

Sample Paper-05 (unsolved) Mathematics Class - XII

Time allowed: 3 hours Maximum Marks: 100

General Instructions:

a) All questions are compulsory.

- b) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each.
- c) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- d) Use of calculators is not permitted.

Section A

1. If
$$A^{-1} = \begin{bmatrix} 3 & 4 \\ -2 & 8 \end{bmatrix}$$
, find $(A^T)^{-1}$.

- 2. If $|\vec{a}| = 2$, $|\vec{b}| = \sqrt{3}$ and angle between \vec{a} and \vec{b} is 45°, find $\vec{a} \cdot \vec{b}$.
- 3. Draw the graph of $f(x) = \begin{cases} \frac{|x|}{x}; x \neq 0 \\ 0; x = 0 \end{cases}$
- 4. Find the value of λ , so that $\begin{bmatrix} 7 & 1 \\ 2 & \lambda \end{bmatrix}$ may be singular.
- 5. Write the domain of $tan^{-1}(x)$.
- 6. Find B s.t. AB=I, A= $\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$.

Section B

7. Using properties of determinants, prove that:

$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)$$

8. Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1}\left(\frac{3\sin x + 4\cos x}{5}\right)$.

- 9. Show that an onto function $f:\{1,2,3\} \rightarrow \{1,2,3\}$ is always 1-1.
- 10. Find the particular solution of $\frac{dy}{dx} + 2y \tan x = \sin x$, $y\left(\frac{\pi}{3}\right) = 0$
- 11. Prove that $\tan^{-1}(2x) \tan^{-1}(3x) = \frac{\pi}{4}$.
- 12. A line makes angles α , β , γ , δ with the diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$
- 13. A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that (i) both are black (ii) both are red?
- 14. Determine k s.t. the function f defined by :

$$f(x) = \begin{cases} kx+1, x \le 5\\ 3x-5, x > 5 \end{cases}$$
 is continuous at x=5.

- 15. Show that $y = \frac{4\sin\theta}{2 + \cos\theta} \theta$ is an increasing function of θ in $[0, \frac{\pi}{2}]$.
- 16. Define dot product of vectors and find the value of λ such that $\vec{a} \perp \vec{b}$ where $\vec{a} = 3i + 3j + \lambda k$ and $\vec{b} = \lambda i j + 4k$.
- 17. Integrate $\int x^{2n-1} \sin x^n dx$.
- 18. Find the equation of the plane passing through the points (2,3,4), (5,6,7)(1,0,0).
- 19. Find the area of triangle with vertices (2,3,4), (5,1,6), (7,-1,3).

Section C

20. Solve the following system of equations:

$$x + y + z = 6$$

 $x + 2y + 3z = 14$
 $x + 4y + 7z = 30$

- 21. Show that the height of a closed cylinder of given volume and minimum surface area is equal to its diameter.
- 22. A manufacturer produces two types of steel trunks. He has machines A and B. The first type of trunk requires 3 hours on machine A and 3 hours on machine B. The second type of trunk requires 3 hours on machine A and 2 hours on machine B. Machine A and b can work for 18 and 15 hours at most in a day. He earns a profit of Rs. 30 on the first trunk and a profit of Rs. 25 per trunk on the second trunk. How many trunks of each type must be made each day to maximize his profit.
- 23. Find the area of the smaller region enclosed between the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$.
- 24. A Company has two plants to manufacture cycles. The first plant manufactures 60% of the cycles and the second plant manufactures 40%. 80% of the cycles of the first plant are rated of standard quality and 90% of the cycles of the second plant are rated of standard quality. A cycle is picked up at random and it is found to be of standard quality. Find the probability that it comes from the second plant.
- 25. If $(x-a)^2 + (y-b)^2 = c^2$, for some constant c > 0, prove that $\frac{\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{3/2}}{\frac{d^2y}{dx^2}}$

is a constant independent of a and b.

26. Evaluate $\int \frac{1}{\sin x (2 + \cos x)} dx$