60613

ROLL No.

TEST BOOKLET No.

TEST FOR POST GRADUATE PROGRAMMES
ELECTRONIC SCIENCE
Tine: 2 Hours
Maximum Marks: 450

INSTRUCTIONS TO CANDIDATES

1. You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Auswer Sheet. Read carefully all the instructions given on the Answer Sheet.
2. Write your Roll Number in the space provided on the top of this page.
3. Also write your Roll Number, Test Code, and Test Subject in the columus provided for the same on the Answer Sheet. Darken the appropniate bubbles with a Ball Polut Pen.
4. The paper consists of 150 objective type questions. All questions carry equal marks.
5. Each question has four alternative responses marked $\mathbf{A}, \mathrm{B}, \mathrm{C}$ and D and you have to darken the bubble fully by a Ball Point Pen corresponding to the correct respouse as indicated in the example shown on the Answer Sheet.
6. Each correct answer carrics $\mathbf{3}$ marks and each wrong answer carries 1 minus mark.
7. Space for rough work is provided at the end of this Test Booklet.
8. You should return the Answer Sheet to the Luvigilator before you leave the examination hall. However, you can retain the Test Booklet.
9. Every precaution has been taken to avoid enors in the Test Booklet. In the event of any such mforeseen happenings, the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be takell at the time of evaluation, if necessary.

ELECTRONIC SCIENCE

1. The forbidden gap in the energy band of Silicon is
(A) 0.1 eV
(B) 0.7 eV
(C) 1.1 eV
(D) 2.1 eV
2. Order of current under reverse bias of a Silicon pn diode is
(A) zero
(B) 1 nano Amp
(C) I micro Amp
(D) 1 milli Amp
3. With reverse bias voltage reverse current in pn diodes varies
(A) linearly
(B) exponentially
(C) logarithamically
(D) negligibly
4. Current conducted by a Si pn diode under 0.3 V forward bias is of order
(A) zero
(B) micro Amps
(C) milli Amps
(D) depends on temperature
5. The relationship of current through a Si pu diode and forward bias voltage is
(A) linear
(B) exponential
(C) circular
(D) inversely proportional
6. A Zener diode conducts current
(A) in both directions
(B) only in forward direction
(C) under constant voltage
(D) in puises
7. A Si junction diode exhibits properties of
(A) resistance only
(B) capacitance
(C) inductance
(D) current source
8. Si devices can be used only upto a frequency of
(A) 1 MHz
(B) 10 MHz
(C) 100 MHz
(D) 1 GHz
9. The number of junctions in a transistor is
(A) one
(B) two
(C) three
(D) four
10. Number of junctions in a tunnel diode is
(A) one
(B) two
(C) three
(D) four
11. Source current in a MOSFET depends on the voltage between
(A) source and drain
(B) source and gate
(C) drain and gate
(D) supply voltage
12. In a BJT, power gain is maximum in the configuration
(A) Common Collector
(B) Common Emitter
(C) Common Base
(D) Cascode
13. In a CE, RC coupled transistor amplifier low frequency cut off is determined by
(A) coupling capacitor
(B) emitter bypass capacitor
(C) collector resistance
(D) bias net work
14. Input impedance of common collector amplifier is
(A) high
(B) moderate similar to CE
(C) low
(D) zero
15. When compared to BJT, TET frequency response is
(A) wider
(B) narrower
(C) same
(D) depends on the circuit
16. Temperature can be sensed using
(A) only a thermocouple
(B) transistor
(C) copper strip
(D) FET
17. In a CE transistor, collector current changes by 1 mA for a base current change of 10 micro amp. This can give the hybrid parameter
(A) hoe $=100 \mathrm{mho}$
(B) lue $=100$
(C) $\mathrm{l} \mathrm{fe}==100$
(D) hie $=100 \mathrm{ohm}$
18. A transistor amplifier has a voltage gain of 10 . With negative voltage feed back of feed back ratio 0.001 , its bandwidth will be
(A) same
(B) smaller
(C) larger
(D) not related to fb
19. An SCR conducts current of 200 mA when its gate voltage is 4 volt wrt cathode. If the gate voltage falls to 2 volt, the collector current will be
(A) 200 mA
(B) 100 mA
(C) 50 mA
(D) zero
20. A TRIAC is a device which can be used to
(A) amplify low frequency signals
(B) control power
(C) produce square waves
(D) amplify signals at high frequencies
21. A source delivers maxinum power at IAmp into a load. Its intemal resistance is 10 ohms. Its yoltage output
(A) cannot be determined
(B) will be arbitrary
(C) will be 10 volts
(D) will be 20 volts
22. A DC source 10 volts is connected to a series combination of 10 ohm and a 1 Farad capacitor. The current through the circuit at 10 secs after switching on will be
(A) zero Amp
(B) 0.66 Anp
(C) 1 Amp
(D) infinity
23. An AC source 10 volts, 1590 Hz is connected to a series combination of 10 ohm and a 1 Farad capacitor. The current through the circuit at 10 secs after switching on will be
(A) zero Amp
(B) 0.66 Amp
(C) 1 Amp
(D) infinity
24. An AC source 10 volts, 1590 Hz is comnected to a series combination of 10 ohm , a 1 microFarad capacitor and a 10 milli Heary inductance. The current through the circuit at 10 secs after switching on will be
(A) zero Amp
(B) 0.66 Amp
(C) 1 Amp
(D) infinity
25. An AC source 10 volts, 1590 Hz is comected to a parallel combination of 10 ohm, a 1 microFarad capacitor and a 10 milli Henry inductance. The current through the circuit at 10 secs after switching on will be
(A) zero Anp
(B) 0.66 Amp
(C) 1 Amp
(D) infinity
26. An AC source 10 volts, 1590 Hz is comected to a series combination of a 1 microfarad capacitor and a 10 milli Henry inductance. The current through the circuit at 10 seconds after switching on will be
(A) zero Amp
(B) 0.66 Amp
(C) 1 Amp
(D) infinity
27. An AC source 10 volts, 1590 Hz is comected to a parallel combination of a 1 microFarad capacitor and a 10 milli Heny inductance. The current through the circuit at 10 seconds after switching on will be
(A) zero Amp
(B) 0.66 Amp
(C) 1 Amp
(D) infinity
28. A ideal voltage source has to provide to a load varying from 120 ohm to 1500 ohm. Its intemal impedance should be
(A) zero olms
(B) 120 ohm or 1500 ohm
(C) Sq Rt of 120 - 1500 olun
(D) infinity
29. Sound waves propagate in free space with a velocity of
(A) $1500 \mathrm{~m} / \mathrm{s}$
(B) $3 \times 10000 \mathrm{~m} / \mathrm{s}$
(C) light
(D) $z e r o m / s$
30. Radio frequency waves propagate in frce space with a velocity
(A) proportional to their frequency
(B) equal to that of light
(C) depending on permitivity
(D) proportional to power radiated
31. Wavelength corresponding to 8.2 GHz is
(A) 36.6 cm
(B) 3.66 cm
(C) 0.366 cm
(D) 366 cm
32. Radio Frequency Signals are capable of propagating through Earth with a velocity
(A) of light
(B) of light but get attenuated
(C) zero
(D) infinity
33. A signal at 1 MHz and another at 3 MHz are travelling through the same conductor. The result will be a signal at
(A) $(1+3) \mathrm{MHz}$
(B) $(3-1) \mathrm{MHz}$
(C) 1 MHz and 3 MHz
(D) 4 MHz and 2 MHz
34. Modulation of audio signals over high frequency carrier is required because
(A) efficiency of audio is low
(B) audio cannot cover large distances due to attenuation
(C) high frequency carrier can travel long distance
(D) high frequency can easily be generated
35. In amplitude modulation, modulated signal comprises
(A) cartier, upper and lower side bands
(B) upper sideband
(C) lower sideband
(D) upper and lower sideband
36. An AM transmitter radiates 15 k watts power. If modulation is 100%, power in lower sideband is
(A) 1.25 kW
(B) 2.5 kW
(C) 5 kW
(D) 10 kW
37. A single sideband AM transmitter radiates 10 kW . The power at carrier frequency is
(A) 5 kW
(B) 2.5 kW
(C) zero
(D) small, only pilot carrier power:
38. Frequency modulation results in a signal which needs larger band width than twice modulating sigual. This statenment is TRUE
(A) always
(B) for large power signals only
(C) for small modulation index
(D) for large modulation index
39. Frequency modulated signals can be radiated only by
(A) vertical dipoles
(B) horizontal dipoles
(C) Yagi antenuas
(D) Any of these
40. When compared to AM of equal power, FM coverage is
(A) always less
(B) always larger
(C) limited by line of sight
(D) all round
41. Antennas to receive FM transmission are
(A) verticaly polarised
(B) horizontally polarised
(C) circularly polarised
(D) sometimes directional
42. RADAR uses microwave frequencies since
(A) large power can be generated
(B) directional radiation can be achieved easier
(C) interference is minimal
(D) range accuracy is good
43. For microwave frequencies most appropriate tmansmission lines are
(A) Iwo wire open lines
(B) shielded cables
(C) wave guides
(D) fibre
44. For propagation at microwave frequencies a wave guide allows frequencies
(A) higher than a cut off
(B) lower than a cut off
(C) of all ranges
(D) which are resomant
45. A rectangular wave guide has dimensions $1.5 \times 0.5 \mathrm{cms}$. It can support propagation of microwave signals at
(A) 1 GHz
(B) 5 GHz
(C) 10 GHz
(D) visible light frequencies
46. The main purpose of the helix in a TWT is to
(A) reduce axial velocity of RF field
(B) ensure broad band operation
(C) prevent electron beam from spreading
(D) reduce noise figure
47. GUNN diode is a device
(A) for switching
(B) generating square waves
(C) rectifying micro waves
(D) generating micro waves
48. The type of modulation possible at micto wave frequencies is
(A) AM
(B) $\mathrm{FM} / \mathrm{PM}$
(C) pulse modulation
(D) all types
49. Shielded cables are used at high frequencies to
(A) optimise power transfer
(B) minimise radiation
(C) protect cable from bending
(D) minimise VSWR
50. Microwave frequencies are used for satellite communication because they
(A) need devices small in size
(B) can penetrate through ionosphere
(C) can travel with velocity greater than light velocity in free space
(D) are unaffected by noise
51. An amplifier shows a gain of 1000 at $4 \mathrm{kHz}, 707$ at 7.1 kHz and at 100 Hz . Its bandwidth is
(A) 4 kHz
(B) 7 kHz
(C) 7.1 kHz
(D) 100 Hz
52. A symmetric two port network has series arms and shunt arm 120 ohms. Then its characteristic impedance is
(A) 60 ohms
(B) 120 ohms
(C) 240 obms
(D) 360 olms
53. Two resistances R1 and R2 are comected in parallel across a battery of 6 V with internal resistance R0. R1 is found to dissipate 3 watts while R2 dissipates half of this value. Then $\mathrm{R} 0=$
(A) 0.5 olm
(B) 1 olm
(C) 1.5 ohm
(D) 2 ohm
54. A 10 ohm resistance is comected in series with an inductance $\mathrm{L}=100 \mathrm{mHenry}$ and a capacitance $C=0.1$ micro Farad to a 10 V , ac source. At a frequency of 1590 Hz the resistance dissipates 10 Walts. At a frequency of 3180 Hz the resistance dissipates
(A) 5 watts
(B) less than 10 watts
(C) 10 Watts
(D) 20 watts
55. A 10 ohm resistance is connected in series with an inductance $L=100 \mathrm{mHenry}$ and a capacitance $C=0.1$ micro Farad to a 10 v , ac source. At a fiequency of 1590 Hz the resistance dissipates 10 Watts. The voltage across the inductance at this frequency is
(A) less than 10 v
(B) 10 v
(C) 50 v
(D) $100 v$
56. A 10 ohm resistance is connected in series with an inductance $\mathrm{L}=100 \mathrm{mHenry}$ and a capacitance $C=0.1$ micro Farad to a 10 v , ac source. At a frequency of 1590 Hz the resistance dissipates 10 Watts. The voltage across the resistance at this frequency is
(A) less than 10 v
(B) $10 v$
(C) 50 v
(D) $100 v$
57. A current I Amp passes through an inductance $L=1 \mathrm{H}$. The energy stored in L is
(A) 0.5 J
(B) 0.5 J if current is AC
(C) 0.5 J if cument is DC
(D) zero
58. A current 1 Amp passes through an inductance $L=1 \mathrm{H}$. The power dissipated in L is
(A) zero Watt
(B) 0.5 Watt
(C) 1 Watt
(D) 2 Watt
59. In an RC coupled transistor CE amplifier; an un-bypassed emitter resistance will lead to
(A) shift in quiescent point
(B) fall in input impedance
(C) fall in oulput impedance
(D) reduction in gain
60. The main disadvantage of CW Doppler radar is that
(A) it does not give target velocity
(B) it does not give target range
(C) a transponder is required at target
(D) All of the above are disadvantages
61. What is the most noticeable effect of a small increase in temperature in the common emitter connected BJT?
(A) Increase in output resistance
(B) Increase in ICEO
(C) Increase in forward current gain
(D) Decrease in forward current gain
62. When compared with a BJT amplifier the input impedance of an FET amplifier stage is
(A) same
(B) smaller
(C) larger
(D) 10% larger
63. A thin base region in a transistor will provide
(A) larger power
(B) larger current gain
(C) smaller gain
(D) higher speed
64. Increasing the doping concentration in a pn diode will lead to
(A) tumneling
(B) Zener effect
(C) break down
(D) thernal stability
65. In an in type MOSFET the majonity cantiers are
(A) electrons
(B) holes
(C) electrons and holes
(D) absent
66. In a semiconductor junction with no applied bias, charge carriers
(A) face a potential well
(B) jump from valence to conduction band
(C) fall from conduction to valence band
(D) remain bound to their parent atoms
67. When reverse bias voltage is applied to a Zener diode, electrons on the p side
(A) oppose the bias
(B) assist the bias
(C) cross the barrier
(D) stay on n side
68. In a tumel diode electrons on the p side and holes on the n side can
(A) cross the forbidden gap
(B) pass through the gap to other side
(C) pass through the gap to available sites on the other side
(D) pass through the gap to available sites on the other side on forward bias
69. In a Reflex Klystron oscillation occurs because
(A) electron beam is highly focused
(B) electrons repel each other
(C) velocity modulation occurs
(D) density modulation occurs
70. A trausistor like BCl 107 can work at frequencies of order
(A) 2 MHz
(B) 20 MHz
(C) 200 MHz
(D) 2000 MHz
71. Maguetron is a device which provides
(A) high magnetic fields
(B) large amplification and oscillation at 100 MHz only
(C) oscillation at GHz
(D) high frequency magnetic field
72. Open wires cannot be used at frequencies of order 500 MHz because
(A) this frequency is for military usage
(B) wires must be yery thick
(C) they get heated due to skin effect
(D) radiation losses occur
73. Microwave devices normally work with
(A) AC power supply
(B) DC power supply
(C) switched power
(D) very high frequency power
74. VHF devices need cooling since
(A) these are bulky
(B) these are usually thermionic
(C) skin effect is present at VHF
(D) electrodes damage
75. In transistors operating speed is limited by
(A) Vcc
(B) base voltage
(C) junction temperature
(D) doping level
76. When compared to a BJT the speed performance of an FET is
(A) inferior
(B) superior
(C) the same
(D) 1.1 times better
77. An LED is a device which can be used to
(A) amplify low frequencies
(B) amplify high frequencies
(C) indicate state of signal
(D) provide audio alam
78. Devices used in most digital circuits are
(A) transistors only
(B) FETs only
(C) transistors and FETs
(D) LCDs
79. Binary digital circuits as in computers use
(A) 0 s and 1 s
(B) two level voltages
(C) On-OFF relays
(D) SCRs
80. Most digital circuits operate with Vec of 5 volts since
(A) SV is easily generated from battery
(B) most ICs are manufactured for 5 V
(C) noise margin is good
(D) 0 and 1 are 0 V and 5 V , as per international standards
81. A and B are binary variables. Then $A+A^{\prime}$ is
(A) 0
(B) 1
(C) A
(D) X (don't care)
82. A and B are binary variables. Then $(A+B)^{\prime}=$
(A) 0
(B) 1
(C) $\mathrm{A}+\mathrm{B}^{\prime}$
(D) $\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}$
83. Binary representation of decimal number 14 is
(A) 00010100
(B) 1110
(C) E
(D) F
84. What is the typical value for the ratio of current in a $p-n$ junction diode in the forward bias with that in the reverse bias?
(A) 1
(B) 10
(C) 100
(D) 1000
85. The logic function $\mathrm{ABC}+\mathrm{AB} \mathrm{B}^{\prime}+\mathrm{ABC}$ ' is equivalent to
(A) A
(B) B
(C) ABC
(D) 1
86. A logic circuit which can identify when two variables A and B are not similar is
(A) OR gate
(B) AND gate
(C) EXOR gate
(D) EXNOR gate
87. A logic circuit which can identify when two variables A and B are similar is
(A) OR gate
(B) AND gate
(C) EXOR gate
(D) EXNOR gate
88. The number of bits in a product of two non zero binary numbers with 5 and 7 bits is
(A) 5
(B) 7
(C) $7+1$
(D) 5+7-1 or more
89. In TTL logic circuits the 0 and 1 levels are respectively
(A) below 0 and above 5
(B) 0 and 1 volts
(C) 0.8 volts and 3.2 volts
(D) 0.8 yolts and below and 3.2 volts and above
90. Twos complement representation is used in computers to perform arithmetic on
(A) + ve and -ve decimal numbers
(B) fractions
(C) + ve and -ve binary numbers
(D) only on floating point numbers
91. A floating point representation has
(A) + or - sign and value
(B) exponent and maguitude
(C) biased exponent and magnitude
(D) biased exponent and magnitude as fraction
92. The range of an 8 bit binary number in microprocessors can represent the range
(A) 0-255 decimal
(B) -127 to +128
(C) 0 to 2 power 8
(D) $0-128$
93. Cunent day microprocessors work at clock speeds upto
(A) 1 MHz
(B) 10 MHz
(C) 100 MHz
(D) 1 GHz and above
94. The main memory of modern day computers is
(A) semi conductor
(B) magnetic core
(C) magnetic Tape
(D) CCD
95. One important limit to speed of operation of computers is
(A) access time of memory
(B) density of devices in CPU
(C) speed of peripherals like printers
(D) speed of display devices
96. Digital computers can perform only
(A) addition and logic operations
(B) addition, logic operations and calculus
(C) with the help of algorithms any mathematical operation
(D) text processing in addition to all these with suitable codes
97. The number of distinct elements that Boolean algebra can have is
(A) 2
(B) 3
(C) 4
(D) any
98. 8085 is an eight bit microprocessor. It implies that for this microprocessor
(A) address and data bus are 8 bit
(B) data is in terms of 8 bits
(C) ALU can operate on 8 bit numbers
(D) address bus is 8 bit
99. A computer has a main memory RAM of 8192 bytes. Time taken to access location number 10 is 100 nano second. Then time takein to access location number 1000 is
(A) 100 nano second
(B) 1 micro second
(C) 10 micro second
(D) 1 milli second
100. Fastest type of memory for digital computers is
(A) Compact Disc
(B) Hard Disc
(C) Magnetic tape
(D) Semiconductor
101. Circuits in a digital computer use ICs with devices like transistors and FETs and operate at clock speeds in many MHz . Power supply for these circuits are usually
(A) $220 \mathrm{AC}, 50 \mathrm{~Hz}$
(B) 220 DC
(C) AC of frequency MHz
(D) DC
102. An operational amplifier performs
(A) mathematical operation
(B) logic operation like AND, OR etc
(C) amplification of low frequency signals only
(D) data conversion
103. The open loop gain of an op-amp like 741 is of order
(A) 100
(B) 1000
(C) 10000
(D) 100000
104. The open loop bandwidth of an op-amp like 741 is of order
(A) 10 Hz
(B) 100 Hz
(C) 1 KHz
(D) 100 KHIz
105. The input impedance of an op-amp is of the order of
(A) 100 ohm
(B) 1 k ohm
(C) 100 k olum
(D) 10 M olum
106. An op-amp integrates the input fed at inverting terminal by connecting in the feed back path
(A) a suitable resistance
(B) an induclance
(C) a capacitor
(D) diode connected transistor
107. Op-amp 741 is connecled as unity gain inverting amplifier. Slew rate is specified as $0.5 \mathrm{~V} /$ microsec. The inverting voltage input changes by 10 Volts. Then the output voltage will change to 10 volts
(A) instantly
(B) after 5 micro sec
(C) after 20 micro sec
(D) after delay depending on the input waveform
108. Cut off frequency of a first order low pass filter for $R_{1}=2.5 \mathrm{k} \Omega$ and $C_{1}=0.05 \mu F$ is
(A) 1.273 kHz
(B) 12.73 kHz
(C) 127.3 kHz
(D) 127.3 Hz
109. An op-amp is comected as an integrator with feed back resistance R and capacitance C. A square wave is fed to its inverting input. Then the output will be triangular wave if input
(A) period is less than $1 / 2 . \mathrm{pi}$. KC
(B) period is more than $1 / 2$.pi. RC
(C) voltage is greater tixan off sut
(D) voltage is less than off set
110. The output is connected to the inverting input of a 741 op -amp. A sinusoidal input of 1 volt, 1 kHz is connected to the non inverting input through a 10 K olm resistance. The out put is then of the order of
(A) 1 volt, input impedance 10 k ohm
(B) 10 volt, input impedance 10 k olum
(C) 1 volt, input impedance 100 k olm
(D) 1 volt, input impedance 1 Mohm
111. The output of an op-amp integrator is comected to another op-amp integrator whose output is comected back to the first integrator. This will provide an output of
(A) highly stable original signal
(B) sinusoidal oscillation
(C) highly amplified signal
(D) perfect integrated input
112. The input current drawn by a unity gain op-amp like 741 is
(A) 1 imicro amp
(B) 1 nilli amp
(C) order of collector current
(D) negligible
113. The output impedance of an op-amp is of the order of
(A) few ohms
(B) k ohms
(C) mega olms
(D) infinity
114. A transistor Common Emitter RC coupled amplifier has voltage gain of 50 and a current gain of 20. An input sigual at 1 volt and current 0.1 milli amp is applied to this stage. The output power is
(A) 1 milli watts
(B) 10 milli watts
(C) 100 milli watts
(D) distorted
115. An inverting op-amp 741 has a closed loop gain of 200. A sinusoidal input 1 volt at 1 k Hz is applied to its inverting input. If the supply voltage is Vcc, the output will be
(A) cosinusoidal 10 volt, 1 kHz
(B) sinusoidal $200 \mathrm{v}, 1 \mathrm{kHz}$
(C) near square wave, at $\mathrm{Vcc}, 1 \mathrm{kHz}$
(D) triangular, Vcc, 1 kHz
116. Cathode ray oscilloscopes provide
(A) visual displays
(B) audio output
(C) deflection of needle
(D) both audio and video output
117. An electron is released at the bottom plate of two parallel plates spaced 1 cm and the upper plate at 200 volts with reference to the lower plate. Then the electron will gain an energy of
(A) 200 eV
(B) 5.93×200
(C) $200 \times \mathrm{cev}$ where c is velocity of light
(D) $5.93 \times 14.1 \mathrm{eV}$
118. In a CRO to observe wave forms a sawtooth voltage is applied to
(A) vertical deflection plates
(B) horizontal deflection plates
(C) between cathode and anode
(D) the phosphor of the screen
119. In oscilloscopes with deflection sensitivity $10 \mathrm{mV} / \mathrm{cm}$ the input signal should supply
(A) zero current
(B) current proportional to the voltage
(C) 1 mV for deflection of 1 cm
(D) 10 mV for deflection 1 cm
120. Stable waveforms can be observed on CRO screens if the frequency of horizontal sweep input are
(A) same
(B) related by integer multiple
(C) related by integer multiple and the screen has persistence
(D) related by integer multiple and the screen has persistence and signal level is above a threshold
121. The solution to simultaneous equations in two variables requires
(A) one unique equation
(B) two independent equations
(C) specific boundary conditions
(D) matrix of rank 1
122. Simultaneous algebraic equations in two variables can be solved using operational amplifiers interconnected as
(A) integrators
(B) differentiators
(C) summing amplifiers
(D) multipliers
123. $x(t)$ is a function of time. When differentiated twice gives $x(1)$ as a result. Then $x(1)$ is
(A) a constant
(B) $=1$
(C) $=r^{* *} 2$
(D) $\sin k t$, where $k=$ constant
124. Amplifier responses are plotted in \log freq Vs gain so that
(A) errors are mininuised
(B) frequency scale need not start at zero
(C) large frequency range can be covered
(D) \log is a liner operator
125. A transistor amplifier has a voltage gain of 100 . Its power gain in dB is
(A) 10 dB
(B) 20 dB
(C) 30 dB
(D) 40 dB
126. Directivity of an isotropic antenna is
(A) 0 dB
(B) 1 dB
(C) -ldB
(D) 10 dB
127. The voltage developed across a load at a frequency 1 kHz is 10 volts. At 2 kHz it is 7.07. Then power delivered is at
(A) -3 dB
(B) -6 dB
(C) 0 dB
(D) 3 dB
128. A matrix has its $1^{\text {st }}$ row as 0,1 . Its second row is 1,0 . Its transpose is then
(A) same
(B) undefined
(C) undefined since rank is zero
(D) both rows 1,0 and 1,0
129. Two complex numbers $2+\mathrm{j} 3$ and $2-\mathrm{j} 3$ are multiplied. The result is
(A) $4-\mathrm{j} 9$
(B) $4+j 9$
(C) 4-9
(D) $4+9$
130. The current in an inductor with reference to the voltage across it
(A) lags by 180 deg
(B) leads by 180 deg
(C) lags by 90 deg
(D) leads by 90 deg
131. Current through a resistance in a series L, C, R circuit with respect to voltage across it
(A) is in phase
(B) leads
(C) lags
(D) is in phase at resonance
132. Two inductances 100 m Henry and 200 m Henry are comected in parallel. This will result in an inductance of
(A) $200 / 300 \mathrm{~m}$ Hewy
(B) 300 m Henty
(C) $200-100=100 \mathrm{~m}$ Henry
(D) 200 m Henry
133. A matrix has 4 rows - $\{1,2,3,4\}\{3,2,4,2\},\{2,4,6,8\},\{5,6,7,0\}$. Its rank is
(A) 4
(B) 3
(C) 2
(D) 1
134. The output of a transistor CE amplifier and its input are
(A) in phase
(B) out of phase
(C) in phase in mid frequency
(D) out of phase in mid frequency
135. An $\mathrm{L}, \mathrm{C}, \mathrm{R}$ circuit draws a current of 10 mA at 1 kHz . The current drawn lags the voltage applied by 30 degrees. Voltage across the resistance $\mathrm{R}=10 \mathrm{olm}$ is 10 volts. Power dissipated in the resistance is then
(A) 0.1 watt
(B) $0.1 \times \cos 30$
(C) $0.1 \times \sin 30$
(D) zero
136. Two 4×4 matrices A and B are multiplied. The result is an identity matrix. Then
(A) B is transpose of A
(B) A is transpose of B
(C) B is inverse of A
(D) B is hetmitian of A
137. Two matrices can be multiplied only if
(A) they are both real
(B) number of rows of first equals number of columns of the second
(C) number of columms of first equals number of rows of the second
(D) they are square matrices
138. The matrix whose off diagnol elements are zero
(A) has no inverse
(B) is its own inverse
(C) has rank zero
(D) has rank one less than number of rows
139. Hybrid parameters of a CE transistor contains 4 elements in two rows which are
(A) impedances
(B) voltage ratios
(C) two ratios, one impedance and one admittance
(D) one voltage ratio, one current ratio, one impedance and one conductance
140. At high frequencies a CE transistor amplifier exhibits
(A) large attenuation
(B) instability
(C) large power dissipation
(D) phase shift greater than 180 deg
141. A system is described by its transfer function which has poles at $-1,+1$ and zeros at 0 and 2 . The system is
(A) stable since poles are not greater than 1
(B) unstable since zero is at 2
(C) unstable due to pole at +1
(D) stable since Nyquist criterion is satisfied
142. An amplifier has a gain of 200 . It has a positive feed back of 0.5 . This system will
(A) oscillate as Barkhausen criterion is satisfied
(B) oscillate because positive feed back exists
(C) larger band width than without feed back
(D) smaller gain than without feed back
143. Negative feed back in amplifier circuits introduces
(A) instability
(B) distortion only
(C) stability only
(D) stability as also reduces distortion
144. Oscillator circuits will always produce
(A) sinusoidal out put only
(B) steady DC plus saw tooth
(C) square waves or sinusoidal outputs
(D) damped sine waves
145. The Fourier transform of a steady DC is
(A) zero
(B) linearly increasing
(C) circle
(D) pulse at zero
146. The Fourier transform of a time function $x(t)$ is
(A) real and symmetric
(B) complex
(C) exponeutial function
(D) constant
147. The Laplace transfom of a time function $x(t)=$ constant, $t>=0$ is
(A) constant
(B) $1 / \mathrm{s}$
(C) $1 / s+1$
(D) s
148. The Laplace transform of the impedance of an inductance L at frequency f is, (where w is radian frequency, s is Laplace operator)
(A) $\mathrm{j} w \mathrm{~L}$
(B) $1 / j w L$
(C) $1 / \mathrm{sL}$
(D) sL
149. The response of a circuit to DC of 1 volt is given by $1 / \mathrm{s}+3$. In time domain it is
(A) $\sin 3 t$
(B) DC of 3 volt
(C) $\exp (-3 i)$
(D) $\exp (+3 t)$
150. Transfer function of a system is given by $H=1 /(s-2)(s-1)(s+1)$. The system is
(A) oscillatory
(B) unstable
(C) stable
(D) conditionally stable
