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JNUEE  M. Sc. PHYSICS
Solved Paper-2012

1. The general solution of the differential equation, 
2

2
2

d y dyx 2x 2y 0
dx dx

    in terms of two arbitrary constants

A and B, is

(a) 1/ x 1 1e A cos Bsin
x x

            
(b) 

BAx
x



(c) Ax + Bxex (d) Ax + Bx2

Soln. (d) 
2

2
2 2 . 2d y dyx x y

dxdx
  = 0

This is Cauchy-Euler homogeneous equation of second order.
Substituting zx e , we get

2 2
2

2 2

d y d y dyx
dx dz dz

   and 
dy dyx
dx dz



So, the given equation can be written in the form;  
2

2

d y dy3 2y 0
dz dz

  

Taking mzy c e , as a trial solution, we get the auxillary equation as 2m 3m 2 0   .

The roots of the auxillary equation are 1 2m 2 & m 1 

Therefore, the solution is z 2z 2y A e B e Ax Bx   

2. If a, b and c are non-zero real numbers not equal to 1, loga c can be expressed as
(a) logb c/logb a (b) logb a/logb c (c) logc a/logb a (d) logc b/loga b

Soln. (a)

3. A homogeneous linear transformation takes the point (1, 1) in the xy-plane to the point (3, 3) and keeps the
point (1, –1) fixed (i.e., it remains (1, –1) after the transformation). The matrix corresponding to this transformtion
is

(a) 
1 2
2 1
 
 
 

(b) 
3 0
0 2
 
 
 

(c) 2 1
1 2
 
 
 

(d) 
2 –1
–1 2

 
 
 

Soln. (c) 
2 1 1
1 2 1
   
   
   

 = 
3
3
 
 
 

;  
2 1 1
1 2 1
  
    

= 
1
1

 
  

4. The function 1
cosh x

 may be expressed around the point x = 0 as a power series as

(a) 2 4 61 1 11 x x x ....
2 24 720

    (b) 2 4 61 5 611 x x x ....
2 24 720

   

(c) 2 4 61 11 3311 x x x ....
2 24 720

    (d) 2 4 6

1 1 11 ....
2x 24x 720x

   
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Soln. (b) 
1

cosh x = 
2

x xe e
 = 2 4 6

2

2 1
2 24 720
x x x 

   
 

= 2 4 6
1

1
2 24 720
x x x

  
= 

12 4 6
1 ...

2 24 720
x x x


 
    

 

Doing binomial expansion we get,

1
cos h x = 

22 4 6 2 4 6
1 ...

2 24 720 2 24 720
x x x x x x 

       
 

32 4 6
...

2 24 720
x x x 

    
 

Coefficient of x0 = 1 Coefficient of x2 =
1
2

 Coefficient of x4 = 
1 1
24 4

  = 
5

24

Therefore,
1

cos h x = 2 41 51 ...
2 24

x x  

5. Which of the following graphs gives the best representation of the real-valued function 
22 –xy x e ?

(a) 

y

x (b) 

y

x

(c) 

y

x
(d) 

y

x

Soln. (c) y = 
22 xx e

at  x = 0, y = 0
at x =  , y = 0

Since, the given function is a even (symmetric) function of ‘x’, then option (c) is correct.

6. An observer O uses the coordinate system (x, t) to describe non-relativestic motion in one dimensin. Another
observer O, moving with respect to O with a uniform velocity ‘v’ (much smaller then the speed of light c) along
the positive x-direction, uses (x, t), such that at t = 0, t = 0 and that instant x and x coincide. then

(a) 
1x ' x t, t ' t, and

x ' x t t ' t
    

      
     

(b) x ' x t, t ' t, and
x ' x t ' t x
    

       
    

(c) 
1x ' x t, t ' t, and

x ' x t t ' t
    

       
     

(d) x ' x t, t ' t, and
x ' x t ' t x
    

       
    

Soln. (b) For non-relativistic motion obviously,
x= x – vt;   t= t
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If   y = f(x, t)

Then,
y
x


=

y x y t
x x t x
   

  
    

      vt

x

S

x
x


= ( )x vt

x
  


 = 1        0t
x
   



t
x


=

t
x


 = 0 

y
x


=

y
x



; x


= x



And,
y
t


= 

y t y x
t t x t
   

  
    

; 
t
t


=

t
t


 = 1

x
t


=  x v t

t
  


 = 
x tv
t t
  

  

= v   
y
t


=

y yv
t x
 


   t



= v

t x
 
 

 

7. A ball dropped from a height h can only attain the height 4h / 5 after bouncing off the floor. If the ball is  dropped
from a height of 1 m, the time it will take to come to rest is, approximately
[ Ignore air resistance and the finite radius of the ball. ]
(a) 1.9 s (b) 3.8 s (c) 8.0 s (d) 4.1 s

Soln. (c) Let  e = 
4
5 .   Therefore, First height = h, second height = eh, third height = e2h and so on.

We know that when a ball falls from a height ‘h’ under gravity then time taken is = 
2h
g

Here, time of striking the floor are t1 = 
2h
g ,  t2 = t1 +  22 eh

g
;  t3 = t2 + 

222 e h
g  and so on.

Therefore, when ball comes to nest, time elapsed is

t = 
2 32 2 2 22 2 2 ...h eh e h e h

g g g g
   

 =  1/2 2/2 3/22 1 2 ...h e e e
g

      =  1/2 1/2 2/2 3/22 1 2 1 ...h e e e e
g

      

 = 
1/2

1/2
2 21

1
h e

g e

   
  

Taking h = 1m,  g = 10,  e = 
4
5  we get,  t = 8.02 sec.

8. A small raindrop of mass m experiences a viscous drag force Fd = bv, proportional to its instantaneous speed
‘v’. If it starts from rest at a height h, its speed after a time ‘t’ is

(a) mg bt(t) tanh
b m

    
 

(b) – bt /mmg(t) e
b

 

(c) –2bt /mmg(t) (1– e )
2b

  (d) – bt /mmg(t) (1– e )
b

 

Soln. (d) Equation of motion of rain drop is dvm
dt

= mg – bv

0

v dv
mg bv = 

0

1 t
dt

m   0
1 log( ) vmg bv
b

  = 
t
m

  log mg bv
mg

 
 
 

=
bt
m

   
mg bv

mg


= /bt me   v = 
mg
b

/(1 )bt me
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9. The nature of flow in a viscous liquid is characterised by the dimensionless Reynolds’ number Re propor-
tional to   (the flow velocity) : Re  . Given that Re also depends on (i) the density  of the fluid, (ii)
the dynamical viscosity and (iii) a characteristic length l, of the flow. By dimensional analysis, we find that

(a) Re 



(b) Re 




(c) Re
l


 (d) Re

l





Soln. (b) Given  Re   v
 [Re] = [v]  [ ]a []b [l]c;    [M0 L0 T0] = [LTT–1] [ML–3]a [ML–1 TT–1]b [L]c

Equating exponents of M, L and T we get,
a + b = 0
1 – 3a – b + c = 0
–1 – b = 0

Solving above equations we get,  b = –1;  a = 1;  c = 1   Re = 
l v


10. A ball of mass m is hung from a support’by a massless wire of length l. The support is rotated with an

angular speed. g / l  around a vertical axis through the point of suspension as shown in the figure. The

ball rests in equilibrium at an angle 0 . Which the following statemnts concering 0  and the rension T, is
true ?

(a) 0 0and T mg   (b) –1
0 02

gtin and T mg cos
l

      
   



T


l

m

(c) –1
0 02

gsin and T mg cos
l

      
(d) –1

0 02

gcos and T mg cos
l

      
Soln. (d) Free body diagram is shown in the figure considering equilibrium of the ball.

(Note that we are considering equilibrium of the ball that is why centrifugal force is being taken, if we
consider rotation of the ball then centripetal force is taken).

 T cos  0 = mg ... (i) and T sin  0 = m 2 r ... (ii)
Since r = l sin  0  T sin  0=m 2 l sin  0  T = m 2 l ... (iii)

from (i) T= 
0cos

mg
  T = 

0
2

0

cos
cos

mg 

   cos2  0= 0cos
T

mg 

   0 > 0      cos2 0 < 1

     r

T

mg

centrifugal force

 0cos 1
T

mg 
   T > mg cos  0

Using value of T from (iii) into (i) we get,

m 2 l cos  0 = mg   cos  0= 2
g

l
   0 = 1

2cos g
l

  
 
 
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11. In a wire loop of resistance R and inductance L, an e.m.f.  is switched on at t = 0. The magnetic flux
through the loop is biven by

(a)  tR /LL 1 e
R


 (b) tR /LL e

R


(c) 
L L1
R tR
   
 

(d) 
L
R


Soln. (a) Magnetic flux = LI where I = current through the loop.

Since, I = /(1 )
R

tR Le
  flux = L

R
 (1–e–tR/L)

12. The electric and magnetic fields of an electromagnetic wave in vacuum are given by
E 0

ˆE sin(kz t) and   B 0ĵB sin(kz t)  respectively. Which of the following relatins is correct ?

(a) 2 2
0 0k E B  (b) 0 0E kB  (c) 0 0kE B  (d) 0 0E B k 

Soln. (c) For electromagnetic waves, 
0

0

E
B = c  and c = k


  

0

0

E
B = k


      kE0 = B0

13. The radius of the nucleus of the Ra atom, which carries an electric charge +88e, is 7.0×10–15 m. What
should roughly be the speed of a proton, if it has to reach as close as 1.0×10–14 m from the centre of the
nucleus?[The radius of the cloud of orbital clectrons of the Ra atom is approximately 5.0×10–11m.]
(a) 96.7 10 m / s (b) 3.1×108 m/s (c) 1.4×105 m/s (d) 4.9×107 m/s

Soln. (d) From conservation of energy we get,

Loss in K.E. = Gain in P.E;
1
2 mv2 = eV

where V = electric potential at the final point.

Re

Rx
x

v p

Electron Cloud

Actually, V = 
0

88
4

e
x  – VV

x = distance of the point from center of nucleus where
V = potential due to electron cloud

In the expression of V radius of electron cloud (Re) comes
In the denominator, As Re >> x

 V<<
0

88
4

e
x   V

0

88
4

e
x   

1
2 mv2 = 

2

0

88
4

e
x

1
2  × 1.67 × 10–27 v2 = 

9 19 2

14
9 10 88 (1.6 10 )

1.0 10




   


 v   4.5 × 107 m/s

14. In the circuit shown below, the diode is non-ideal and has a voltage drop of 0.7 V What is the value of
the diode current ?

5V

500

300 200

(a) 4.84 mA (b) 8.06 mA (c) 3.03 mA (d) 6.25 mA
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Soln. (c) 1
100

1500
8

1
100

1500
8

15
8

I = 1.175 0.7
1500 200

8


  
 

  = 3.03mA

15. The Doppler width  of the orange line (for which   = 6058 Å) of Kr is 0.0055 Å. What is the spread
in frequency of this spectral line?
(a) 2.7 × 107 Hz (b) 2.7 × 109 Hz (c) 4.5 × 106 Hz (d) 4.5 × 108 Hz

Soln. (d)  We know that, c = v 
  c = 0 =   

 | | = | |



= 2 | |c




 =
8 3 10

2 6 20
3 10 5.5 10 10

(6.058) 10 10

 


   

   4.5 × 108 Hz

16. A beam of light, consisting of red (R), green (G) and blue (B) colours, is incident normal to a ace on a
face on a right- angled prism (see figure). The refractive indices of the material of the prosm for R, G and
B wavelengths are 1.39, 1.44 and 1.47 respectively. Then

45°

(a) R, G and B get transmitted (without underging total internal reflection)
(b) R and G undergo total internal reflection and B gets transmitted

(c) R gets transmitted, while G and B undergo total internal reflection
(d) All of R, G and B undergo total internal reflection

Soln. (c) Critical angle for red. R= 1

R

1sin
 
  

 = 1 1sin
1.39

  
 
 

 46º

Critical angle for green G = 1 1sin 44º
1.44

  
 
 

 45º

Critical angle for blue  B= 1 1sin 43º
1.47

  
 
 



Here angle of incidence at the interface as shown in the figure is 45º.
 i > G , B . But Ri   .
Therefore, R gets transmitted, while G and B undergo TIR.
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17. The two slits in a Young’s double-slit experiment are of unequal width, one being four times wider than the
other. I f Imax and Imin denote the intensities at a neighbouring maximum and a minimum, then the ratio Imin/
Imax is

(a) 1
9

(b) 
1
4

(c) 3
5

(d) 0

Soln. (a) Given, 1

2

I
I  = 4 : 1

We know that, Imax=  21 2I I  and Imin=  21 2I I


min

max

I
I =

2
1 2

1 2

I I
I I

 
   

 = 

2
1

2
2

1

2

1

1

I
I

I
I

 
 

 

 
 

 

= 
22 1

2 1
 

  
 = 

1
9

18. A linear beam of unpolarised light passes through tow plane polarisers, the planes of which are perpendicu-
lar to the direction of propagation of the beam. The first polariser rotates around this direction with an
angular velocity of 20  radians per second. If the initial intensity of the light is I0, then the intensity when
it leaves the second polariser

Detector
P2

P1



(a) is periodic with frequency of 20 Hz and maximum of I0 /4
(b) is periodic with frequency of 20 Hz and maximum of I0 /2
(c) is periodic with frequency of 10 Hz and maximum of I0 /4
(d) is periodic with frequency of 10 Hz and maximum of I0 /2

Soln. (d) According to Malus’ Law. If pass axis makes an angle   then transmitted intensity becomes cos2
times for polarized light.

P1
I=I0

I0 2
I0
2

 I = 20 cos
2
I
  since,   = w t = 2 t    I = 20 cos 2

2
I t 

Given, 2   = 20   = 10Hz

19. The Boolean expression B.(A + B) + A (A + B ) can be realised using a minimum number of
(a) 1 OR gate (b) 1 AND gate (c) 2 OR gates (d) 2 AND gates

Soln. (a) B  (A + B) + AA  (A + B ) = BA + B B + AA A + AA  B
= BA + B + A + A B  [  B B = B, AA A = A]A]
= B + A [used absorption law]
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20. An ideal diatomic gas  of 5 / 3  is expanded adiabatically so that its volume is doubled. By what ratio
is its temperature reduced in this process?
(a) 1/2 (b) 1/21/3 (c) 2/31/ 2 (d) 5/31/ 2

Soln. (c) In adiabatic process,  1TV = constant

1
1 1T V  = 1

2 2T V    
1

2

T
T =

1
2

1

V
V


 
 
 

=  
5 1
32  = 2/32

2

1
2V

V
 

 
 
   2

1

T
T = 2/31/ 2

21. Two buckets B1 and B2, each containing 25 litres of water, are initially at temperatures T1 and T2, respec-
tively. Now take 1 litre of water from B1, put it in B2 and allow thermal equilibrium to be established. Then
take 1 litre of water from B2, put it back in B1 and again allow it to come to thermal equilibrium. At the
end of this cycle the amount of water in each bucket does not change, but their temperatures will change.
When this process is repeated, the difference in temperature reduces by the same factor after each cycle.
If 1 2T T was 40ºC to begin with, what would be its value after 5 cycles?
(a) 27 ºC (b) 10 ºC (c) 19 ºC (d) 35 ºC

Soln. (a) After the first half cycle let equilibrium temperature becomes T.
Therefore, Heat lost by 25 litre = heat gained by 1 litre

25(T1 – T) = 1×(T – T2)  T = 1 225
26

T T

Let T  be the equilibrium temperature after one complete cycle.
Therefore, using principle of calorimetry
Heat lost by 1 litre = Heat gained by 24 litre

We get, T = 224T
25

T
 {similar to previous case}= 

1 2
2

25T T24T
26

25




Temperature difference  = T – T = 1 2 225T T 24T
26 25


  1 225T T
25 26





; T1=

24
26

|T1 – TT2|

After 2nd cycle, temperature difference becomes T2 =T1 
24
26

Therefore, after fifth cycle temperature difference becomes

T5= T4
24
26

=
2

3
24 T
26

   
 

 = 
3

2
24 T
26

   
 

=
4

1
24 T
26

   
 

 = 
524 T

26
   
 

=
524 40

26
   
 

=26.8ºC   27ºC

22. A flat plate is constantly being bombarded from one side by particles of mass m. If the number density of
the particles is  and they strike the plate with speed   along the normal to the plate, the pressure exerted
on the plate is
(a) 2m (b) 22m (c) m (d) 2m

Soln. (a) For the elastic collision, the momentum transfered  to the plate per collission = 2mv
In this case the pressure is 22m v

mv

–mv

Change in
momentum 
    = mv

–(–mv) = 2mv
In the case bombarded particles get stuck to the plate after collision, (perfect inelastic collision) in other
words. If the particles get absorbed by the plate, the momentum transfered per collission is mv and the
pressure is 2m v . In the question it should have been made clear whether the collision is elastic or
inelastic.
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23. Helium atoms at low temperatures make a perfect closed pack structure of hexagonal lattice with param-
eters a = 0.36 nm and c = 0.59 nm. The density of the crystal is approximately
(a) 2000 kg/m3 (b) 100 kg/m3 (c) 123 kg/m3 (d) 200 kg/m3

Soln. (b) In a conventional cell of hexagonal structure number of atoms present (N) = 6.

Volume of conventional unit cell (v) = 6
3

2
a2  c

Number density (n) = 
N 6
V V
 = 2

2

6 2
3 36 .

2
a ca c




Mass density = Mass of one helium atom × number density

       = 4 × 1.67 × 10–27 × 
27

2
2 10

3 (0.36) 0.59


 
= 100.88 kg/m3

24. The ratio of the specific heat capacity and temperature, C / T, of Cu is plotted as a function of T2, the
square of the absolute temperature, in the  graph below:

The values of  and  (the coefficients corresponding to the electronic and the vibrational components of the
specific heat) are, approximately

(a) –4 –1 –2 –5 –1 –47.0 10 Jmol K and 5.0 10 Jmol k     

(b) –5 –1 –2 –4 –1 –45.0 10 J mol k and 7.0 10 J mol k     

(c) –3 –1 –2 –4 –1 –41.4 10 J mol k and 7.0 10 J mol k     

(d) –4 –1 –2 –5 –1 –45.0 10 J mol k and 7.0 10 J mol k     

Soln. (a) Specific heat varies as, T
C

= 2T  

  =Intercept = 7 × 10–4 J mol–1 k–2 &  = slope = 
4(9 8) 10

4 2

 


= 5 × 10–5 J mol–1 k–4

25. A paramagnetic gas at room temperature is placed in an external magnetic field of 1.5 T (tesla). Each atom
of the gas has a magnetic moment B,1.0   where –24

B 9.3 10    J/T is the Bohr magneton. The differ-
ence in energy when an atom is aligned  along the magnetic field and opposite to it, is
(a) –232.8 10 J (b) –231.4 10 J (c) –2418.6 10 J (d) –249.3 10 J

Soln. (a) When atom is along the field , E1 = –B
when atom is opposite to the field , E2 = +B
 E = E2 – E1 = 2B = 2 × 1.0 × 9.3 × 10–24 × 1.5 = 2.8 × 10–23 J.
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26. The Fermi energy F  in metals depends on the number density ne of mobile electrons, which may be thought
of as a free Fermi gas. If ne of one metal is larger by a factor of 1000 compared to another, then in
comparison, its Fermi energy is
(a) 1000 times larger (b) smaller by a factor of 1/100
(c) 100 times larger (d) 10 times larger

Soln. (c) Fermi energy is proportional to number density as EF  2/3n 
1

2

E
E

 
 
 

= 
2/3

1

2

n
n

 
 
 

Given n1 = 1000n2   1

2

E
E

 = (1000)2/3 = 100   E1 = 100E2

27. The kinetic energy of a proton and an  –particle ( not under the influence of any force) are given to be
equal. If we denote the de Broglie wavelengths of the proton by p and that of the–particle by  , then

(a) p   (b) p 4   (c) p
1
2   (d) p 2  

Soln. (d) For a given kinetic energy K,  de-Broglie wavelength   is given as,  = 
2
h
mK


p




= 
pm

m
since, m  4mp then, 

p


   

1
4

      p  2 

28. When a monochromatic point source of light is placed at a distance of 0.2 m from a photoelectric cell, the
stopping potential Vs and the saturation current Is are found to be 0.6 V and 18.0 mA, respectively. If the
same source is now placed 0.6 m away from the photoelectric cell, one finds
(a) VS = 0.2 V and IS = 6.0 mA (b) VS = 0.6 V and IS = 6.0 mA
(c) VS = 0.6 V and IS = 2.0 mA (d) VS = 0.2 V and IS = 18.0 mA

Soln. (c) Intensity of a point source follows inverse square law i.e., I 2
1
r


2

1

I
I =

2
1

2

r
r

 
 
 

 = 
20.2

0.6
 
 
 

= 
1
9   I2=

1
9 I1

Stopping potential depends on energy of photon and saturation current depends on intensity of light.
Here, energy of photon is unchanged, therefore, stopping potential will remain the same.

Intensity falls by a factor of 
1
9 . Therefore, saturation current will also fall by this factor..

 'Is = 
1
9  Is = 

1
9  × 18.0 mA = 2mA and sV  = Vs = 0.6v

29. The graph in the fuigure below shows the intensity I as a function of frequency v of a perfect blackbody
at a fixed temperature T:

v

I

The corresponding graph at teperature 2T can be obtained by which of the following operations ?
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For every point of the graph
(a) multiply the v-coordinate by 1 / 2 and the I-coordinate by 8
(b) multiply the v-coordinate by 2 and the I-coordinate by 8
(c) multiply the v-coordinate by 1 / 2 and the I-coordinate by 16
(d) multiply the v-coordinate by 2 and the I-coordinate by 16

Soln. (d) Wein’s law Tm = b    T
m

c
v = b  mv = 

Tc
b

Therefore,  if T is doubled, vm  will be doubled.
Stefan’s law, I   T4.  Therefore, if ‘T’ is doubled, I will become 16 times.

30. What is the maximum theoretical accuracy E   to which an ideal experiment may determine the energy
levels of the hydrogen atom ?
[Hint : Use the fact that the age of the universe is estimated to be approximately 101.4 10  years.]
(a) –264.7 10 eV (b) –339.4 10 eV (c) –631.2 10 eV (d) –702.4 10 eV

Soln. (b)  E   

h
t = 

34

10
6.63 10

1.4 10 365 24 60 60


    

 Joule = 15.015 × 10–52 Joule   9.4 × 10–33 eV

31. A particle in one dimension is in the ground state (lowest energy quantum state) of the potential well
given by

 
L0 for | x |

V x 2
otherwise

 



Let P+ be the probability that the particle is found to move along the positive x-direction and p be the
magnitude of the momentum for that state of motion. Then

(a) P+ = 0 and p = 0 (b) 
1P and p
2 2L


  (c) 

1P and p
2 L


  (d) P 1and p

L


 

Soln. (c) Let  = 
2 sin
L L

x 
 
 

{we could have taken cosine function as well}

P+ = 
L/2

0

* dx  = 
L/2

2

0

2 sin
L L

x dx 
 
  = 

L/2

0

2 1 21 cos
L 2 L

x dx  
   = 

1
2

Magnitude of momentum = L
n h

Therefore, for ground state  (n = 1),  momentum p = L


32. A particle of mass m is moving in a three-dimensional potential

   2 2 2 21V x, y, z m x 2y 4z
2

   

The energy of the particle in the ground state (lowest energy quantum state) is

(a) 
7

2
 (b) 

3
2

 (c) 
7
2

 (d) 
 3 2

2




Soln. (d) V = 2 2 2 2 2 21 1 1( 2 ) (2 )
2 2 2

m x m y m z     , Kinetic energy = 
2 2 2 2

2

p 1 n
2m 2m L

 
  

 


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Energy of the particle, E = E1 + E2 + E3 = 1 2 3
1 1 12 (2 )
2 2 2

                 
     

  n n n

For ground state n1 = n2 = n3 = 0

E = 
1 2 2
2 2 2

 
    
 

  =  3 2
2





33. A nucleus may be modelled as a drop of liquid consisting of the nucleons (protons and neutrons). In this
model, the dominant contribution to the nuclear binding energy is from the volume, which is proportional
to A, the total number of nucleons. Then the two important subdominant contributions from the surface
tension and the coulomb repulsion of the protons are, proportional to
(a) A2/3 and Z / A1/3 respectively (b) A2/3 and Z2 / A1/3 re spectively
(c) A1/3 and Z2 / A2/3 respectively (D) A1/2 and Z2 / A1/3 respectively

Soln. (b) For nucleus, R = R0A1/3     B.Esurface  AreaR2 B.EsurfaceA2/3

and B.Ecoulombic
2Z

R 
2

1/3
Z

A


