CS344: Introduction to Artificial Intelligence (associated lab: CS386)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture–30, 31: Predicate Calculus; Interpretation 26th and 29th March, 2012

(*Course seminars and discussion on* $g(n)=g^*(n)$ *on* 27^{th})

Himalayan Club example

- Introduction through an example (Zohar Manna, 1974):
 - Problem: A, B and C belong to the Himalayan club. Every member in the club is either a mountain climber or a skier or both. A likes whatever B dislikes and dislikes whatever B likes. A likes rain and snow. No mountain climber likes rain. Every skier likes snow. Is there a member who is a mountain climber and not a skier?
- Given knowledge has:
 - Facts
 - Rules

Example contd.

- Let *mc* denote mountain climber and *sk* denotes skier.
 Knowledge representation in the given problem is as follows:
 - 1. member(A)
 - 2. member(B)
 - 3. member(C)
 - 4. $\forall x [member(x) \rightarrow (mc(x) \lor sk(x))]$
 - 5. $\forall x[mc(x) \rightarrow \sim like(x, rain)]$
 - 6. $\forall x[sk(x) \rightarrow like(x, snow)]$
 - $Z \quad \forall x [like(B, x) \rightarrow \sim like(A, x)]$
 - 8. $\forall x [\sim like(B, x) \rightarrow like(A, x)]$
 - <u>9.</u> like(A, rain)
 - *10. like(A, snow)*
 - 11. Question: $\exists x [member(x) \land mc(x) \land \sim sk(x)]$
- We have to infer the 11th expression from the given 10.
- Done through Resolution Refutation.

Club example: Inferencing

- 1. *member(A)*
- 2. member(B)
- 3. *member(C)*
- 4. $\forall x[member(x) \rightarrow (mc(x) \lor sk(x))]$
 - Can be written as - $\sim member(x) [member(x) \rightarrow (mc(x) \lor sk(x))]$
- 5. $\forall x[sk(x) \rightarrow lk(x, snow)]$ - $\sim sk(x) \lor lk(x, snow)$
- 6. $\forall x[mc(x) \rightarrow \sim lk(x, rain)]$

 $\sim mc(x) \lor \sim lk(x, rain)$

7. $\forall x[like(A, x) \rightarrow lk(B, x)]$

$$\sim like(A, x) \lor \sim lk(B, x)$$

8.
$$\forall x [\sim lk(A, x) \rightarrow lk(B, x)]$$

- $lk(A, x) \lor lk(B, x)$

- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. $\exists x [member(x) \land mc(x) \land \sim sk(x)]$
 - Negate- $\forall x [\sim member(x) \lor \sim mc(x) \lor sk(x)]$

- Now standardize the variables apart which results in the following
- 1. *member(A)*
- 2. *member(B)*
- 3. *member(C)*
- 4. ~ member(x_1) \lor mc(x_1) \lor sk(x_1)
- 5. ~ $sk(x_2) \lor lk(x_2, snow)$
- 6. ~ $mc(x_3) \lor \sim lk(x_3, rain)$
- 7. $\sim like(A, x_4) \lor \sim lk(B, x_4)$
- 8. $lk(A, x_5) \vee lk(B, x_5)$
- 9. lk(A, rain)
- 10. lk(A, snow)
- 11. ~ member(x_6) \lor ~ mc(x_6) \lor sk(x_6)

Insight into resolution

Resolution - Refutation

 $\blacksquare man(x) \rightarrow mortal(x)$

- Convert to clausal form
- \sim man(shakespeare) \lor mortal(x)
- Clauses in the knowledge base
 - \sim man(shakespeare) \lor mortal(x)
 - man(shakespeare)
 - mortal(shakespeare)

Resolution – Refutation contd

• Negate the goal

- ~man(shakespeare)
- Get a pair of resolvents

Resolution Tree

Search in resolution

- Heuristics for Resolution Search
 - Goal Supported Strategy
 - Always start with the negated goal
 - Set of support strategy
 - Always one of the resolvents is the most recently produced resolute

Inferencing in Predicate Calculus

Forward chaining

- Given P, $P \rightarrow Q$, to infer Q
- P, match *L*.*H*.*S* of
- Assert Q from *R*.*H*.*S*
- Backward chaining
 - Q, Match *R*.*H*.*S* of $P \rightarrow Q$
 - assert P
 - Check if P exists
- Resolution Refutation
 - Negate goal
 - Convert all pieces of knowledge into clausal form (disjunction of literals)
 - See if contradiction indicated by null clause an be derived

1. *P*

 $\sim Q$

- 2. $P \rightarrow Q$ converted to $\sim P \lor Q$
 - Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.

Theoretical basis of Resolution

- Resolution is proof by contradiction
- resolvent1 .AND. resolvent2 => resolute is a tautology

Tautologiness of Resolution

Using Semantic Tree

Theoretical basis of Resolution (cont ...)

Monotone Inference

- Size of Knowledge Base goes on increasing as we proceed with resolution process since intermediate resolvents added to the knowledge base
- Non-monotone Inference
 - Size of Knowledge Base does not increase
 - Human beings use non-monotone inference

Terminology

- Pair of clauses being <u>resolved</u> is called the <u>Resolvents</u>. The resulting clause is called the <u>Resolute</u>.
- Choosing the correct pair of resolvents is a matter of search.