

- (a) optical rotation and derived from D-glucose
- (b) pH in organic solvent
- (c) optical rotation and is derived from D (+) glyceraldehyde
- (d) optical rotation when substituted by deuterium
- 2. Which one of the following pairs is not correctly matched?

(a)
$$C = O \rightarrow CH_2$$
 Clemmnensen reduction

(b)
$$C = O \rightarrow CHOH$$
 Wolff-Kishner reduction

(c) —COCl
$$\rightarrow$$
 —CHO Rosenmund reduction
(d) —C \equiv N \rightarrow —CHO Stephen reduction

- as sulphide when treated with hydrogen sulphide in ammoniacal solution?
- sulphide in ammoniacal solution?

 (a) Ba²⁺
 (b) Ni²⁺
 (c) Mg²⁺
 (d) Ca²⁺
- Isomerism which arises due to the presence of two different atoms in the same ligand is called
 - (a) linkage (b) hydrate (c) salt (d) Both (a) and (c)
- The black compound formed during the reaction between sodium thiosulphate and silver nitrate is
 - (a) silver thiosulphate
 - (b) silver sulphide
 - (c) silver sulphate
 - (d) silver sulphite
- 6. Electrode potential data are given below $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq) E^{\circ} = + 0.77 \text{ V}$

$$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$$
 $E^{\circ} = -1.66 \text{ V}$

$$Br_2(aq) + 2e^- \longrightarrow 2Br^-(aq) E^\circ = +1.08 V$$

Based on the data given above, reducing power of Fe²⁺, Al and Br⁻, will increase in the order

7. Which of the following volume (V) -temperature (T) plots represent the behaviour of one mole of an ideal gas at one atmospheric pressure?

➤ T (K)

8.	Amongst the following, identify the species with an atom in +6 oxidation state (a) MnO_4^- (b) $Cr(CN)_6^{3-}$ (c) NiF_6^{2-} (d) CrO_2Cl_2		(1) CH_3 — C NH NH_2 (2) CH_3 — CH_2 — NH_2
9.	What is the concentration of nitrate ions if equal volumes of 0.1 M AgNO_3 and 0.1 M NaCl are mixed together? (a) 0.1 N (b) 0.2 M (c) 0.05 M (d) 0.25 M		(3) $(CH_3)_2NH$ (4) $CH_3 - C - NH_2$ (a) $2 > 1 > 3 > 4$ (b) $1 > 3 > 2 > 4$ (c) $3 > 1 > 2 > 4$ (d) $1 > 2 > 3 > 4$
10.	 Consider the following statements (I) A sigma (σ) bond is formed when two s-orbitals overlap (II) A pi (π) bond is formed when two p-orbitals axially overlap (III) A σ bond is weaker than π –bond Which of the above statements is/are correct? (a) II and III (b) I and II (c) I alone (d) II alone 		$R \longrightarrow C \longrightarrow OH \stackrel{H_3O^+}{\longleftrightarrow} X \longrightarrow RCH_2NH_2$ Here X is (a) isonitrile (b) nitrile (c) nitrite (d) oxime Identify "X" $C_6H_6 \xrightarrow{HNO_3/H_2SO_4}$ Intermediate $\xrightarrow{Sn/HCl} X$
11.	(c) I alone (d) II alone Speed of decomposition of H ₂ O ₂ is reduced by (a) Na ₂ CO ₃ (b) NaOH		NH ₂ NH ₂
12.	(c) alcohol (d) Pt The correct order of radii is (a) $N < Be < B$ (b) $F^- < O^{2-} < N^{3-}$ (c) $Na < Li < K$ (d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$	_	(a) (b) NH ₂ NH ₂
13.	Amalgamation method is used for the extraction of (a) noble metals (b) alkali metals (c) alkaline earth metals (d) Fe	20	(c) NH ₂ (d) NH ₂
14.	The alkali metal that reacts with nitrogen directly to form nitride is (a) Li (b) Na (c) K (d) Rb	20.	Rutherford's α-particle dispersion experiment concludes (a) all positive ions are deposited at small part (b) all negative ions are deposited at small part
15.	Fluid magnesia is (a) a solution of magnesium (b) a solution of magnesium carbonate	21.	(c) proton moves around the electron (d) neutrons are charged particles Identify the correct statement when following
16.	(c) a solution of magnesium bicarbonate (d) a solution of magnesium sulphate A compound with the molecular formula C ₃ H ₈ O on vigorous oxidation produces an acid C ₃ H ₆ O ₂ . It is (a) a tertiary alcohol	۵1.	Identify the correct statement when following compounds are given HF, HBr, H ₂ Se, H ₂ Te, H ₃ P (a) HF is strong acid (b) H ₂ Te is strong alkali (c) HBr is strong acid (d) H P is strong alkali
17.	(b) a secondary alcohol (c) a primary alcohol (d) not necessarily an alcohol The correct order of basicities of the following	22.	 (d) H₃P is strong alkali Calcium is obtained by (a) electrolysis of molten CaCl₂ (b) electrolysis of aq solution of CaCl₂ (c) reduction of CaCl₂ with carbon

(d) roasting of lime stone

compounds is

23.	Heat of dissociation of benzene to elements in	32.	Methyl amine reacts with nitrous acid to form				
	5535 kJ mol ⁻¹ . The bond enthalpies of C—C,		(a) methyl nitrile (b) dimethyle ether				
	C = C, and C — Hare 347.3, 615.0 and 416.2 kJ		(c) Both (a) and (b) (d) None of these				
	respectively resonance energy of benzene is (a) 1.51 kJ (b) 15.1 kJ	33.	Which order is correct about acidity?				
	(c) 151 kJ (d) 1511 kJ		(a) $C_6H_5OH > C_6H_5COOH > CH_3COOH$				
24.	The rate constant for the reaction,		(b) $C_6H_5COOH > CH_3COOH > C_6H_5OH$				
	$2N_2O_5 \longrightarrow 4NO_2 + O_2$		(c) $CH_3COOH > C_6H_5COOH > C_6H_5OH$				
	$3.0 \times 10^{-5} \text{ s}^{-1}$. If the rate is $2.40 \times 10^{-5} \text{ mol}$		(d) $C_6H_5OH > CH_3COOH > C_6H_5COOH$				
	L ⁻¹ s ⁻¹ , Then the concentration of N ₂ O ₅ (in mol	34.	Which of the following is most reactive towards				
	L^{-1}) is		nucleophilic addition reaction?				
	(a) 1.4 (b) 1.2		(a) HCHO (b) CH ₃ CHO				
	(c) 0.04 (d) 0.8		(c) C_2H_5CHO (d) $CH_3 \cdot CO \cdot CH_3$				
25.	Which one of the following has highest pH?	35.	Metaformaldehyde is a				
	(a) Distilled water		(a) polymer (b) tetramer				
	(b) 1 M NH ₃		(c) trimer (d) dimer				
	(c) 1 M NaOH	36.	An aqueous solution of urea freezes at 272.8 K.				
	(d) Water saturated with chlorine		An equimolar solution of acetic acid in water				
25.	Which of the following element of IIIA group form alum with aluminum like alkali metals?		will freeze at				
	(a) B (b) Ca		(a) 272.8 K (b) 272.79 K				
	(c) In (d) Te		(c) 272.81 K (d) 272.6 K				
27.		37.	A mixture of 0.3 mol of H_2 and 0.3 mole of I_2 is				
	detecting the presence of carbon monoxide?		allowed to react in a 10 L evacuated flask at				
	(a) Reduction of metallic oxides to metals		500°C. The reaction is $H_2 + I_2 \rightleftharpoons 2HI$. The K				
	(b) Reduction of water to hydrogen		is found to be 64. The amount of unreacted I ₂				
	(c) Reduction of PdCl ₂ to Pd (Black)		at equilibrium is				
0.0	(d) All of the above		(a) 0.15 mol (b) 0.06 mol				
28.	Nitrogen can exists in two forms which are correct about them?		(c) 0.03 mol (d) 0.2 mol				
	(i) α-nitrogen with cubic crystalline structure	38.	$IFN_2 + 3H_2 \Longrightarrow 2NH_3 - K$ and				
	(ii) β- nitrogen with cubic crystalline structure		$2N_2 + 6H_2 \Longrightarrow 4NH_3 - k^1$ then k^1 will be				
	(iii) β-nitrogen with hexagonal crystalline		(a) k^2 (b) \sqrt{k}				
	structure		(c) $\frac{1}{\sqrt{k}}$ (d) $\frac{1}{k^2}$				
	(a) Both (i) and (iii) (b) Both (i) and (ii)		VK K				
20	(c) Both (ii) and (iii) (d) None of these	39.	With the rise in temperature, the surface				
29.	Which of the following mixture is called black ash?		tension of a liquid				
	(a) $K_2CO_3 + CuS$ (b) $Na_2CO_3 + CaS$		(a) increases				
	(c) $K_2CO_3 + Na_2S$ (d) $Na_2CO_3 + Na_2S$		(b) decreases				
30.	In phosphorus pentoxide each P atoms is		(c) remain constant (d) first increase then decrease				
	linked to	40					
	(a) 4 oxygen atom (b) 2 oxygen atom	40.	At STP a container has 1 mole of Ar, 2 mol of				
	(c) 3 oxygen atom (d) 10 oxygen atom		CO ₂ , 3 mol of O ₂ and 4 mol of N ₂ with out				
31.	When glucose is warmed with dilute alkali		changing the total pressure if one mole of O_2 is removed, the partical pressure of O_2				
	solution converted into a mixture of		(a) is change by about 16%				
	(a) glucose and manose(b) glucose and fructose		(b) is halved				
	(c) manose and fructose		(c) is changed by 26%				
	(d) glucose and manose and fructose		(d) is unchanged				

41.	Due to Frenkel dere	ect, the den	isity of ionic solid	48.	An example	e of Lewis	acid is	
	(a) decreases(c) does not change	(b) inc ge (d) cha			(a) NaCl (c) CCl ₄		(b) MgCl ₂ (d) AlCl ₃	
42.	A semiconductor o	f Ge can b	e made p-type by	49.	The conjug	gate acid o	f NH ₂ is	
	adding (a) trivalent imput				(a) NH ₃ (c) NH ₄ ⁺		(b) NH ₂ OH (d) N ₂ H ₄	
	(b) tetravalent imp(c) pentavalent imp(d) divalent impur	purity		50.	(a) NO	he followi	ng is not paran (b) N ₂ ⁺	nagnetic ?
43.				(c) CO		(d) O_2^-		
	neutralised by 20 the basicity of the	acid is	N caustic potash.	51.	<i>B</i> are 1.20	and 4.0 res	onegativites of spectively. The	
	(a) 1 (c) 3	(b) 2 (d) 4					A - B bond is	
44.	Which of the follow		t give iodometric		(a) 50% (c) 55.3%		(b) 72.24% (d) 43%	
	titrations? (a) Fe ³⁺ (c) Pb ²⁺	(b) Cu ² (d) Ag	2+	52.	A sample	of wood	decayed to 1 is the number (b) 4	
45.	Oxidation state of	Fe in Fe ₂ O	is		(c) 8		(d) 16	
i Tinese vizio	(a) 2/3	(b) 4/5		53.		menon of r	adioactivity aris	es from the
	(c) 5/4	(d) 8/3	3		(a) binary		1	
46.	AB and C. If the ox	idation nu	mber of A is $+2$, B		(b) nuclea(c) stable(d) decay	nuclei	e nuclei	
	the compound is				The kineti	c energy o	of an electron	accelerated
	(a) $A_3(BC_4)_2$ (b) $A_3(B_4C)_2$ (c) ABC_2 (d) $A_2(BC_3)_2$				from rest through a potential difference of $5\mathrm{W}$ will be			
47.					(a) 5eV		(b) 5 J	
	$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$				(c) 5 erg		(d) 80 eV	
	A compound contains atoms of three element AB and C . If the oxidation number of A is $+2$, B is $+5$ and that of C is -2 , the possible formula of the compound is (a) $A_3(BC_4)_2$ (b) $A_3(B_4C)_2$ (c) ABC_2 (d) $A_2(BC_3)_2$ For the redox reaction, $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O_4$ the correct coefficient of the reactants for the balanced reaction are $MnO_4^ C_2O_4^{2-} - H^+$			55.	A 2.5 mol sample of hydrazine, N ₂ H ₄ loses 25 mole of electrons in being converted to a new			
	MnO_4^-	C2O4-	H^{+}				ing that all of the	-
	(a) 2	5	16				compound, v	
	(b) 16	5	2			state of nit	rogen in comp	ound X?
	(c) 5 (d) 2	16 16	2 5		(a) -1 (c) $+3$		(b) -2 (d) +4	
	(d) 2	10	5		(0) 43		(d) TT	

Answer – Key

55. c

51. b

52. b

53. d

54. a

1. a	2. c	3₀ d	4. d	5. b	6. a	7. c	8. d	9. c	10. c
11. c	12. d	13. a	14. a	15. c	16. c	17. b	18. b	19. a	20. a
21. c	22. a	23. c	24. d	25. c	26. d	27. c	28. a	29. b	30. a
31. a	32. c	33. b	34. a	35. c	36. b	37. b	38. a	39. b	40. c
41. c	42. a	43. b	44. c	45. d	46. a	47. a	48. d	49. a	50. c