Join us on Facebook Page http://www.facebook.com/ignousolution

Course Code : CS-60 Course Title : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING Assignment Number : BCA(2)-60/Assignment/2011 There are five questions in this assignment. Answer all the questions.

Question 1: (i) Find the complex conjugate of (3+5i)/(1+2i) Ans:

$$Z = \frac{3+6i}{1+2i} \star \frac{1-2i}{1-2i}$$

$$Z = \frac{(3+6i)(1-2i)}{i+(2i)^2} = \frac{3+6i+5i\cdot10i^2}{1-4i^2} = \frac{3+i\cdot10}{1+4} = \frac{13+i}{5} = \frac{1}{5}(13+i)$$
(ii) Differentiate (sin x)x w.r.t. x.
Ans:

$$V = x \sin x$$

$$\frac{dy}{dx} = \sin x * 1 + x \cos x$$

$$\frac{dy}{dx} = \sin x + x \cos x$$

(iii) Find all the seventh roots of (3+4i). Ans:

Let
r =
where
r+cos
$$\theta$$
 + isin θ = $7\sqrt{3+4i}$
cos θ + isin θ = $3+4i$
(cos θ + isin θ)⁷ = $3+4i$
cos 7θ + isin 7θ = $3+4i$
cos 7θ = 3
 7θ = $cos^{-1}(n\chi+3)$
 θ = $1/2cos^{-1}(n\chi+3)$

58590°	con
30	

Question 2: (i) Find the equation of the line joining the points (\square , 6, \square 3) and (7, \square 6, 3). Ans:

equation of a line is :

$$= \frac{y - y1}{y^2 - y1} = \frac{x - x1}{x^2 - x1} = \frac{z - z1}{z^2 - z1}$$
$$\frac{x + 1}{7 + 1} = \frac{y - 6}{-6 - 6} = \frac{z - 3}{3 + 3}$$
$$x + 1 = y - 6 = \frac{z - 3}{z^2 - 3}$$

8 -12 = 6(ii) Find the equation of the sphere, which contains the circle $x^2 + y^2 + z^2 = 18$, 3x + 3y + 3z = 11 and passes through the origin. Ans:

Equation of a sphere is : (x²+ y²+ z²-18) + λ(3x + 3y + 3z - 11) = 0------ 1

since it passes through the origin So, (0,0,0) satisfies the above equation

$$0 + 0 + 0 - 18 + \lambda(0 + 0 + 0 - 11) = 0$$

 $-11\lambda = 18$ $\lambda = -<u>18</u>$ 11

Putting the value of λ in eq 1

solving the above equation we get

 $11x^2$ + $11y^2$ + 11z -54x -54y -54z = 0 this is the eq of sphere Question 3: (i) Find lim 1+x2/x2Ans:

$$\lim_{x \to \infty} \frac{1+x^2}{x^2} \qquad \qquad \bullet \bullet \quad \int \frac{f'(x)}{f(x)} = \log x \ 2$$

$$\lim_{X \to \infty} \frac{1}{X} + \lim_{X \to \infty} 1$$
$$= \frac{1}{\infty^2} + 1 = \frac{1}{0} + 1 = 1$$

(ii) Compute the area bounded by
$$y^2 = 9x$$
 and $x^2 = 9y$

Hint: For finding the points of intersection of the given curve, we solve the given equation simultaneity.

 $x_2 = 9y = x_2/9 \text{ substituting } y = x_2/9 \text{ in } y_2 = 9x$ (x_2/9)_2 = 9x (x_2/81) = 9x (x_4/81) - 9x = 0 x(x_3 - 729) = 0

Join us also on our Group

http://www.facebook.com/groups/solvedassignment/

Join us on Facebook Page http://www.facebook.com/ignousolution

x = 0 or x = 9y = 0 or y = 9hence point of intersection are (0,0) (9,9) Required area = (area OBAD) – (area OCAD) welx For y2 . 9x yolx ||for x² · · · $y \neq \pm 3$ x2 = ay 3 | -3 -2 -1 1 3 0 2 L I I I -3 y2 = 9x Ja ola $|q^{2}|$ 2(0) = 54 - 27 =27 Ans (iii) Evaluate: . tan⁻¹ xdx Ans: inon ^Ax. Lekx inon^andu

Join us also on our Group http://www.facebook.com/groups/solvedassignment/ Join us on Facebook Page http://www.facebook.com/ignousolution

Question 4: Use the Cauchy - Schwarz inequality to solve $x_3 - 25x_2 - 4x + 100 = 0$, given that all its roots are rational. Ans:

The Cauchy-Schwarz inequality says that for positive numbers a_i and b_i , $1 \le i \le n$

The best way is to factor $\times -25$ out, leaving $\{\times -25\} \cdot \{\times^2 - 4\} = 0$

From here, it is apparent that x = 25, -2, or 2.

Question 5: (i) Find the perimeter of the cord r = a (1 + cos)

Ans: To find the perimeter of the cord r = a(1 + cos) we note that the curve is symmetrical about the initial line (Fig)

Now, $dv/d\Box = -a \sin \cdot$ Hence we have

(ii) Find all the seventh roots of (3+4i). Ans: Same as Q1(iii)

For More Assignment Solution Keep visiting on http://everythingsolution.blogspot.com

Join us also on our Group http://www.facebook.com/groups/solvedassignment/