Join us on Facebook Page http://www.facebook.com/ignousolution

Course Code : CS-60
Course Title : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING
Assignment Number : BCA(2)-60/Assignment/2011
There are five questions in this assignment. Answer all the questions.
Question 1: (i) Find the complex conjugate of $(3+5 i) /(1+2 i)$
Ans:

$$
\begin{aligned}
& z=\frac{3+5 i}{1+2 i} * \frac{1-2 i}{1-2 i} \\
& z=\frac{(3+5 i)(1-2 i)}{i-(2 i)^{2}}=\frac{3-6 i+5 i-10 i^{2}}{1-4 i^{2}}=\frac{3-i-10}{1+4}=\frac{13-i}{5}=\frac{1}{5}(13-i) \\
& \bar{Z}=\frac{1}{5}(13-i)
\end{aligned}
$$

(ii) Differentiate $(\sin \mathrm{x}) \mathrm{x}$ w.r.t. x . Ans:

$$
\begin{aligned}
y & =x \sin x \\
\frac{d y}{d x} & =\sin x * 1+x \cos x \\
\frac{d y}{d x} & =\sin x+x \cos x
\end{aligned}
$$

(iii) Find all the seventh roots of $(3+4 i)$.

Ans:

Join us also on our Group
http://www.facebook.com/groups/solvedassignment/

$$
\begin{aligned}
& \text { Let } \\
& \mathrm{r}= \\
& \text { where } \\
& \mathrm{r}+\cos \theta+\mathrm{i} \sin \theta=\sqrt[7]{3+4 i} \\
& \cos \theta+\mathrm{i} \sin \theta=3+4 \mathrm{i} \\
& (\cos \theta+\mathrm{i} \sin \theta)^{7}=3+4 \mathrm{i} \\
& \cos 7 \theta+i \sin 7 \theta=3+4 i \\
& \cos 7 \theta=3 \\
& 7 \theta=\cos ^{-1}(n \bar{\pi}+3) \\
& \theta=1 / 2 \cos ^{-1}(n \pi+3)
\end{aligned}
$$

Question 2: (i) Find the equation of the line joining the points

Ans:
equation of a line is:

$$
\begin{aligned}
&= \frac{y-y 1}{y 2-y 1}=\frac{x-x 1}{x 2-x 1}=\frac{z-z 1}{z 2-z 1} \\
& \frac{x+1}{7+1}=\frac{y-6}{-6-6}=\frac{z-3}{3+3} \\
& \frac{x+1}{8}=\frac{y-6}{-12}=\frac{z-3}{6}
\end{aligned}
$$

(ii) Find the equation of the sphere, which contains the circle $\mathrm{x} 2+\mathrm{y} 2+\mathrm{z} 2=18,3 \mathrm{x}+3 \mathrm{y}+3 \mathrm{z}=11$ and passes through the origin.
Ans:

Join us also on our Group
http://www.facebook.com/groups/solvedassignment/

Join us on Facebook Page http://www.facebook.com/ignousolution

Equation of a sphere is :
$\left(x^{2}+y^{2}+z^{2}-18\right)+\lambda(3 x+3 y+3 z-11)=0------1$
since it passes through the origin So, $(0,0,0)$ satisfies the above equation
$0+0+0-18+\lambda(0+0+0-11)=0$
$-11 \lambda=18$
$\lambda=\frac{-18}{11}$
Putting the value of λ in eq 1
$\left(x^{2}+y^{2}+z^{2}-18\right) \frac{-18}{11}(3 x+3 y+3 z-11)=0$.
solving the above equation we get $11 x^{2}+11 y^{2}+11 z-54 x-54 y-54 z=0$ this is the eq of sphere
Question 3: (i) Find $\lim 1+x 2 / x 2$
$\mathbf{x} \rightarrow \infty$
Ans:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1+x^{2}}{x^{2}} \\
& \lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{f(x)}=\log x 2 \\
& \quad=\frac{1}{x^{2}}+1=\frac{1}{0}+1=1
\end{aligned}
$$

(ii) Compute the area bounded by $y \mathbf{2}=9 \mathrm{x}$ and $\mathrm{x} 2=9 \mathrm{y}$

Hint: For finding the points of intersection of the given curve, we solve the given equation simultaneity.
$\mathrm{x} 2=9 \mathrm{y}=\mathrm{x} 2 / 9$ substituting $\mathrm{y}=\mathrm{x} 2 / 9$ in $\mathrm{y} 2=9 \mathrm{x}$
$(\mathrm{x} 2 / 9) 2=9 \mathrm{x}$
$(\mathrm{x} 2 / 81)=9 \mathrm{x}$
$(\mathrm{x} 4 / 81)-9 \mathrm{x}=0$
$\mathrm{x}(\mathrm{x} 3-729)=0$
Join us also on our Group
http://www.facebook.com/groups/solvedassignment/
$\mathrm{x}=0$ or $\mathrm{x}=9$
$y=0$ or $y=9$
hence point of intersection are $(0,0)(9,9)$ Required area $=($ area OBAD $)-($ area OCAD $)$

$=54-27$
$=27$ Ans
(iii) Evaluate: . $\tan ^{-1} x d x$

Ans:

Join us also on our Group
http://www.facebook.com/groups/solvedassignment/

Question 4: Use the Cauchy - Schwarz inequality to solve $\mathbf{x} 3-25 x 2-4 x+100=0$, given that all its roots are rational.
Ans:
The Cauchy-Schwarz inequality says that for positive numbers ${ }^{a_{i}}$ and ${ }^{b}{ }_{i}, 1 \leqslant i \leqslant n$,

The best way is to factor $x-25$ out, leaving
$(x-25) \cdot\left(x^{2}-4\right)=0$
From here, it is apparent that $x=25,-2$, or 2 .
Question 5: (i) Find the perimeter of the cord $r=a(1+\cos)$
Ans: To find the perimeter of the cord $\mathrm{r}=\mathrm{a}(1+\cos)$ we note that the curve is symmetrical about the initial line (Fig)

Now, $\mathrm{dv} / \mathrm{d} \square=-\mathrm{a} \sin$. Hence we have

(ii) Find all the seventh roots of ($3+4 \mathrm{i}$).

Ans: Same as Q1(iii)

For More Assignment Solution Keep visiting on http://everythingsolution.blogspot.com

Join us also on our Group

http://www.facebook.com/groups/solvedassignment/

