CareersValley Quantitative Aptitude Formulas Handbook

By Kamalkk Kannan, Author : CareersValley.com http://www.careersvalley.com
 http://www.facebook.com/pages/CareersValley/143704715641819 Version: 2.0

Introduction (Why you should be reading this eBook):

Hi , This is Kamalkk Kannan, chief author of careersvalley.com. I am an young entrepreneur who graduated from Madras Institute of Technology, AnnaUniversity, Chennai (Same college where our former president Abdul Kalam had studied). Then I got an offer from Infosys Technologies where I worked for three years before starting my own company W2WIN Technologies. CareersValley.com is an educational and job search website founded by W2WIN.

You may Write to me at admin@careersvalley.com . Also you can stay connected with me through Facebook at http://www.facebook.com/profile.php?id=595691356

Quantitative Aptitude Formula Handbook

I. Arithmetic Progression.

Definition: If each term of a series differs from its preceding term by a constant, then such a progression is called arithmetic progression.
e.g: $2,5,8,11$

In the above sequence the difference between any two terms in 3.

Formula:

Consider an AP : a, $(\mathrm{a}+\mathrm{d}),(\mathrm{a}+2 \mathrm{~d}),(\mathrm{a}+3 \mathrm{~d}),(\mathrm{a}+4 \mathrm{~d}), \ldots$

1) nth term of the above sequence $=T n=a+(n-1) d$
2) Sum to n no of terms $S n=n / 2(2 a+(n-1) d)$
3) Another formula for $\mathrm{Sn}=\mathrm{n} / 2$ (first term + last term)

II. Geometric Progression.

Definition: Any progression or sequence with successive terms having a common ration is called geometric progression.
e.g: $2,4,8,16 \ldots$

In the above sequence the common ratio is 2 for any two successive terms

Formula:

Consider a GP - a, ar, ar2.... where a is the first term and r is the common ratio
4) nth term, $T n=a r n-1$
5) Sum to n terms, $S n=a(1-r n) /(1-r)$
6) In case r lies between -1 and +1 then Sum of all terms of the series $=a /(1-r)$

CareersValley Facebook application

III. HCF and LCM

7) Product of two numbers = Their HCF X Their LCM
IV. Surds and Indices
8) $a^{m} \times a^{n}=a^{m+n}$
9) $a^{m} \div a^{n}=a^{m-n}$
10) $\left(a^{m}\right)^{n}=a^{m n}$
11) $a^{\frac{1}{m}}=\sqrt[m]{a}$
12) $a^{-m}=\frac{1}{a^{m}}$
13) $a^{\frac{m}{m}}=\sqrt[m]{a}^{m}$
14) $a^{0}=1$
15) $\sqrt{a}+\sqrt{a}=2 \sqrt{a}$
16) $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$
17) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

V. Percentages

18) How to express a / b as percentage?

Ans: (a/b) x 100
19) How to express a percentage of b ?

Ans: $(\mathrm{a} / 100) \times \mathrm{b}$
20) If the price of an item increases by $A \%$, then the reduction in consumption so as not to increase the expenditure is

$$
\text { Ans: A / (100 + A) x } 100 \text { \% }
$$

21) If the price of an item decreases by $A \%$, then the increase in consumption so as not to decrease the expenditure is:

Ans: A / (100 - A) $\times 100$ \%

CareersValley Facebook application

Discussion On Selection Processes (Stages \& Procedures) Of All Top Companies Like CTS, TCS, Infosys and other IT Companies

VI. Profit And Loss

22) Profit = Selling Price - Cost Price
23) Loss = Cost Price - Selling Price
24) Profit Percentage $=($ Profit $/$ Cost Price $) \times 100$
25) Loss Percentage $=($ Loss $/$ Cost Price) $\times 100$
VII. Time And Work
26) $\mathrm{N} 1 \times \mathrm{R} 1=\mathrm{N} 2 \times \mathrm{R} 2=\mathrm{W}$

Here: $\mathrm{N}=$ number of working men; $\mathrm{R}=$ rate of work done per man; $\mathrm{D}=$ days; $\mathrm{W}=$ total work done.

VIII. Boats And Streams

Let $b=$ boat speed, $s=$ stream speed, $d=$ distance and $t=$ time
27) Smooth water equation

$$
b=d / t
$$

28) Upstream equation

$$
b+s=d / t
$$

29) Downstream speed.

$$
b-s=d / t
$$

IX. Simple and Compound Interest

30) For Interest Compounded Annually

Total Amount $=P(1+(R / 100))^{n}$
31) For Interest Compounded Half Yearly

Total Amount $=P(1+(R / 200))^{2 n}$

CareersValley Facebook application

Discussion On Selection Processes (Stages \& Procedures) Of All Top Companies Like CTS, TCS, Infosys and other IT Companies
32) For Interest Compounded Quarterly

Total Amount $=P(1+(R / 400))^{4 n}$

33) Simple Interest $=($ Principal X Rate X Time $) / 100$
SI = PRT/100

Where $\mathrm{P}=$ capital amount, $\mathrm{R}=$ annual rate, $\mathrm{T}=$ time period in years

