\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
MATHEM ATICS-I
(Common to All Branches)
Date: 03 July, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Solve $\cos ^{2} x \frac{d y}{d x}+y=\tan x$
b) Find the orthogonal trajectories of the family of coaxial circles $x^{2}+y^{2}+2 \lambda y+c=0 \quad 8 \mathrm{M}$ Where λ is a parameter?
2.

a) Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+[x+\log x-x \sin y] d y=0$
b) The temperature of a cup of coffee is $92^{\circ} \mathrm{C}$, when freshly poured, the room temperature being $24^{\circ} \mathrm{C}$. In one minute it has cooled to $88^{\circ} \mathrm{C}$. How much time must elapse before the temperature of the cup becomes $65^{\circ} \mathrm{C}$?

Unit - II

3. a) Solve $\left(D^{2}+3 D+2\right) y=e^{x} \sin x$
b) Solve $\left(D^{2}-6 D+9\right) y=\left(e^{3 x} / x\right)$ by the method of variation of parameters. $\quad 8 \mathrm{M}$
4. Determine q and i in an LCR circuit with $\mathrm{L}=0.5 \mathrm{H}, \mathrm{R}=6 \Omega, \mathrm{C}=0.02, e=24 \sin 10 t$ and initial 15 M condition $q=i=0$

Unit - III

5. a) If m and n are positive integers, verify Rolle's theorem for the function 8 M $f(x)=(x-a)^{m}(x-b)^{n}$ in $[a, b]$
b) If $x=u(1-v), y=u v$, prove that $J J^{1}=1$

7M
6. a) Verify Cauchy's Mean value theorem for the function $f(x)=e^{x} ; g(x)=e^{-x}$ in 8 M $[a, b]$
b) Obtain the Radius of curvature of the curve asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ at the point 7 M $(0,1)$

::2::

Unit - IV

7. a) Obtain Laplace transforms of the following $\frac{e^{-t} \sin t}{t} \quad 7 \mathrm{M}$
b) If $f(t)$ is a periodic function with period T , show that 8 M $L\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$
8. Solve by the method of transforms, the equation $y^{\prime \prime \prime+}+2 y^{\prime \prime}-y^{\prime}-2 y=0$ given 15M $y(0)=y^{\prime}(0)$ and $y^{\prime \prime}(0)=6$

Unit - V
9. a) If $\vec{F}=\operatorname{grad}\left(x^{3} y+y^{3} z+z^{3} x-x^{2} y^{2} z^{2}\right)$, find $\operatorname{div} \cdot \vec{F}$ and $\operatorname{curl} \vec{F}$ at $(1,2,3) \quad$ 8M
b) Prove that $F=\left(\mathrm{z}-\mathrm{e}^{-x} \sin \mathrm{y}\right) \vec{i}+\left(1+\mathrm{e}^{-x} \operatorname{cosy}\right) \vec{j}+(\mathrm{x}-8 \mathrm{z}) \vec{k}$ is conservative and find 7 M scalar potential ϕ such that $F=\nabla \phi$
10. Verify Green's theorem in the plane $\oint_{C}\left(3 x^{2}-y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region $15 M$ bounded by $y=\sqrt{x}$ and $y=x^{2}$
प|||||l|

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
ENGINEERING PHYSICS
(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering \& Mechanical Engineering)

Date: 04 July, 2014

Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Explain with a suitable graph the variation of potential energy with interatomic distance. 9M Derive an expression for cohesive energy of a diatomic molecule.
b) What are the general properties of ionic bonds? With suitable examples, distinguish 6 M between ionic and covelent bonds.
2. a) Calculate the atomic packing fraction of f.c.c. and diamond crystal structures with 9 M schematic diagrams.
b) Distinguish between unit cell and primitive cell. Explain the structure of ZnS .

Unit - II

3. a) Outline the procedure for determining Miller indices of a crystal plane. With neat 9 M diagram obtain an expression for inter planar spacing of an orthogonal crystal system.
b) Explain powder crystal method for determination of crystal structures.
4. a) What is the importance of surface to volume ratio in nano scale. Explain how the 7M properties depend on the S/V ratio.
b) Discuss Sol-gel method for nano material synthesis. What are its advantages? 8M

Unit - III

5. a) Explain Debroglie's hypothesis. Derive an expression for Schrodinger's time independent wave equation.
b) 10 keV electrons are passed through a thin film of a metal for which atomic spacing is $5.5 \times 10^{-11} \mathrm{~m}$. Calculate the glancing angle for the first order maximum.
6. a) State Bloch's theorem. What are the salient features of Kronig Penney model? How does this model explain the energy band formation in solids?
b) What are the characteristics of a wave function representing matter waves? Explain the physical significance of the wave function.
::2::

Unit - IV

7. a) What is the origin of internal fields in dielectric materials? Derive the Clausius-M ossotti equation for a dielectric.
b) Define dielectric polarization and susceptibility. Two parallel plates have equal and opposite charges and are separated by 5 mm thick, of dielectric constant 3 . The area of the plates is $1 \mathrm{~cm}^{2}$ and a potential difference of 5 kV is applied between the plates. Calculate the capacitance of capacitors and electric field intensity.
8. a) Explain BCS theory of super conductors.
b) Explain M eissner effect. M ention three applications of super conductors.

Unit - V

9. a) Explain absorption, spontaneous emission, stimulated emission and population inversion with schematic diagrams.
b) Explain with principle, the working of Ruby laser.
10. a) Define acceptance angle and numerical aperture of an optical fiber. Derive an expression for numerical aperture of an optical fiber.
b) An optical fiber has core and cladding refractive indices of 1.578 and 1.563 respectively. Calculate the numerical aperture and acceptance angle of an optical 6M fiber.
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
ENGINEERING CHEM ISTRY
(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering \& Mechanical Engineering)

Date: 05 July, 2014

Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Explain the construction and working of $\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell. What are the advantages and disadvantages of this cell.
b) Define Kolraush's law. Discuss a method of determining equivalence conductance of 6 M an electrolyte at infinite dilution.
2. a) Derive Nernst equation for single electrode potential.
b) Explain the following terms mentioning their units:
i. Specific Conductance
ii. Equivalent conductance
iii. M olar conductance

Unit - II
3. a) Define temporary and permanent hardness of water with units for water hardness and 7M interconversion amongst them.
b) Explain the zeolite process of softening of water with regeneration reactions. 8M
4. a) Write a short note on ion-exchange process of purification of water. 7M
b) Explain the process of reverse osmosis with a neat diagram. What is the main advantage 8 M of reverse osmosis over ion-exchange process?

Unit - III
5. a) Differentiate between thermoplastic and thermosetting resins with examples. 6 M
b) Write the synthesis, properties and one engineering application of the following 9 M polymers:
i. Teflon
ii. Buna-s
iii. Polyethylene
6. a) Mention the optical properties of colloids with examples. Add a note on the conditions 8 M of tyndall effect
b) Mention two electrical properties of colloids. Describe electrophoresis process. 7M

Unit - IV

7. a) Discuss proximate analysis of coal with significance. 8 M
b) Differentiate chemical fuels based on their physical state with examples. 7M
8. a) What is flue gas? Describe analysis of flue gas by ORSAT apparatus. 8M
b) What is synthetic petrol? Discuss Bergius process of synthesis of petrol. 7M

Unit - V

9. a) State Gibb's phase rule. Define and explain the terms involved in it by giving a suitable 7M example.
b) Describe in brief the phase diagram of water, with the help of a neat labeled diagram. 8 M
10. a) Explain the dry and wet processes in the context of manufacture of Portland cement. 8 M Mention the role of gypsum in the formation of cement clinkers.
b) What are lubricants? Classify with examples the different types of lubricants based on 7M their physical states.

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
ENVIRONM ENTAL SCIENCE

(Common to Computer Science and Engineering, Information Technology, Aeronautical Engineering \& Civil Engineering)

Answer ONE question from each Unit

All Questions Carries Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) What are the effects of deforestation on environment?
b) Differentiate between renewable and non-renewable resources. Give examples for both 7M renewable and non-renewable resources.
2. a) List and explain the environmental effects of extracting and using mineral resources. 8 M
b) Enumerate the effects of: 7M
i. Fertilizer problems
ii. Pesticide problems

Unit - II
3. a) Define ecosystem and explain in detail about ecological pyramids. 7M
b) What is a hot spot? Name two biodiversity hot spots in India. 8M
4. a) Define biodiversity and explain various conservation methods of biodiversity in detail. 8M
b) Explain in detail about the structure of an ecosystem with examples. 7M

Unit - III
5. a) Substantiate the statement "Air pollution is one of the most dangerous forms of 8 M environmental pollution in current times"
b) What is meant by sustainable development? What are the measures to obtain 7 M sustainability?
6. a) Explain the various sources, causes of noise pollution and list the control methods.

8M
b) What is meant by Rain Water Harvesting and mention its advantages to conserve water? 7M

Unit - IV
7. a) Explain green building practices to save environment.
b) Write short notes on:
i. Clean Development M echanism
ii. Carbon Credits
iii. Carbon sequestration
8. Discuss the scope, importance and benefits of ISO 14000 environment management 15 M standard.

Unit - V
9. a) Explain conceptual facts, operational aspects and prediction of various impacts through 8 M Environmental impact assessment?
b) Write briefly about environmental management plan.
10. a) Write the summary of Water (Prevention and Control of Pollution) Act, 1974 8M
b) Write briefly about Forest Conservation Act.
प| | | | | D

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
PROBABILTY, STATISTICS AND COM PUTATIONAL TECHNIQUES
(Common to Computer Science and Engineering \& Aeronautical Engineering)
Date: 07 July, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75

Unit - III

5. a) Find a positive root of $3 x-\sqrt{1+\sin x}=0$ by iteration method.
b) For the following data, using Newton's divided difference interpolation formula obtain 8 M an interpolating polynomial $f(x)$ and hence find $f(6)$.

x	1	2	7	8
$f(x)$	1	5	5	4

6. a) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at $f=16$ for the following data

7M

x	15	17	19	21	23	25
$y=\sqrt{x}$	3.873	4.123	4.359	4.583	4.796	5.8

Compare with exact value.
b) Find a real root of the equation $2 x-\log _{10} x-7=0$ by Newton - Raphson method.

8M

Unit - IV

7. a) Derive an equation for Trapezoidal rule.
b) State the applications of Simpson's rule.

5M
8. a) Derive an equation for Simpsons $3 / 8$ rule.

7M
b) Use Simpson's $1 / 3$ rule to evaluate $\int_{0}^{0.6} e^{-x^{2}}$ by taking $n=0$. 8M

Unit-V

9. a) By using modified Euler's method, solve $y^{\prime}=\log (x+y), y(1)=2$ at $x=1.2$ and 7 M at $x=1.4$.
b) By R-K method of $4^{\text {th }}$ order solve $y^{\prime}=3 x+\left(\frac{y}{2}\right)$ with $y(0)=1$ for $y(0.2)$ taking $\mathrm{h}=0.1$. $\quad 8 \mathrm{M}$
10. Use Milne's method, to find $y(0.3)$ from $y^{\prime}=x^{2}+y^{2}, y(0)=1$ after computing $y(-0.1), 15 \mathrm{M}$ $y(0.1)$ and $y(0.2)$ by Taylor's series method.
प|||||l|

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
TECHNICAL ENGLISH
(Common to Computer Science and Engineering, Information Technology,
Aeronautical Engineering \& Civil Engineering)
Date: 04 July, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit

All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) C.V. Raman's contribution to the field of science is indeed significant. Elaborate the 10 M statement in your own words.
b) Do as directed:
i. Write the antonym of the word: regard
ii. Write the synonym of the word: enormous
iii. Write one word substitute: Showing feeling of pity
iv. Use this phrasal verb in your sentence: Look into
v. Correct the error: I am knowing him for the past ten years
2. a) Discuss the services of M other Teresa to mankind.
b) Do as directed:
i. Write the antonym of the word: visible
ii. Write the meaning of the idiom: a black sheep
iii. Write one word substitute: present every where
iv. Use the correct option: He is my \qquad (elder/older) brother
v. Correct the error: She is my cousin sister

Unit - II

3. a) Do you think M iss Krishna is a 'connoisseur'? Justify.
b) Do as directed: 5M
i. Pick the demonstrative: Where did he get that spanner
ii. Write the synonym for the word: tranquil
iii. Write the antonym for the word: reliable
iv. Frame a sentence with the phrase: break down
v. Choose the right word: I should focus on my \qquad (carrier/career)
4. a) Pitroda avers, "It is not about software experts or internet access, but a whole way of doing things" - substantiate the statement in regard to his contributions to Indian Telecom.
b) Do as directed:
i. Give the synonym for the word : hurdle
ii. Give the meaning for the phrase: run out of
iii. Choose the right word: Water finds its \qquad (coarse/course)
iv. Pick the quantifier: There is little food left over
v. Correct the error: He couldn't cope up with the new environment

::2::

Unit - III

5. a) What kind of suspense did the writer bring out in the 'the bubbling well road'.

10M
b) Do as directed:
i. Write one word substitute: art of hand writing
ii. Write the synonym for the word: consensus
iii. Use proper question tab: you are tired \qquad ?
iv. Use this phrasal verb in your sentence: break into
v. Correct the sentence: I have two daughter in laws
6. a) Summarize the key statements that M artin Luther King tried to exhort in his historical 10 M speech at Lincoln M emorial.
b) Do as directed:
i. Give one word substitute : belief that there is God
ii. Use question tag: you've got a camera, \qquad ?
iii. Write a synonym for the word : ghetto
iv. Use a prefix to form a new word to : large
v. Correct the sentence : she stays besides the town hall

Unit - IV
7. a) Assume that you are the head of an institution. Draft a memo to an employee asking for explanation for delay in works assigned.
b) Write a letter to the Bank M anager, Vijaya Bank, asking him for a new ATM card as you 7M have misplaced it somewhere. Assume details.
8. a) Write a letter of complaint to the General M anager of a reputed car show room about your disappointment with the customer relation office in the rendering information in time.
b) Write a job application letter for the post you wish to apply.

Unit - V

9. Imagine you are the general secretary of your college student union. Write a report on the 15 M works undertaken in the current year.
10. Imagine that you are in the secretary of the state Educational Board. Draft a report on the 15 M status of common education in the start after SSC.
\square

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
BASIC ELECTRICALENGINEERING
(Common to Information Technology, Electronics and Communication Engineering \& Electrical and Electronics Engineering)
Date: 07 July, 2014
Time: 3 hours
Max M arks: 75
Answer ONE question from each Unit All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - I

1. a) State and explain Kirchhoff's laws.
b) Find all branch currents in the network shown in Fig. 1 by network reduction technique.

Fig. 1
2. a) Find the voltage $V_{a b}$ in the network shown in Fig.2.

Fig. 2
b) Use source transformation method to compute power consumed by 4Ω resistor in the circuit shown in Fig. 3.

Fig. 3

Unit - II
3. a) Apply mesh analysis to evaluate the three unknown mesh currents in the network shown in Fig. 4

Fig. 4
b) Find the equivalent resistance between terminals $a-b$ in the resistive network of Fig. 5 .

Fig. 5
4. a) Find the current in 10Ω resistor, using nodal analysis method for the circuit shown in Fig. 6.

Fig. 6
b) Compute the power absorbed by the 10Ω resistor in the circuit below Fig.7, using any method

Fig. 7

Unit - III

5. a) The current in a circuit is given by $(5+j 10) \mathrm{A}$ when the applied voltage is $(225+j 150) \mathrm{V}$. Determine:
i. The complex expression for the impedance stating whether it is inductive or capacitive
ii. Power
iii. Phase angle betw een current and voltage
b) Define active and reactive power. Mention their units. Also explain the importance of power factor in an ac circuit.
6. a) Compare series and parallel resonance.
b) A choke coil having a resistance of 10Ω and inductance of 0.05 H is connected in series with condenser of $100 \mu \mathrm{~F}$. The whole circuit has been connected to $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate:
i. Impedance
ii. Current
iii. Power factor
iv. Power input
v. Apparent and reactive power of the circuit

Unit - IV
7. a) Two coupled coils have self-inductances $\mathrm{L}_{1}=10 \mathrm{mH}$ and $\mathrm{L}_{2}=20 \mathrm{mH}$. The coefficient of coupling (K) being 0.75 in the air, find voltage in the second coil and the flux of first coil provided the second coil has 500 turns and the circuit current is given by $\mathrm{i}_{1}=2 \sin 314 \mathrm{t} A$.
b) A closed magnetic circuit of cast steel contains a 6 cm long path of cross-sectional area of $1 \mathrm{~cm}^{2}$ and a 2 cm path of cross-sectional area $0.5 \mathrm{~cm}^{2}$. A coil of 200 turns is wound around the 6 cm length of the circuit and a current of 0.4 A flows. Determine the flux density in the 2 cm path, if the relative permeability of the cast steel is 750 .
8. a) Starting from the basics of self inductance and mutual inductance, derive an expression for the coefficient of coupling K of two coils
b) A mild steel ring has a radius of 50 mm and a cross-sectional area of $400 \mathrm{~mm}^{2}$. A current of 0.5 A flows in a coil wound uniformly around the ring and the flux produced is 0.1 mWb . If the relative permeability at this value of current is 200 find (i) the reluctance of the mild steel and (ii) the number of turns on the coil.

Unit - V

9. a) Define:
i. Graph
ii. Tree and co-tree
iii. Cut set and tie-set matrices with the help of an example
b) Draw the dual circuit of Fig.8.

::4::
10. a) Obtain the dual of Fig. 9

Fig. 9
b) Explain the properties of cut set matrix.
\square

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
(Common to Mechanical Engineering \& Civil Engineering)
Date: 07 July, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) State and explain Kirchhoff's laws.

8M
b) State and explain faraday's Laws of electromagnetic induction
2. a) Use current division to find I_{1}, in the circuit shown in Fig.1.

Fig. 1
b) Explain the energy band diagram of Conductors, Insulators, and semiconductors?

Unit - II

3. a) Derive an expression for impedance for a series RC circuit along with the phasor diagram.
b) A circuit consists of resistance of 20Ω and an inductance of 0.05Henry connected in series. Supply of 230 Volts and 50 Hz is applied across the circuit. Find the current, power factor, power consumed by the circuit. Draw the vector diagram.
4. a) Define the following terms with respect to a single phase ac circuits:
i. Average value
ii. Form factor
iii. Peak factor
iv. RMS value
b) Derive an expression for impedance for series RL circuit along with phasor diagram.
::2::

Unit - III

5. a) Derive the expression for the deflection in an electrostatic deflection system. 8 M
b) Explain the working principle of PM M C instruments. 7M
6. a) State and prove Thevenin's theorem. 7M
b) Determine current I in the circuit shown in Fig.2 by superposition theorem. 8M

Unit - IV

7. a) Explain the various breakdown mechanisms present in a p-n junction when a reverse 6 M bias is applied.
b) With a neat diagram explain the working principle of a full wave bridge rectifier. 9 M
8. a) Explain the working of a half wave rectifier with its output waveforms. 8M
b) Explain the working principle of a full wave rectifier with neat diagrams. 7M

Unit - V

9. a) Find the relationship between the current gain α and β. Find β when $\alpha=0.98$. 8 M
b) Obtain the output characteristics of transistor in Common emitter mode. 7M
10. a) Explain the working of P-N-P transistor? 8 M
b) Explain forward and reverse bias with respect to an NPN transistor function. 7M
\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
ENGINEERING DRAWING
(Common to Mechanical Engineering, Aeronautical Engineering \& Civil Engineering) Date: 09 July, 2014

Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carries Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) On a Russian map, a scale of versts is shown. On measuring it with a metric scale, 150 versts are found to measure 15 cm . construct comparative scales for the two units to measure upto 200 versts and 200 km respectively. Take 1 verst $=1.067 \mathrm{~km}$.
b) A theodolite has main scale plate of 240 mm diameter graduated to 0° to 360° with the vernier scale to read degree and minute. The main scale can read to accuracy of 0.5° and the vernier is to read one minute. Draw the scale.
2. A circular disc of 40 mm diameter rolls outside another circle of 120 mm diameter for one revolution. Draw the path traced by a point, which is at a distance 25 mm from the centre of the rolling circle.

Unit - II
3. The front view of a straight line $A B$ is 60 mm long and is inclined at 60° to the reference line xy. The end point A is 15 mm above HP and 20 mm in front of VP. Draw the projections of the line $A B$ if it is inclined at 45° to $V P$ and is situated in the first quadrant. Determine its true length and inclination with HP.
4. A straight road going uphill from a point A, due east to another point B, is 4 km long and has a slope of 15°. Another straight road from B , due 30° east of north, to a point C is also 4 km long but is on ground level. Determine the length and slope of the straight road joining the points A and C. Take scale, $10 \mathrm{~mm}=0.4 \mathrm{~km}$.

Unit - III

5. A square $A B C D$ of 50 mm side has its corner A in HP , its diagonal $A C$ inclined at 30° to HP and the diagonal BD inclined at 45° to VP and is parallel to HP. Draw its projections.
6. A pentagonal prism is resting on one of the corners of its base on the HP. The longer edge containing that corner is inclined at 45° to the HP . and the vertical plane containing that edge and the axis are inclined at 30° to the VP. Take the side of base 45 mm and height 70 mm . Draw the projections of the solid.

Unit - IV

7. A pentagonal prism, side of base 25 mm and axis 60 mm long, rests with one of the edges of its base on HP. Its axis is inclined at 30° to HP and parallel to VP. It is cut by a horizontal section plane passing through the highest corner of the base. Draw the sectional top view.
8. A cone base 50 mm diameter and axis 65 mm long, rests with its base on HP . It is cut by a section plane perpendicular to VP, inclined at 45° to HP and passing through a point on the axis 35 mm above the base. Draw the sectional top view and the true shape of section.

Unit - V

9. A cone, base 54 mm diameter and height 72 mm , rests with its base on HP.A section plane 15 M perpendicular to HP and inclined at 25° to VP cuts the cone at a distance of 13.5 mm from the axis. Draw the sectional front view and develop the lateral surface of the remaining portion of the cone.
10. Draw the development of the lateral surfaces of a cone of base diameter 60 mm and axis $70 \quad 15 \mathrm{M}$ mm long when it is resting with its base on HP. It is cut by a section plane which is perpendicular to VP and inclined at 45° to HP and bisects the axis.
प| | | | | D

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

B. Tech I Semester Supplementary Examinations July - 2014
(Regulations: VCE-R11A)
COM PUTER PROGRAM M ING

(Common for All Branches)

Date: 08 July, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carries Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Explain briefly steps in creating and running programs.
7M
b) What is a constant? Explain briefly three ways of using constants in C with a suitable 8M example.
2. a) C uses small integers internally to represent each different character. The set of characters a computer uses and the corresponding integer representations for those characters is called that computer's character set. Write a C program that prints the integer equivalents of some uppercase letters, lowercase letters, digits and special symbols. As a minimum, determine the integer equivalents of the following: ABCabcol2\$*+/ and the blank character.
b) What is type conversion? List four situations where type conversion is done in C.

Unit - II

3. a) Explain briefly the following control structures of C :
i. Switch
ii. Do-while
b) Write a C program to perform matrix addition using arrays.
4. a) Define a function called hypotenuse that calculates the length of the hypotenuse of a right triangle when the other two sides are given. Use this function in a program to determine the length of the hypotenuse for each of the following triangles. The function should take two arguments of type double and return the hypotenuse as a double.
b) Explain briefly command line arguments in C with a suitable example.

Unit - III

5. a) Explain predefined string handling functions with examples. 8M
b) Explain pointer arithmetic with examples. 7M
6. a) Write a C program to check wether the given string is palindrom or not? 6M
b) Describe any three functions associated with dynamic memory management in C. 9M

::2::

Unit - IV

7. a) What are nested structures and how are they defined? Demonstrate them giving

7M suitable example.
b) Define a structure with the following fields: title of book, author name, number of pages, and publisher's name. Write a C program to read 10 books data and print the details.
8. a) What is union? Illustrate how a union member is accessed and also differentiate 7M structure and union giving suitable example.
b) Write a C program using a pointer to structure illustrating the initialization of the 8 M members in the structure.

Unit - V

9. a) Design a C program to create a file called emp.txt and store information about an 7M employee like name, age and salary.
b) What is a file? Describe the terms text file and binary file with respect to C . 8 M
10. a) Explain briefly fseek() with suitable examples. 7 M
b) Write a program to display file contents 20 lines at a time. The program should pause 8 M after displaying 20 lines until the user presses either Q to quit or Return to display the next 20 lines. The filename should be accepted from user and then process the file.
