TEST CODE: PMB

SYLLABUS

Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional derivatives, Jacobians, Taylor Expansion; integral calculus of one variable – existence of Riemann integral; Fundamental theorem of calculus, change of variable; elementary topological notions for metric space – open, closed and compact sets, connectedness; elements of ordinary differential equations.

Equivalence relations and partitions; vector spaces, subspaces, basis, dimension, direct sum; matrices, systems of linear equations, determinants; diagonalization, triangular forms; linear transformations and their representation as matrices; groups, subgroups, quotients, homomorphisms, products; Lagrange's theorem, Sylow's theorems; rings, ideals, maximal ideals, prime ideals, quotients, integral domains, unique factorization domains, polynomial rings; fields, algebraic extensions, separable and normal extensions, finite fields.

SAMPLE QUESTIONS

- 1. Let k be a field and k[x, y] denote the polynomial ring in the two variables x and y with coefficients from k. Prove that for any $a, b \in k$ the ideal generated by the linear polynomials x a and y b is a maximal ideal of k[x, y].
- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Show that there is a line L such that T(L) = L.
- 3. Let $A \subseteq \mathbb{R}^n$ and $f : A \to \mathbb{R}^m$ be a uniformly continuous function. If $\{x_n\}_{n\geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim_{n\to\infty} f(x_n)$ exists.
- 4. Let N > 0 and let $f : [0,1] \to [0,1]$ be denoted by f(x) = 1 if x = 1/i for some integer $i \le N$ and f(x) = 0 for all other values of x. Show that f is Riemann integrable.
- 5. Let $F : \mathbf{R}^n \to \mathbf{R}$ be defined by

 $F(x_1, x_2, \dots, x_n) = \max\{|x_1|, |x_2|, \dots, |x_n|\}.$

Show that F is a uniformly continuous function.

- 6. Show that every isometry of a compact metric space into itself is onto.
- 7. Let $\mathbf{T} = \{z \in \mathbf{C} : |z| = 1\}$ and $f : [0,1] \to \mathbf{C}$ be continuous with f(0) = 0, f(1) = 2. Show that there exists at least one t_0 in [0,1] such that $f(t_0)$ is in \mathbf{T} .
- 8. Let f be a continuous function on [0, 1]. Evaluate

$$\lim_{n \to \infty} \int_0^1 x^n f(x) dx.$$

- 9. Find the most general curve whose normal at each point passes though (0,0). Find the particular curve through (2,3).
- 10. Suppose f is a continuous function on **R** which is periodic with period 1, that is, f(x + 1) = f(x) for all x. Show that
 - (i) the function f is bounded above and below,
 - (ii) it achieves both its maximum and minimum and
 - (iii) it is uniformly continuous.
- 11. Let $A = (a_{ij})$ be an $n \times n$ matrix such that $a_{ij} = 0$ whenever $i \ge j$. Prove that A^n is the zero matrix.
- 12. Determine the integers n for which \mathbf{Z}_n , the set of integers modulo n, contains elements x, y so that x + y = 2, 2x 3y = 3.
- 13. Let a_1, b_1 be arbitrary positive real numbers. Define

$$a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \sqrt{a_n b_n}$$

for all $n \ge 1$. Show that a_n and b_n converge to a common limit.

- 14. Show that the only field automorphism of \mathbf{Q} is the identity. Using this prove that the only field automorphism of \mathbf{R} is the identity.
- 15. Consider a circle which is tangent to the *y*-axis at 0. Show that the slope at any point (x, y) satisfies $\frac{dy}{dx} = \frac{y^2 x^2}{2xy}$.
- 16. Consider an $n \times n$ matrix $A = (a_{ij})$ with $a_{12} = 1, a_{ij} = 0 \forall (i, j) \neq (1, 2)$. Prove that there is no invertible matrix P such that PAP^{-1} is a diagonal matrix.
- 17. Let G be a nonabelian group of order 39. How many subgroups of order 3 does it have?
- 18. Let $n \in \mathbf{N}$, let p be a prime number and let \mathbf{Z}_{p^n} denote the ring of integers modulo p^n under addition and multiplication modulo p^n . Let f(x) and g(x) be polynomials with coefficients from the ring \mathbf{Z}_{p^n} such that $f(x) \cdot g(x) = 0$. Prove that $a_i b_j = 0 \forall i, j$ where a_i and b_j are the coefficients of f and g respectively.

- 19. Show that the fields $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{3})$ are isomorphic as **Q**-vector spaces but not as fields.
- 20. Suppose $a_n \ge 0$ and $\sum a_n$ is convergent. Show that $\sum 1/(n^2 a_n)$ is divergent.

Model question paper

Group A

- 1. Let f be a bounded twice differentiable real valued function on \mathbb{R} such that $f''(x) \ge 0$ for all x. Show that f is a constant.
- 2. Let $u, v : [a, b] \to \mathbb{R}$ be continuous. Define $f : [a, b] \to \mathbb{R}$ by

$$f(x) = \begin{cases} u(x) & \text{if } x \text{ is rational} \\ v(x) & \text{if } x \text{ is irrational.} \end{cases}$$

Show that f is Riemann integrable on [a, b] if and only if u(x) = v(x) for all $x \in [a, b]$

- 3. In each case, give an example of a function f, continuous on S and such that f(S) = T, or else explain why there can be no such f:
 - $\begin{array}{ll} (a) & S = (0,1), & T = (0,1]. \\ (b) & S = \mathbb{R}, & T = \{ \text{the set of rational numbers} \}. \\ (c) & S = [0,1] \cup [2,3], & T = \{0,1\}. \\ (d) & S = (0,1), & T = \mathbb{R}. \\ (e) & S = [0,1], & T = (0,1). \end{array}$
- 4. If $f(x,y) = \sqrt[3]{x^3 + y^3}$, then is f differentiable at (0,0)? Justify your answer.
- 5. Suppose that $g: \mathbb{R}^n \to \mathbb{R}$ has continuous partial derivatives and satisfy

$$\left|\frac{\partial g}{\partial x_j}(\mathbf{x})\right| \le M$$

for all $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and for all $j = 1, 2, \dots, n$.

(a) Show that

$$|g(\mathbf{x}) - g(\mathbf{y})| \le \sqrt{n}M \|\mathbf{x} - \mathbf{y}\|$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Here $\|\cdot\|$ denotes the Euclidian norm on \mathbb{R}^n .

- (b) Using (a) or otherwise, prove that g is uniformly continuous.
- 6. Let C be a subset of a compact metric space (X, d). Assume that, for every continuous function $h: X \to \mathbb{R}$, the restriction of h to C attains a maximum on C. Prove that C is compact.

Group B

1. For the following statements indicate True/False. If the statement is true then give a short proof. Otherwise give a counter-example.

- (a) There is no non-trivial group homomorphism from the symmetric group S_3 to \mathbb{Z}_3 .
- (b) If a group G is such that each proper subgroup of G is cyclic, then G is cyclic.
- (c) Let R be a ring with unity. Consider $X^2 1 \in R[X]$. Then $X^2 1$ has at most two roots in R.
- (d) Let R be a ring such that R[X] is a principal ideal domain (PID). Then R is a field.
- 2. Let R be a commutative ring with 1 such that every ascending chain of ideals terminates. Let $f: R \longrightarrow R$ be a surjective homomorphism. Prove that f is an isomorphism.
- 3. Find the gcd of $4X^4 2X^2 + 1$ and $-3X^3 + 4X^2 + X + 1$ in $\mathbb{Z}_7[X]$.
- 4. Find conditions on $a, b, c \in \mathbb{R}$ to ensure that the following system is consistent, and in that case, find the general solutions :

- 5. Prove or disprove :
 - (a) There exists a linear map $T: \mathbb{R}^2 \to \mathbb{R}^4$ such that

Range $(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}.$

(b) There exists a linear map $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that

Range $(T) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$

6. Let V be a finite dimensional vector space over \mathbb{R} and $T: V \to V$ be a linear transformation with dimension of Range of T = k. Show that T can have at most k + 1 distinct eigenvalues.