- (a) optical rotation and derived from D-glucose - (b) pH in organic solvent - (c) optical rotation and is derived from D (+) glyceraldehyde - (d) optical rotation when substituted by deuterium - 2. Which one of the following pairs is not correctly matched? (a) $$C = O \rightarrow CH_2$$ Clemmnensen reduction (b) $$C = O \rightarrow CHOH$$ Wolff-Kishner reduction (c) —COCl $$\rightarrow$$ —CHO Rosenmund reduction (d) —C \equiv N \rightarrow —CHO Stephen reduction - as sulphide when treated with hydrogen sulphide in ammoniacal solution? - sulphide in ammoniacal solution? (a) Ba²⁺ (b) Ni²⁺ (c) Mg²⁺ (d) Ca²⁺ - Isomerism which arises due to the presence of two different atoms in the same ligand is called - (a) linkage (b) hydrate (c) salt (d) Both (a) and (c) - The black compound formed during the reaction between sodium thiosulphate and silver nitrate is - (a) silver thiosulphate - (b) silver sulphide - (c) silver sulphate - (d) silver sulphite - 6. Electrode potential data are given below $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq) E^{\circ} = + 0.77 \text{ V}$ $$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$$ $E^{\circ} = -1.66 \text{ V}$ $$Br_2(aq) + 2e^- \longrightarrow 2Br^-(aq) E^\circ = +1.08 V$$ Based on the data given above, reducing power of Fe²⁺, Al and Br⁻, will increase in the order 7. Which of the following volume (V) -temperature (T) plots represent the behaviour of one mole of an ideal gas at one atmospheric pressure? ➤ T (K) | 8. | Amongst the following, identify the species with an atom in +6 oxidation state (a) MnO_4^- (b) $Cr(CN)_6^{3-}$ (c) NiF_6^{2-} (d) CrO_2Cl_2 | | (1) CH_3 — C NH NH_2 (2) CH_3 — CH_2 — NH_2 | |-----|--|-----|---| | 9. | What is the concentration of nitrate ions if equal volumes of 0.1 M AgNO_3 and 0.1 M NaCl are mixed together? (a) 0.1 N (b) 0.2 M (c) 0.05 M (d) 0.25 M | | (3) $(CH_3)_2NH$ (4) $CH_3 - C - NH_2$
(a) $2 > 1 > 3 > 4$ (b) $1 > 3 > 2 > 4$
(c) $3 > 1 > 2 > 4$ (d) $1 > 2 > 3 > 4$ | | 10. | Consider the following statements (I) A sigma (σ) bond is formed when two s-orbitals overlap (II) A pi (π) bond is formed when two p-orbitals axially overlap (III) A σ bond is weaker than π –bond Which of the above statements is/are correct? (a) II and III (b) I and II (c) I alone (d) II alone | | $R \longrightarrow C \longrightarrow OH \stackrel{H_3O^+}{\longleftrightarrow} X \longrightarrow RCH_2NH_2$ Here X is (a) isonitrile (b) nitrile (c) nitrite (d) oxime Identify "X" $C_6H_6 \xrightarrow{HNO_3/H_2SO_4}$ Intermediate $\xrightarrow{Sn/HCl} X$ | | 11. | (c) I alone (d) II alone Speed of decomposition of H ₂ O ₂ is reduced by (a) Na ₂ CO ₃ (b) NaOH | | NH ₂ NH ₂ | | 12. | (c) alcohol (d) Pt The correct order of radii is (a) $N < Be < B$ (b) $F^- < O^{2-} < N^{3-}$ (c) $Na < Li < K$ (d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$ | _ | (a) (b) NH ₂ NH ₂ | | 13. | Amalgamation method is used for the extraction of (a) noble metals (b) alkali metals (c) alkaline earth metals (d) Fe | 20 | (c) NH ₂ (d) NH ₂ | | 14. | The alkali metal that reacts with nitrogen directly to form nitride is (a) Li (b) Na (c) K (d) Rb | 20. | Rutherford's α-particle dispersion experiment concludes (a) all positive ions are deposited at small part (b) all negative ions are deposited at small part | | 15. | Fluid magnesia is (a) a solution of magnesium (b) a solution of magnesium carbonate | 21. | (c) proton moves around the electron (d) neutrons are charged particles Identify the correct statement when following | | 16. | (c) a solution of magnesium bicarbonate (d) a solution of magnesium sulphate A compound with the molecular formula C ₃ H ₈ O on vigorous oxidation produces an acid C ₃ H ₆ O ₂ . It is (a) a tertiary alcohol | ۵1. | Identify the correct statement when following compounds are given HF, HBr, H ₂ Se, H ₂ Te, H ₃ P (a) HF is strong acid (b) H ₂ Te is strong alkali (c) HBr is strong acid (d) H P is strong alkali | | 17. | (b) a secondary alcohol (c) a primary alcohol (d) not necessarily an alcohol The correct order of basicities of the following | 22. | (d) H₃P is strong alkali Calcium is obtained by (a) electrolysis of molten CaCl₂ (b) electrolysis of aq solution of CaCl₂ (c) reduction of CaCl₂ with carbon | (d) roasting of lime stone compounds is | 23. | Heat of dissociation of benzene to elements in | 32. | Methyl amine reacts with nitrous acid to form | | | | | |-----|---|-----|---|--|--|--|--| | | 5535 kJ mol ⁻¹ . The bond enthalpies of C—C, | | (a) methyl nitrile (b) dimethyle ether | | | | | | | C = C, and C — Hare 347.3, 615.0 and 416.2 kJ | | (c) Both (a) and (b) (d) None of these | | | | | | | respectively resonance energy of benzene is (a) 1.51 kJ (b) 15.1 kJ | 33. | Which order is correct about acidity? | | | | | | | (c) 151 kJ (d) 1511 kJ | | (a) $C_6H_5OH > C_6H_5COOH > CH_3COOH$ | | | | | | 24. | The rate constant for the reaction, | | (b) $C_6H_5COOH > CH_3COOH > C_6H_5OH$ | | | | | | | $2N_2O_5 \longrightarrow 4NO_2 + O_2$ | | (c) $CH_3COOH > C_6H_5COOH > C_6H_5OH$ | | | | | | | $3.0 \times 10^{-5} \text{ s}^{-1}$. If the rate is $2.40 \times 10^{-5} \text{ mol}$ | | (d) $C_6H_5OH > CH_3COOH > C_6H_5COOH$ | | | | | | | L ⁻¹ s ⁻¹ , Then the concentration of N ₂ O ₅ (in mol | 34. | Which of the following is most reactive towards | | | | | | | L^{-1}) is | | nucleophilic addition reaction? | | | | | | | (a) 1.4 (b) 1.2 | | (a) HCHO (b) CH ₃ CHO | | | | | | | (c) 0.04 (d) 0.8 | | (c) C_2H_5CHO (d) $CH_3 \cdot CO \cdot CH_3$ | | | | | | 25. | Which one of the following has highest pH? | 35. | Metaformaldehyde is a | | | | | | | (a) Distilled water | | (a) polymer (b) tetramer | | | | | | | (b) 1 M NH ₃ | | (c) trimer (d) dimer | | | | | | | (c) 1 M NaOH | 36. | An aqueous solution of urea freezes at 272.8 K. | | | | | | | (d) Water saturated with chlorine | | An equimolar solution of acetic acid in water | | | | | | 25. | Which of the following element of IIIA group form alum with aluminum like alkali metals? | | will freeze at | | | | | | | (a) B (b) Ca | | (a) 272.8 K (b) 272.79 K | | | | | | | (c) In (d) Te | | (c) 272.81 K (d) 272.6 K | | | | | | 27. | | 37. | A mixture of 0.3 mol of H_2 and 0.3 mole of I_2 is | | | | | | | detecting the presence of carbon monoxide? | | allowed to react in a 10 L evacuated flask at | | | | | | | (a) Reduction of metallic oxides to metals | | 500°C. The reaction is $H_2 + I_2 \rightleftharpoons 2HI$. The K | | | | | | | (b) Reduction of water to hydrogen | | is found to be 64. The amount of unreacted I ₂ | | | | | | | (c) Reduction of PdCl ₂ to Pd (Black) | | at equilibrium is | | | | | | 0.0 | (d) All of the above | | (a) 0.15 mol (b) 0.06 mol | | | | | | 28. | Nitrogen can exists in two forms which are correct about them? | | (c) 0.03 mol (d) 0.2 mol | | | | | | | (i) α-nitrogen with cubic crystalline structure | 38. | $IFN_2 + 3H_2 \Longrightarrow 2NH_3 - K$ and | | | | | | | (ii) β- nitrogen with cubic crystalline structure | | $2N_2 + 6H_2 \Longrightarrow 4NH_3 - k^1$ then k^1 will be | | | | | | | (iii) β-nitrogen with hexagonal crystalline | | (a) k^2 (b) \sqrt{k} | | | | | | | structure | | (c) $\frac{1}{\sqrt{k}}$ (d) $\frac{1}{k^2}$ | | | | | | | (a) Both (i) and (iii) (b) Both (i) and (ii) | | VK K | | | | | | 20 | (c) Both (ii) and (iii) (d) None of these | 39. | With the rise in temperature, the surface | | | | | | 29. | Which of the following mixture is called black ash? | | tension of a liquid | | | | | | | (a) $K_2CO_3 + CuS$ (b) $Na_2CO_3 + CaS$ | | (a) increases | | | | | | | (c) $K_2CO_3 + Na_2S$ (d) $Na_2CO_3 + Na_2S$ | | (b) decreases | | | | | | 30. | In phosphorus pentoxide each P atoms is | | (c) remain constant (d) first increase then decrease | | | | | | | linked to | 40 | | | | | | | | (a) 4 oxygen atom (b) 2 oxygen atom | 40. | At STP a container has 1 mole of Ar, 2 mol of | | | | | | | (c) 3 oxygen atom (d) 10 oxygen atom | | CO ₂ , 3 mol of O ₂ and 4 mol of N ₂ with out | | | | | | 31. | When glucose is warmed with dilute alkali | | changing the total pressure if one mole of O_2 is removed, the partical pressure of O_2 | | | | | | | solution converted into a mixture of | | (a) is change by about 16% | | | | | | | (a) glucose and manose(b) glucose and fructose | | (b) is halved | | | | | | | (c) manose and fructose | | (c) is changed by 26% | | | | | | | (d) glucose and manose and fructose | | (d) is unchanged | | | | | | 41. | Due to Frenkel dere | ect, the den | isity of ionic solid | 48. | An example | e of Lewis | acid is | | |----------------|---|----------------------------|---------------------------|--------|---|--------------|---|-------------| | | (a) decreases(c) does not change | (b) inc
ge (d) cha | | | (a) NaCl
(c) CCl ₄ | | (b) MgCl ₂
(d) AlCl ₃ | | | 42. | A semiconductor o | f Ge can b | e made p-type by | 49. | The conjug | gate acid o | f NH ₂ is | | | | adding (a) trivalent imput | | | | (a) NH ₃
(c) NH ₄ ⁺ | | (b) NH ₂ OH
(d) N ₂ H ₄ | | | | (b) tetravalent imp(c) pentavalent imp(d) divalent impur | purity | | 50. | (a) NO | he followi | ng is not paran
(b) N ₂ ⁺ | nagnetic ? | | 43. | | | | (c) CO | | (d) O_2^- | | | | | neutralised by 20 the basicity of the | acid is | N caustic potash. | 51. | <i>B</i> are 1.20 | and 4.0 res | onegativites of spectively. The | | | | (a) 1
(c) 3 | (b) 2
(d) 4 | | | | | A - B bond is | | | 44. | Which of the follow | | t give iodometric | | (a) 50%
(c) 55.3% | | (b) 72.24%
(d) 43% | | | | titrations? (a) Fe ³⁺ (c) Pb ²⁺ | (b) Cu ² (d) Ag | 2+ | 52. | A sample | of wood | decayed to 1 is the number (b) 4 | | | 45. | Oxidation state of | Fe in Fe ₂ O | is | | (c) 8 | | (d) 16 | | | i Tinese vizio | (a) 2/3 | (b) 4/5 | | 53. | | menon of r | adioactivity aris | es from the | | | (c) 5/4 | (d) 8/3 | 3 | | (a) binary | | 1 | | | 46. | AB and C. If the ox | idation nu | mber of A is $+2$, B | | (b) nuclea(c) stable(d) decay | nuclei | e nuclei | | | | the compound is | | | | The kineti | c energy o | of an electron | accelerated | | | (a) $A_3(BC_4)_2$ (b) $A_3(B_4C)_2$ (c) ABC_2 (d) $A_2(BC_3)_2$ | | | | from rest through a potential difference of $5\mathrm{W}$ will be | | | | | 47. | | | | | (a) 5eV | | (b) 5 J | | | | $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ | | | | (c) 5 erg | | (d) 80 eV | | | | A compound contains atoms of three element AB and C . If the oxidation number of A is $+2$, B is $+5$ and that of C is -2 , the possible formula of the compound is (a) $A_3(BC_4)_2$ (b) $A_3(B_4C)_2$ (c) ABC_2 (d) $A_2(BC_3)_2$ For the redox reaction, $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O_4$ the correct coefficient of the reactants for the balanced reaction are $MnO_4^ C_2O_4^{2-} - H^+$ | | | 55. | A 2.5 mol sample of hydrazine, N ₂ H ₄ loses 25 mole of electrons in being converted to a new | | | | | | MnO_4^- | C2O4- | H^{+} | | | | ing that all of the | - | | | (a) 2 | 5 | 16 | | | | compound, v | | | | (b) 16 | 5 | 2 | | | state of nit | rogen in comp | ound X? | | | (c) 5
(d) 2 | 16
16 | 2
5 | | (a) -1 (c) $+3$ | | (b) -2
(d) +4 | | | | (d) 2 | 10 | 5 | | (0) 43 | | (d) TT | | ## Answer – Key **55.** c **51.** b 52. b 53. d **54.** a | 1. a | 2. c | 3₀ d | 4. d | 5. b | 6. a | 7. c | 8. d | 9. c | 10. c | |--------------|--------------|-------|--------------|--------------|--------------|-------|-------------|--------------|--------------| | 11. c | 12. d | 13. a | 14. a | 15. c | 16. c | 17. b | 18. b | 19. a | 20. a | | 21. c | 22. a | 23. c | 24. d | 25. c | 26. d | 27. c | 28. a | 29. b | 30. a | | 31. a | 32. c | 33. b | 34. a | 35. c | 36. b | 37. b | 38. a | 39. b | 40. c | | 41. c | 42. a | 43. b | 44. c | 45. d | 46. a | 47. a | 48. d | 49. a | 50. c |