CS344: Introduction to Artificial
Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
1T Bombay

Lecture—30, 31: Predicate Calculus; Interpretation
26" and 29" March, 2012

(Course seminars and discussion on g(n)=g*(n) on 27t)

Himalayan Club example

= Introduction through an example (Zohar Manna,

1974):

= Problem: A, B and C belong to the Himalayan club.
Every member in the club is either a mountain
climber or a skier or both. A likes whatever B
dislikes and dislikes whatever B likes. A likes rain
and snow. No mountain climber likes rain. Every
skier likes snow. Is there a member who is a
mountain climber and not a skier?

= Given knowledge has:
= Facts
= Rules

Example contd.

= Let mcdenote mountain climber and sk denotes skier.
Knowledge representation in the given problem is as follows:

. member(A)
member(B)
member(C)
vx/member(x) — (mc(x) v sk(x))]
vx/mc(x) — ~like(x,rain)]
vx/sk(x) — like(x, snow)]
vx/like(B, x) — ~like(A, x)]
vx/~like(B, x) — like(A, x)]
like(A, rain)
like(A, snow)
1. Question.: Ixfmember(x) A mc(x) A ~sk(x)]
= We have to infer the 11t expression from the given 10.
Done through Resolution Refutation.

© % N S A W N

~
S

Club example: Inferencing

member(A)
member(B)
member(C)
vx[member(x) — (mc(x) v sk(x))]

Can be written as
; ~ member (x)N BRSOk met) v sk(x))]
5. VX[Sk(X) — Ik(X,snow)]

~ sk(x) v Ik (X, snow)

6. VX[mc(x) >~ Ik(x,rain)]

- ~mc(X)v ~ Ik(X, rain)
7. VX[like(A, x) >~ Ik (B, x)]
~ like(A, x)v ~ Ik (B, x)

s w N =

8. WX[~IK(A X)—Ik(B,Xx)]
_ Ik (A, x) v Ik(B,X)
9. k(A rain)
10. |k (A, show)
1. IX[member(x) A mc(X)A ~ sk(X)]
- Negate— VX[~ member(x)v ~ mc(x) v sk(x)]

= Now standardize the variables apart which

results in the following
1. member(A)

2. member(B)

3. member(C)

4.~ member(X.) v mc(X) v sk(x.)

5.~ SK(Xz) v IK(Xz, SnOW)

6. ~ Mc(X:)Vv ~ IK(Xs, rain)

7. ~like(A, x.)v ~ k(B, x.)

K(A, Xs) v Ik(B, Xs)

K(A, rain)

K(A, snow)

1.~ member(Xs)v ~ mc(Xs) v SK(Xs)

oo

©

10.

~ like(A, xo)v ~ Ik (B, x.) Ik (A, snow)
@

12 ~ Ik(B, snow) ~ sk(xz) v Ik (xz, snow) (5)

M ~ member (x:) v mc(x:) v sk(x) (4)

(14) ~ member(B) v mc(B) member(B) (2)
W

\/

~ member (Xs)v ~ mc(Xs) v SK(Xs) mc(B) (15

~ member(B) v sk(B) ~ sk(B) (13

~. _—

12~ member(B) ~ mMember(B) @

N

!'_ Insight into resolution

Resolution - Refutation

m man(x) — mortal(x)
= Convert to clausal form
= ~man(shakespeare) \/ mortal(x)

= Clauses in the knowledge base
= ~man(shakespeare) \/ mortal(x)

= man(shakespeare)
= mortal(shakespeare)

Resolution — Refutation contd

= Negate the goal
= ~man(shakespeare)

= Get a pair of resolvents

~ mortal(shakespeare) ~ man(shakespeare) v mortal (shakespeare)

A

~ man(shakespeare) ~ man(shakespeare)

Resolution Tree

Re solventl Re solvent2

N

Re solute

Search n resolution

s Heuristics for Resolution Search

= Goal Supported Strategy
= Always start with the negated goal

= Set of support strategy

= Always one of the resolvents is the most recently
produced resolute

Inferencing In Predicate Calculus

= Forward chaining
= GivenP, P—>Q,toinferQ
= P, match L.H.S of
= Assert Q from R.H.S

= Backward chaining
= Q MatchRHSof P—Q
= assert P
= Check if P exists

= Resolution — Refutation

= Negate goal

= Convert all pieces of knowledge into clausal form (disjunction of
literals)

= See if contradiction indicated by null clause []can be derived

. P
2. P—>Q convertedto ~PvQ

. ~Q
Draw the resolution tree (actually an inverted

tree). Every node is a clausal form and

branches are intermediate inference steps.
~Q ~PvQ

Theoretical basis of Resolution

= Resolution is proof by contradiction

s resolventl .AND. resolvent2 => resoluteis a
tautology

PvQ —-PvQ

Tautologiness of Resolution

= Using Semantic Tree

(PvQ)*(=PvQ)

Contradiction

PvQ

Theoretical basis of Resolution
(cont ...)

= Monotone Inference

= Size of Knowledge Base goes on increasing
as we proceed with resolution process
since intermediate resolvents added to the
knowledge base

= Non-monotone Inference
= Size of Knowledge Base does not increase

= Human beings use non-monotone
inference

Terminology

= Pair of clauses being resolved is called the
Resolvents. The resulting clause is called
the Resolute.

= Choosing the correct pair of resolvents is a
matter of search.

