EAMCET PHYSICS QUESTIONS

- With due regard to significant figures, the value of (46.7 10.04) is

 1) 36.7
 2) 36.00
 3) 36.66
 4) 30.6
- 2. The least count of a stop watch is 1/5 sec. The time of 20 oscillations of a pendulum is measured to be 25 sec. The maximum percentage error in this measurement is 1) 8%
 2) 1%
 3) 0.8%
 4) 16%
- 3. A body of mass m is suspended by a string of length '*l*' and pulled to a side through horizontal a distance 'r' by means of horizontal force. Then the tension in the string is

1)
$$\frac{mg \sqrt{l^2 - r^2}}{l}$$

2)
$$\frac{mgr}{l}$$

3)
$$\frac{mgl}{r}$$

4)
$$\frac{mgl}{\sqrt{l^2 - r^2}}$$

4. A boat takes 2 hours to travel 8km and back in Still Water Lake. With water velocity of 4 kmph, the time taken for going upstream of 8km and coming back is
1) 160 minutes
2) 80 minutes
3) 320 minutes
4) 180 minutes

5. For a body moving with uniform acceleration 'a', initial and final velocities in a time interval't' are 'u' and 'v' respectively. Then, its average velocity in the time interval't' is

1)
$$\left(v + \frac{at}{2}\right)$$
 2) $\left(v - \frac{at}{2}\right)$ 3) (v-at)

6. The velocity of a body as a function of time is $V = t^3 - 6t^2 + 10t + 4$. Set the accelerations of a body in increasing order at given times

4) $\left(u + \frac{at}{2}\right)$

4) c, a, b

a)
$$t = 0 \sec$$
 b) $t = 1 \sec$ c) $t = 5 \sec$
1) b, a, c 2) a, b, c 3) c, b, a

7. A ball of mass '*m*' is projected from the ground with a speed '*u*' at an angle ' α ' with the horizontal. The magnitude of the change in momentum of the ball over a time interval from beginning till it strikes the ground again is

1) $\frac{mu\sin\alpha}{2}$ 2) $2mu\cos\alpha$	3) $\frac{mu\cos\alpha}{2}$	4) $2mu\sin\alpha$
--	-----------------------------	--------------------

- 8. A force F is applied on a lawn mover at an angle of 60° with the horizontal. If it moves through a distance x, the work done by the force is
 1) Fx/2
 2) F/2x
 3) 2Fx
 4) 2x/F
- 9. A marble going at a speed of $2 ms^{-1}$ hits another marble of equal mass at rest. If the collision is perfectly elastic, find the velocity of the first after collision. 1) 4 2) 0 3) 2 4) 3
- 10. A body of mass 50gm collides elastically with another body of mass 30 gm at rest. Then the percentage loss of the velocity of the colliding body during collision is

 25%
 50%
 67%
- 11. Four identical particles each of mass 'm' are arranged at the corners of a square of side length "l". If the masses of the particles at the end of a side are doubled, the shift in the centre of mass of the system?

1.
$$\frac{l}{6}$$
 2. $\frac{l}{6\sqrt{2}}$ 3. $\frac{l}{\sqrt{2}}$ 4. $\frac{l}{5\sqrt{2}}$

12. Three identical spheres each of mass 1kg are placed touching each other with the centres on a straight line. The centres are marked as A, B and C respectively. The distance of centre of mass from A is

1.
$$\frac{AB + BC}{3}$$

3. $\frac{AC + BC}{2}$
2. $\frac{AB + AC}{3}$
4. $\frac{AB + AC}{2}$

13. A body of mass 2kg is placed on a horizontal surface having coefficient of kinetic friction 0.4 and coefficient of static friction 0.5. If a horizontal force of 2.5N is applied on the body, the frictional force acting on the body will be $(g = 10 \text{ ms}^{-2})$ 1.8N 2) 10 N 3) 20 N 4) 2.5 N

A body of mass 'm' is thrown vertically up with velocity 'u'. If the resistance force due to air 14. is 'f', the time of ascent of the body is

1.
$$\frac{u}{g+f}$$
 2. $\frac{mu}{mg+f}$ 3. $\frac{u}{g-f}$ 4. $\frac{mu}{mg-f}$

Two particles of masses in the ratio 1 : 2 are moving in circles of radii in the ratio 2 : 3 with 15. time periods in the ratio 3 : 4. The ratio of their centripetal forces is 1) 9:4 2) 1 : 4 3) 9 : 16 4) 16 : 27

Let I be the moment of inertia of a uniform square plate about an axis AB that passes through 16. its centre and is parallel to two of its sides . CD is a line in the plane of the plate that passes through the centre of the plate and makes an angle θ with AB. The moment of inertia of the plate about the axis CD is then equal to

1)
$$I$$
 2) $I \sin^2 \theta$

3)
$$I\cos^2\theta$$

4) $I\cos^2\left(\frac{\theta}{2}\right)$

Two satellites are revolving round the earth at different heights. The ratio of their orbital 17. speeds is 2: 1. If one of them is at a height of 100km, the height of the other satellite is 1) 19600km 2) 24600km 3) 29600km 4) 14600km

A particle is kept at rest at a distance R (Earth's radius) above the earth's surface. The 18. minimum speed with which it should be projected so that it does not return is

1)
$$\sqrt{\frac{GM}{R}}$$
 2) $\sqrt{\frac{GM}{2R}}$ 3) $\sqrt{\frac{GM}{3R}}$ 4) $\sqrt{\frac{GM}{4R}}$

19. A body executing SHM has a total energy E. When its kinetic energy is $\frac{3E}{4}$, the displacement

of the particle is (a is amplitude)

1) a 2) a/2 3)
$$\frac{\sqrt{3}a}{2}$$
 4) $\frac{3a}{4}$

20. When a body is in SHM, match the statements in Column A with that in Column B Column A Column B e) At half of the amplitude a) Velocity is maximum b) Kinetic energy is 3/4th of total energy f) At the mean position

c) Potential energy is 3/4th of total energy g) At extreme position

d) Acceleration is maximum

h)At $\frac{\sqrt{3}}{2}$ times amplitude 1) a - f, b - e, c - h, d - g3) a - g, b - h, c - e, d - f2) a − e, b − f, c − g, d − h 4) a - h, b - e, c - f, d - g

- 21. A uniform heavy rod of length L and area of cross section 'A' is hanging from a fixed support. If young's modulus of the material of the rod is Y, the increase the length of rod is $(\rho \text{ is density of the material of the rod})$
 - 1) $\frac{L^2 Y}{2\rho g}$ 2) $\frac{L^2 \rho g}{2Y}$ 3) $\frac{L^2 g}{2Y\rho}$ 4) $\frac{L^2 g}{3Y\rho}$

22. Four wires P,Q,R and S of same materials have diameters and stretching forces as shown below. Arrange their strains in the decreasing order.

Wire	Diameter	stretching force	stretching force	
Р	2 mm	10 N		
Q	1 mm	20 N		
R	4 mm	30 N		
S	3 mm	40 N		
1) Q,S,P,R	2) R,P,S,Q	3) P,Q,R,S	4) P,R,Q,S	

23. The energy required splitting a liquid drop having surface tension T and radius R into n identical droplets is

1) $8\pi R^2 (n^{1/3} - 1)T$ 2) $4\pi R^2 (n^{1/3} - 1)T$ 3) $8\pi R^2 (n^{2/3} - 1)T$ 4) $4\pi R^2 (n^{2/3} - 1)T$

24. An air bubble of radius r is formed at a depth h below the surface of water. The pressure inside the bubble is: $[T = surface tension, P_0 = atmospheric pressure, d = density of water)$

1)
$$P_0 + \frac{2T}{r}$$
 2) $\frac{4T}{r} + \frac{h}{r}$ 3) $P_0 + hdg + \frac{4T}{r}$ 4) $P_0 + hdg + \frac{2T}{r}$

25. A wire of length 60 cm. is bent into a circle with a gap of 1 cm. at its ends. On heating it by 100^{0} C, the length of the gap increases to 1.02 cm. α of material of wire is 1) $2x10^{-4/0}$ C 2) $4x10^{-4/0}$ C 3) $6x10^{-4/0}$ C 4) $1x10^{-4/0}$ C

26. A pendulum clock runs fast by 5 seconds per day at 20^{0} C and goes slow by 10 seconds per day at 35^{0} C. It shows correct time at a temperature of 1) 27.5^{0} C 2) 25^{0} C 3) 30^{0} C 4) 33^{0} C

27. For a gas $\gamma = \frac{5}{3}$. 800c.c. of this gas is suddenly compressed to 100c.c. If the initial pressure

is P, then the final pressure will be

1.
$$\frac{P}{32}$$
 2. $\frac{24P}{5}$ 3. 8P 4. 32P

- 28. The triatomic gas is heated isothermally. What percentage of the heat energy is used to increase the internal energy?
 1. 0 % 2. 14 % 3. 60 % 4. 100 %
- 29. Two metal rods of same length and areas A_1 and A_2 are arranged in parallel. If the thermal conductivities of the materials are k_1 and k_2 the effective thermal conductivity of the combination is

1)
$$\frac{2k_1k_2}{k_1+k_2}$$
 2) $\frac{k_1+k_2}{2}$ 3) $\frac{k_1A_1+k_2A_2}{A_1+A_2}$ 4) $\frac{k_1k_2(A_1+A_2)}{k_1A_2+k_2A_1}$

30. Two cylindrical rods of the same substance have diameters d_1 and d_2 . The amounts of heat conducted by these two rods, for same temperature difference between two ends will be equal if their lengths are related by

1)
$$\frac{1}{l_2} = \frac{d_1}{d_2}$$
 2) $\frac{1}{l_2} = \left(\frac{d_1}{d_2}\right)^2$ 3) $\frac{1}{l_2} = \frac{d_2}{d_1}$ 4) $\frac{1}{l_2} = \left(\frac{d_2}{d_1}\right)^2$

31. An open pipe and closed pipe have same length .The ratio of frequencies of their n^{th} over tone is

1)
$$\frac{n+1}{2n+1}$$
 2) $\frac{2(n+1)}{2n+1}$ 3) $\frac{n}{2n+1}$ 4) $\frac{n+1}{2n}$

32. If the length of the wire of a sonometer is halved the value of resonant frequency will be 1) double 2) half 3) four times 4) eight times

33. An achromatic combination of lenses produce

- 1) Image in black and white
- 2) Coloured images
- 3) Image unaffected by variation of refractive index with wave length
- 4) highly enlarged images
- 34. A ray of light from a denser medium strikes a rarer medium at an angle of incidence 'i' if the reflected and refracted rays are mutually perpendicular to each other then the critical angle is

1)
$$\sin^{-1}(\tan i)$$
 2) $\cos^{-1}(\tan i)$

- 3) $\cot^{-1}(\tan i)$ 4) $\csc^{-1}(\tan i)$
- 35. A light of wavelength λ is incident on an object of size b. If a screen is at a distance D from the object. identify the correct condition for the observation of different phenomenon

a) if $b^2 = D\lambda$, Fresnel diffraction is observed

b) if $b^2 >> D\lambda$, Fraunhoffer diffraction is observed

- c) $b^2 \ll D\lambda$, Fraunhoffer diffraction is observed
- d) $b^2 >> D\lambda$, the approximation of geometrical optics is applicable
- 1) a, b and d are true 2) a,c and d are true
- 3) a and c are true4) a and d are true
- 36. In Young's double slit experiment
 1) only interference occurs
 3) both interference and diffraction occurs
 4) polarisation occurs
- 37. A magnet of moment M is bent at its mid point so that angle between the two parts is 120^{0} , the magnetic moment of the magnet now is

1) M 2)
$$M\sqrt{3}$$
 3) $\frac{M\sqrt{3}}{2}$ 4) $\frac{M}{2}$

38. When a bar magnet is suspended in an uniform magnetic field, then the torque acting on it will be

List-I

List-II

a) maximum	e) $\theta = 45^{\circ}$ with the field
b) half of the maximum value	f) $\theta = 60^{\circ}$ with the field
c) $\sqrt{3}/2$ times the maximum	g) $\theta = 30^{\circ}$ with the field
d) $1/\sqrt{2}$ times the maximum	h) $\theta = 90^{\circ}$ with the field
1) a-h, b-g, c-f, d-e	2) a-e, b-f, c-g, d-h
3) a-f, b-e, c-g, d-h	4) a-h, b-f, c-g, d-e

39. A cube of side b has charge q at each of its vertices. The electric field at the centre of the cube will be

1) zero 2)
$$\frac{32q}{b^2}$$
 3) $\frac{q}{2b^2}$ 4) $\frac{q}{b^2}$

- 40. If an uncharged capacitor is charged by connecting it to a battery, then the amount of energy lost as heat is
 - 1) $\frac{1}{2}QV$ 2) QV 3) $\frac{1}{2}QV^2$ 4) QV^2
- 41. A uniform wire of resistance 20Ω having resistance $1 \Omega / m$ is bent in the form of circle as shown in fig. If the equivalent resistance between M and N is 1.8Ω , then the length of the shorter section is

- 1) 2 m
 2) 5 m
 3) 1.8 m
 4) 18 m
 42. In a potentiometer using two cells in series gave a balance length 600cm. When the same cells are connected opposing each other then balance length is 100cm. The ratio of emfs of the cells is
 1) 7 : 5
 2) 5 : 7
 3) 6 : 1
 4) 1 : 6
- 43. The cold junction of a thermo couple is at 0^{0} C and the thermo emf (in volts) as a function of
 - the temperature 't' of the hot junction is given by $E = 10 \times 10^{-6} t \frac{1}{40} \times 10^{-6} t^2$

The neutral temperature and the maximum emf produced are respectively

1)200 ⁰ C, 1m V	2) 400 ⁰ C, 2 mV
	0

- 3) 100^{0} C, 1 mV 4) 200^{0} C, 2 mV
- 44. Two straight long conductors AOB and COD are perpendicular to each other and carry currents i_1 and i_2 . The magnitude of magnetic induction at a point P at a distance a from the point O in the direction perpendicular to the plane ABCD is 1) $(\mu_0 / 2\pi a) (i_1 + i_2)$ 2) $(\mu_0 / 2\pi a) (i_1 - i_2)$

3)
$$(\mu_0 / 2\pi a) (i_1^2 + i_2^2)^{1/2}$$
 4) $(\mu_0 / 2\pi a) [i_1 i_2 / (i_1 + i_2)]$

- 45. The flux linked with a coil is 0.8 Wb when a 2 A current is flowing through it. If this current begins to increase at the rate of 400 A/s, the induced emf in the coil will be 1) 20 V 2) 40 V 3) 80 V 4) 160 V
- 46. In an A.C circuit, a resistance R is connected in series with an inductance L. If the phase angle between voltage and current be 45⁰, the value of inductive reactance will be

1)
$$\frac{R}{4}$$
 2) $\frac{R}{2}$ 3) R 4) $\frac{R}{3}$

47. The work function of cesium is 1.8eV. Light of 5000 A^o is incident on it. The maximum velocity of emitted electrons is nearly

1) $5 \times 10^{6} m/s$ 2) $5 \times 10^{5} m/s$ 3) $5 \times 10^{4} m/s$ 4) $5 \times 10^{3} m/s$

48. The energy of the incident photon is 12.38 e V, while the energy of the scattered photon is 9.4ev. The K.E. of the recoil electron is nearly
1) 2 eV
2) 1 eV
3) 4 eV
4) 3 eV

49.	On the bombar	dment or Boron wit	h neutron, α - partic	cle is emitted and p	roduct nucleus
	formed is				
	$1) - a^{12}$	a) 1.6	~ 1.8	() D 0	

	1) $6C^{12}$	2) $2L_{10}$	3) 3L10	4) ₄ Be ⁵
50.	The energy equi	valent of 1g of matter is		
	1) 9 x 10 ¹³ joule	2	2) 9 x 10 ¹³ erg	
	3) 3 x 10 ⁵ joule		4) 3 x 10 ⁵ joule	
51.	A transistor has	a base current of 1mA a	nd emitter current	100mA. The current transfer ratio

will be			
1) 0.9	2) 0.99	3) 1.1	4) 10.1

KEYS

1) 1	2) 3	3) 4	4) 1	5) 2	6) 1	7) 4
8) 1	9) 2	10) 2	11) 1	12) 2	13) 4	14) 2
15) 4	16) 1	17) 1	18) 1	19) 2	20) 1	21) 2
22) 1	23) 2	24) 4	25) 1	26) 2	27) 4	28) 1
29) 3	30) 2	31) 1	32) 1	33) 3	34) 1	35) 2
36) 3	37) 3	38) 1	39) 1	40) 1	41) 1	42) 1
43) 1	44) 3	45) 4	46) 3	47) 2	48) 4	49) 4
50) 1	51) 2					

HINTS

1. Rounded off to minimum significant figures

2.
$$\Delta T = \frac{1/5}{20} and T = \frac{25}{20}$$
$$\% error = \frac{\Delta T}{T} \times 100$$

3.
$$\frac{T}{l} = \frac{mg}{\sqrt{l^2 - r^2}}$$

4.
$$V_B = \frac{8+8}{2} = 8kmph$$

 $t = t_1 + t_2 = \frac{8}{v_B + v_r} + \frac{8}{v_B - v_r} = 160min$

5. Average velocity= $\frac{\text{total displacement}}{\text{total time}}$

www.sakshieducation.com

$$6. \qquad a = \frac{dv}{dt}$$

$$7. \qquad \Delta P = m(V-u)$$

8.
$$W = \vec{F} \cdot \vec{S} = FS \cos \theta$$

9.
$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)u_1 + \left(\frac{2m_2}{m_1 + m_2}\right)u_2$$

10. Colliding body is first body so, percentage loss of velocity of 1st body = $\frac{u_1 - v_1}{u_1}$ (100)

$$= \left[u_1 - \left[\frac{m_1 - m_2}{m_1 + m_2} \right] u_1 \right] 100 = \left[1 - \left[\frac{m_1 - m_2}{m_1 + m_2} \right] \right] 100$$
$$= \frac{2m_2}{m_1 + m_2} (100) = \frac{2 \times 30}{80} \times 100 = 75\%$$

11. Shift =
$$\frac{m_2 d}{m_1 + m_2}$$

12. Co-ordinates of A, B & C are (0, 0), (AB, 0), (AC, 0)

$$X_{cm} = \frac{\Sigma m_i x_i}{\Sigma m_i}$$

13.
$$F < f_s(\max)$$

Then $f_s = F = 2.5N$
14. $L = \frac{1}{2}g(\sin\theta - \mu\cos\theta)t^2$

15.
$$F = mr\omega^{2} = mr\left(\frac{4\pi^{2}}{T^{2}}\right)$$
$$F \alpha \frac{mr}{T^{2}}$$
$$\frac{F_{1}}{F_{2}} = \frac{m_{1}}{m_{2}} \times \frac{r_{1}}{r_{2}} \times \frac{T_{2}^{2}}{T_{1}^{2}}$$

16. Angle does not change the moment of ienrtia

17.
$$\frac{V_1}{V_2} = \sqrt{\frac{R_2}{R_1}} \left(R_2 = R + h_2 \right)$$

18.
$$F = \frac{GMm}{\left(R+h\right)^2}$$

and centripetal $F = \frac{MV_0^2}{(R+h)^2}$

$$\Rightarrow \frac{GMm}{\left(R+h\right)^2} = \frac{MV_0^2}{\left(R+h\right)^2}$$
22. strain $\alpha \frac{F}{r^2}$

25.
$$\alpha = \frac{l_1 - l_2}{l_1 \Delta t}$$
 (Gap can be taken as 1₁)
26.
$$\frac{1}{2} \alpha (35 - t) \times 86400 = 10$$

$$\frac{1}{2} \alpha (t - 20) \times 86400 = 5$$

27.
$$p_1 v_1^{\gamma} = p_2 v_2^{\gamma}$$

28. In an isothermal process, as temperature remains constant internal energy does not change.
29.
$$K (A_1 + A_2) = k_1 A_1 + k_2 A_2$$

30.
$$Q = \frac{KA(\theta_1 - \theta_2)t}{\ell}$$

34.
$$\mu = \tan i = \frac{1}{\sin c}$$

34.
$$\mu = \tan i = \frac{1}{\sin c}$$

35.
$$L = \tan i = \sin c$$

36.
$$R_{eq} = \frac{(20 - x)x}{20 - x + x} = 1.8 \Omega$$

So longth of shorter part is $(20 - x) \Omega$
Reg = $\frac{(20 - x)x}{20 - x + x} = 1.8 \Omega$
So longth of shorter part = 2m
42.
$$\frac{e_1 + e_2}{e_1 - e_2} = \frac{l_1}{l_2}$$

33. At $\frac{dE}{dt} = 0$; Find 't'
45.
$$\phi = Li \Rightarrow L = \frac{0.8}{2} = 0.4$$

$$e = L\frac{di}{dt} = 0.4 \times 400 = 160v$$

46.
$$Tan\phi = \frac{\omega L}{R}$$

47. K.E. = $\frac{12400}{\lambda} - \omega_b$
48. K.E. = E-E' Where E' is the scattered energy
50. $E = \Delta mC^2$
51.
$$\alpha = \frac{l_e}{l_e}, l_e = l_e + l_e$$