7\hat{k}$ and $3\hat{i} 5\hat{j} + 8\hat{k}$ is (a) 1:5 (b) 1:10 (c) 3:5 (d) 3:10
- **51.** Workers work in three shifts I, II, III in a factory. Their wages are in the ratio 4 : 5 : 6 depending upon the shift. Number of workers in the shifts are in the ratio 3 : 2 : 1. If total number of workers working is 1500 and wages per worker in shift I is Rs. 400. Then mean wage of a worker is

(a) Rs. 467 (b) Rs. 500 (c) Rs. 600 (d) Rs. 400

52. A bag contains 5 brown socks and 4 white socks. A man selects two socks from the bag without replacement. The probability that the selected socks will be of the same colour, is

(a)
$$\frac{5}{108}$$
 (b) $\frac{1}{6}$ (c) $\frac{5}{18}$

53. If on an average 2 ships in every 10, sinks. The probability that out of 5 ships expected to arrive, at least three will arrive safely, is

54. A body is projected vertically upwards from a tower of height 192 ft. If it strikes the ground in 6 seconds, then the velocity with which the body is projected is
(a) 64 ft./sec
(b) 32 ft./sec
(c) 16 ft./sec
(d) none of these

- 55. In a projectile motion horizontal range R is maximum, then relation between height H and R is
 - (a) $H = \frac{R}{2}$ (b) $H = \frac{R}{4}$ (c) H = 2R (d) $H = \frac{R}{8}$

(b) $\frac{1}{16}$

56. The mean and variance of a random variable X having a binomial distribution are 4 and 2 respectively. Then, P(X = 1) is

(a)
$$\frac{1}{32}$$

57. Let $f: R \to R$ be a function defined by $f(x) = \max \{x, x^3\}$. The set of all points where f(x) is not differentiable is (a) $\{-1, 1\}$ (b) $\{-1, 0\}$ (c) $\{0, 1\}$ (d) $\{-1, 0, 1\}$

58.
$$\int xf'(ax^{2}+b) f(ax^{2}+b) \frac{1}{2} dx =$$
(a) $\frac{1}{3a} f(ax^{2}+b) \frac{3}{2} + C$
(b)
(c) $\frac{f(ax^{2}+b)}{3a} + C$
(d)

(b)
$$\frac{x f(ax^2 + b)^3}{3} + C$$

(d) $\frac{4}{2}$

(d) none of these

If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, then value of $\tan \left(\frac{\alpha - \beta}{2}\right)$ is

(a) $\sqrt{\frac{4+(a^2+b^2)}{a^2+b^2}}$ (b) $\sqrt{\frac{4-(a^2+b^2)}{a^2+b^2}}$ (c) $\sqrt{\frac{a^2+b^2}{4-(a^2+b^2)}}$ (d) none of these

60. The vertices of a triangle *ABC* are (1, 1), (4, -2) and (5, 5) respectively. The equation of perpendicular dropped from *C* to the internal bisector of angle *A* is

(a)
$$y-5=0$$
 (b) $x-5=0$ (c) $2x+3y-7=0$ (d) none of these

61. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n are

(b) 6, 3 (a) 7, 6 Entrar (c) 5, 1 (d) 8, 7 **62.** If $\left(\frac{1+i}{1-i}\right)^x = 1$, then (a) x = 4n, where *n* is any positive integer (b) x = 2n, where *n* is any positive integer Entrance (c) x = 4n + 1, where *n* is any positive integer (d) x = 2n+1, where n is any positive integer If z = x - iy and $z^{1/3} = p + iq$, then $\left(\frac{x}{p} + \frac{y}{q}\right)/(p^2 + q^2)$ is equal to 63. (a) - 2(b) - 1(c) 2 (d) 1 If α and β are different complex numbers with $|\beta| = 1$, then $\left|\frac{\beta - \alpha}{1 - \alpha \overline{\beta}}\right|$ is equal to 64. tranc Entrance (b) 1/2 (a) 0(c) 1 (d) 2 **65**. If a, b, c are in A.P., then the straight line ax + by + c = 0 will always pass through the point (a) (-1, -2)(b) (1, -2)(c)(-1,2)(d)(1,2)66. If $\frac{S_n}{S_m} = \frac{n^2}{m^2}$ (where S_k is the sum of first k terms of an A.P., a_1, a_2, a_3, \dots), then the value of Entrance $\frac{a_{m+1}}{a_{n+1}}$ in terms of *m* and *n* will be (a) $\frac{(2m+1)^2}{(2n+1)^2}$ (b) $\frac{(2n+1)^2}{(2m+1)^2}$ (c) $\frac{(2m-1)^2}{(2n-1)^2}$ (d) $\frac{(2n-1)^2}{(2m-1)^2}$

67. If $|x^2 - x - 6| = x + 2$, then the values of x are (a) -2, 2, -4 (b) -2, 2, 4

(c) 3, 2, -2
(d) 4, 4, 3
68. The solution of the equation
$$2x^2 + 3x - 9 \le 0$$
 is given by
(a) $\frac{3}{2} \le x \le 3$
(b) $-3 \le x \le \frac{3}{2}$
(c) $-3 \le x \le 3$
(d) $\frac{3}{2} \le x \le 2$
69. The value of *a* for which the quadratic equation $3x^2 + 2(a^2 + 1)x + (a^2 - 3a + 2) = 0$ possesses
roots with opposite sign, lies in
(a) $(-\infty, 1)$
(b) $(-\infty, 0)$
(c) (1, 2)
(c) (1, 2)
(d) $\left(\frac{3}{2}, 2\right)$
70. The number of ways in which five identical balls can be distributed among ten different
boxes such that no box contains more than one ball, is
(a) 10.1
(b) $\frac{10!}{5!}$
(c) $\frac{10!}{(5!)^2}$
(d) none of these
71. Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one chair each.
First the women choose the chairs from amongst the chairs marked 1 to 4 and then men select
the chairs from amongst the remaining. The number of possible arrangements is
(a) ${}^{6}C_{3} \times C_{2}$
(b) ${}^{4}C_{3} \times C_{5}$
(c) ${}^{4}P_{2} \times {}^{3}P_{3}$
(d) none of these
72. If $\frac{T_{2}}{T_{3}}$ in the expansion of $(a+b)^{**3}$ are equal, then $n =$
(a) 3
(b) 4
(c) 5
(c) $\frac{n(n+1)(n+2)}{12}$
(c) $\frac{n(n+1)(n+2)}{12}$
(c) $\frac{n(n+2)^{2}(n+1)}{12}$
(c) $\frac{n(n+2)^{2}(n+1)}{12}$
(d) none of these
74. If $y = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + ...zo$, then $x =$

(a)
$$y - \frac{y^2}{2} + \frac{y^3}{3} + ...\infty$$
 (b) $y + \frac{y^2}{2!} + \frac{y^3}{3!} + ...\infty$
(c) $1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + ...\infty$ (d) none of these
75. If α , β are the roots of the equation $x^2 - px + q = 0$, then $\log_x(1 + px + qx^2) =$
(a) $(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^2 + \beta^3}{3}x^3 - ...\infty$
(b) $(\alpha + \beta)x - \frac{(\alpha + \beta)^2}{2}x^2 + \frac{(\alpha + \beta)^3}{3}x^3 - ...\infty$
(c) $(\alpha + \beta)x - \frac{\alpha^2 + \beta^2}{2}x^2 + \frac{\alpha^3 + \beta^3}{3}x^3 + ...\infty$
(d) none of these
76. If $A = \begin{vmatrix} \sin(\theta + \alpha) & \cos(\theta + \alpha) & 1 \\ \sin(\theta + \beta) & \cos(\theta + \beta) & 1 \\ \sin(\theta + \beta) & \cos(\theta + \beta) & 1 \\ \sin(\theta + \gamma) & \cos(\theta + \gamma) & 1 \end{vmatrix}$, then
(a) $A = 0$ for all θ (b) A is an odd Function of θ
(c) $A = 0$ for all θ (c) $A = 0$ for $\theta = \alpha + \beta + \gamma$ (d) A is independent of θ
77. The number of distinct real roots of $\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0$ in the internal $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is
(a) 0 (b) 2 (c) 1 (d) 3
78. Matrix A is such that $A^2 = 2A - I$, where I is the identity matrix. Then for $n \ge 2, A^n =$
(a) $nA - (n-1)I$ (b) $nA - I$
(c) $2^{n-1}A - (n-1)I$ (d) $2^{n-1}A - I$
79. The value of k , for which $(\cos x + \sin x)^2 + k \sin x \cos x - 1 = 0$ is an identity, is
(a) -1 (b) -2 (c) 0 (d) 1
80. If $\tan(A - B) = 1$, $\sec(A + B) = \frac{2}{\sqrt{3}}$, then the smallest positive value of B is
(a) $\frac{25}{24}\pi$ (b) $\frac{19}{24}\pi$ (c) $\frac{13}{24}\pi$ (d) $\frac{11}{24}\pi$

81. The solution of the equation $\cos^2 x - 2\cos x = 4\sin x - \sin 2x$, $(0 \le x \le \pi)$ is

(a)
$$\pi - \cot^{-1}\left(\frac{1}{2}\right)$$
 (b) $\pi - \tan^{-1} \mathbf{C}_{-1}^{-1}$
(c) $\pi + \tan^{-1}\left(-\frac{1}{2}\right)$ (d) None of these
82. Let $f(x) = \cos \sqrt{x}$, then which of the following is true
(a) $f(x)$ is periodic with period $\sqrt{2\pi}$
(b) $f(x)$ is periodic with period $\sqrt{\pi}$
(c) $f(x)$ is periodic function
83. In a triangle *ABC*, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$ and *D* divides *BC* internally in the ratio 1 : 3. Then
 $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to
(a) $\frac{1}{3}$ (b) $\frac{1}{\sqrt{3}}$
(c) $\frac{1}{\sqrt{6}}$ (d) $\sqrt{\frac{2}{3}}$
84. If $\theta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x, x \ge 0$, then the smallest interval in which θ lies is given by
(a) $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ (b) $0 < \theta < \pi$
(c) $-\frac{\pi}{4} \le \theta \le 0$ (d) $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$
85. If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then the value of $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is
equal to
(a) 0 (b) 3 (c) -3 (d) 9
86. Three vertices of parallelogram taken in order, are (1, 3), (2, 0) and (5, 1). Then its fourth
vertex is
(a) $(3, 3)$ (b) $(4, 4)$ (c) $(4, 0)$ (d) $(0, -4)$
87. The line joining two points $A(2, 0)$ and $B(3, 1)$ is rotated about A in anti-clockwise
direction through an angle of 15°. The equation of the line in the new position, is
(a) $\sqrt{3}x - y - 2\sqrt{3} = 0$ (b) $x - \sqrt{3}y - 2 = 0$
(c) $\sqrt{3}x + y - 2\sqrt{3} = 0$ (d) $x + \sqrt{3}y - 2 = 0$

- In the equation $y y_1 = m(x x_1)$ if m and x_1 are fixed and different lines are drawn for 88. different values of y_1 , then
 - (a) the lines will pass through a single point
 - (b) there will be a set of parallel lines
 - (c) there will be one line only
 - (d) none of these
- The intercept of a line between the coordinate axes is divided by point (-5, 4) in the ratio **89**. 1 : 2. The equation of the line will be
 - (a) 5x 8y + 60 = 0
 - (c) 2x 5y + 30 = 0

(b) 8x - 5y + 60 = 0(d) None of these

- The equation $\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4$ represents a 90. Entrance
 - (a) circle
 - (b) pair of straight lines
 - (c) parabola
 - (d) ellipse
- The straight line (x-2)+(y+3) = 0 cuts the circle $(x-2)^{2}+(y-3)^{2} = 11$ at 91.
 - (a) no points (c) two points

- (b) one point (d) none of these
- 92. A circle lies in the second quadrant and touches both the axes. If the radius of the circle be 4, then its equation is
 - (a) $x^2 + y^2 + 8x + 8y + 16 = 0$ (c) $x^2 + y^2 - 8x + 8y + 16 = 0$
- (b) $x^2 + y^2 + 8x 8y + 16 = 0$ (d) $x^2 + y^2 - 8x - 8y + 16 = 0$
- 93. The locus of the intersection point of $x \cos \alpha - y \sin \alpha = a$ and $x \sin \alpha - y \cos \alpha = b$ is (a) ellipse (b) hyperbola (d) none of these
 - (c) parabola
- $y^2 2x 2y + 5 = 0$ represents 94. (a) a circle whose centre is (1, 1)

(c) a parabola whose directrix is $x = \frac{3}{2}$

(b) a parabola whose focus is (1, 2)

(d) a parabola whose directrix is $x = -\frac{1}{2}$

The curve described parametrically by $x = t^2 + t + 1$. $y = t^2 - t + 1$ represents 95. (a) a pair of straight lines

(c) a parabola

(b) an ellipse

(d) a hyperbola

96. If the module of the vectors \vec{a} , \vec{b} , \vec{c} are 3, 4, 5 respectively and \vec{a} and $\vec{b} + \vec{c}$, \vec{b} and $\vec{c} + \vec{a}$, \vec{c} and $\vec{a} + \vec{b}$ are mutually perpendicular, then the modulus of $\vec{a} + \vec{b} + \vec{c}$ is (a) $\sqrt{12}$ (b) 12

(d) 50

(d) $\sqrt{369}$

(c) $5\sqrt{2}$

97. What will be the length of longer diagonal of the parallelogram constructed on $5\vec{a} + 2\vec{b}$ and $\vec{a} - 3\vec{b}$, if it is given that $|\vec{a}| = 2\sqrt{2}$, $|\vec{b}| = 3$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$ (a) 15 (b) $\sqrt{113}$

(c) $\sqrt{593}$

98 Image point of (5, 4, 6) in the plane x + y + 2z - 15 = 0 is(a) (3, 2, 2)(b) (2, 3, 2)(c) (2, 2, 3)(d) (-5, -4, -6)

- 99. If a line makes angles α , β , γ , δ with the four diagonals of a cube, then the value of $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta$ is equal to
 - (a) 1(b) 4/3(c) Variable(d) none of these
- 100. Suppose $f(x) = (x+1)^2$ for $x \ge -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y = x, then g(x) equals
 - (a) $-\sqrt{x} 1, x \ge 0$ (c) $\sqrt{x+1}, x \ge -1$

Entrance

(b) $\frac{1}{(x+1)^2}, x > -1$ (d) $\sqrt{x} - 1, x \ge 0$

KEntrance

rance