Conventional Paper-I-2013

- 1.(a) (i) What are ferroelectric materials ? What advantages do they have over conventional dielectric materials?
 - (ii) Give one example each of a dielectric and a ferroelectric material having high relative permittivity (ϵ_r) .
 - (b) P-n junction transistors can be fabricated using the materials Germanium and Silicon. However silicon is preferred to Germanium. Explain.
 - (c) Find the power spectral density if autocorrelation function is given as: $R_{x}(\tau) = e^{-\alpha |\tau|}$ for $-\infty < \tau < \infty$.
 - (d) Find v_1 and v_2 by writing a single supernode equation for the given circuit.

- (e) Two concentric spherical shells ($r_1 = 5$ cm and $r_2 = 30$ cm) are applied with -10 V and +120 V respectively. The dielectric medium between the shells has $\epsilon_r = 2.2$. Find the charge densities. Determine the location where the V=50V.
- (f) Three signals (0.1 GHz, 1 GHz and 10 GHz) are available for propagation. Will it be possible to send all of them through a parallel plate air filled waveguide with a separation of 12 cm between the plates?
- (g) In an oscilloscope X- and Y-signals both are saw-tooth waves of same amplitudes and time periods but different phase angles. If Y-input is leading the X-input by 90°, draw the pattern traced on the CRO screen. Take the saw-tooth signals with positive slopes.
- (h) (a) Explain in brief the working of the circuit shown when
 - (i) The switch S_1 is ON
 - (ii) The switch S_1 is OFF.
 - (b) What will be the output V_0 when V_i is $5\sin 100\pi t$ and

- 2. (a) What are the expressions for series and parallel resonances of the equivalent circuit of a quartz crystal oscillator ?
 - (b) A quartz crystal oscillator has an equivalent inductance of L = 10 mH and series and parallel capacitances of $C_s = 10 \mu \text{F}$ and $C_p = 10 \mu \text{F}$. Find the series and parallel resonant frequencies of this oscillator.
 - (c) Show schematically the static characteristics of a thyristor identifying clearly various regions.
 - (d) What is a direct band gap and an indirect band gap semiconductor?
 - (e) Explain why a silicon diode cannot be used as a LED but it is useful as a photodiode?
 - (f) If Si diode is used as a photodiode find the maximum value of responsivity and maximum wavelength up to which it can be used.
 - (g) A magnetically levitated train travels between the city centre and the airport in Shanghai, China. Which peculiar property of super-conductivity is taken advantage of in this application?

✦ India's No.1 institute for GATE Training ✦ 1 Lakh+ Students trained till date ✦ 65+ Centers across India

- 3. (a) A Zener diode regulates at 50 V over a range of diode circuits from 5 mA to 40 mA. Supply voltage V = 200V.
 - (i) Calculate the value of R to allow voltage regulation from a load current $I_L = 0$ upto I_{max} , the maximum possible value of I_L .
 - (ii) What is I_{max} ?
 - (b) A half wave rectifier having a diode with an internal resistance of 20Ω is to supply power to a 1k Ω load from a 110 V (rms) source of supply.

Do the following:

(a) Draw a schematic that represents the above description of the circuit.

Also calculate:

- (b) Peak load current
- (c) DC load current
- (d) AC load current
- (e) DC diode voltage.
- (c) Find the circuit shown, neglecting base currents find I_0 and I_1 , I_2 , I_3 .

(d) In the following circuit:

✦ India's No.1 institute for GATE Training ✦ 1 Lakh+ Students trained till date ✦ 65+ Centers across India

- If $V_{DD} = 10V$, $V_{tn} = |V_{tp}| = 1V$, $\mu_n Co_x = 2\mu_p Co_x = 20\mu A / v^2$, $W = 100 \mu m$, L = 10 μ m and $|V_A| = Early voltage = 100V$ both for n and p devices, $I_{ref} = 100 \mu A$, find the small signal voltage gain.
- 4. (a) Find the energy E_x of the signal $x(t) = e^{-at} u(t)$. Determine the frequency W (rad/sec) so that the energy contributed by the spectral components of all frequencies below W is 95% of the signal energy.
 - (b) Given that X(w) is the Fourier transform of x(t). Find the Fourier transform of following in terms of X(w):
 - (i) $x_1(t) = x(1-t) + x(-1-t)$
 - (ii) $x_2(t) = x(4t-5)$

(iii)
$$x_3(t) = \frac{d^2x}{dt^2}(t-1)$$

- (c) The output y(t) of a continuous time LTI system is found to be 3e^{-4t} u(t) when the input x(t) is u(t).
 - (i) Find the impulse response h(t) of the system.
 - (ii) Find the output y(t) when the input x(t) is $e^{-t}u(t)$.
- (d) Consider the discrete time system as shown in the figure below:

For what value of K is the system BIBO stable.

5. (a) State and prove maximum power transfer theorem for a circuit with source V_s and source resistance R_s and a variable load resistance R_L .

- (b) If R_L is fixed and R_s is varied will the formula be valid ? Prove .
- (c) For the circuit shown determine Z_L that will draw maximum power from the source.

(d) Determine the h-parameters of the network shown.

- 6. (a) A pair of isolated parallel power lines of 1 cm radius with a separation of 90 cm have a voltage difference of 440 V. These power lines are 60 cm above a pair of telephone lines. Find the voltage difference between the telephone lines due to induction from power lines. The telephone lines are separated by 20 cm.
 - (b) Two coils kept on a common axis are separated by 12 cm. Coil A has 10 turns of radius 4 cm with a current of 1 A. Coil B has 5 turns of wire with a radius of 6 cm. The current in Coil B is to be determined such that the induced magnetic field due to this current cancels the magnetic field at the center of Coil A generated by Coil A.

(c) Derive the expression for the power required to move a current carrying conductor at a rotational frequency of N rev/min if it is placed in a magnetic field of flux density $B_o \hat{a}_r$. Find the value with the given data. $B_o = 0.6T$; I=10A; L=1.2m; N=25 rev/min, r=2cm. From this determine the magnetic flux density to be applied if the power is to be 1.5 W.

(d) A plane wave travelling in the +z direction in free space (z<0) is normally incident at z=0 on a conductor (z>0) for which $\sigma=61.7$ MS/m, $\mu_r=1$. The free space wave has a frequency of 2.5 MHz. The \vec{E} field amplitude is 1.5 V/m at the interface. Find the expression for \vec{H} in the conductor.

7. (a) In the circuit shown, R is a resistive transducer. The bridge is balanced and the output, $V_0 = 0$ when $R_3 = R$. Now R is changing in response to a physical variable. Show

that the output voltage
$$V_o = V_R \left(1 + \frac{R_2}{R_1}\right) \frac{\Delta R}{2R + \Delta R}$$

 V_R
 R_2
 R_2
 R_2
 R_3
 R_1
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3
 R_1
 R_1
 R_2
 R_3
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_1
 R_2
 R_3
 R_2
 R_3
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3
 R_2
 R_3
 R_3
 R_2
 R_3
 R_3

where ΔR is the change in the value of R.

✦ India's No.1 institute for GATE Training ✦ 1 Lakh+ Students trained till date ✦ 65+ Centers across India

(b) In the circuit shown, the output voltage is found to be 25 mV. If the optical power input is at a wavelength, $\lambda = 1.32 \mu m$. Calculate the optical power in μW . Take the quantum efficiency of the photo-diode to be 65%.

(c) Overall quantum efficiency of GaAs light emitting diode shown in the circuit is 70%. ON state diode voltage is 1.8 V. V_i is a binary signal with V(1) = 5V and V(0) = 0V. Find the logic levels of the optical binary output. Take band-gap energy for GaAs = 1.43 eV.

[✦] India's No.1 institute for GATE Training ✦ 1 Lakh+ Students trained till date ✦ 65+ Centers across India