fiziks
t! ! ! K2

IISc Integrated PhD-2011

PHYSICAL SCIENCE
Q1. When a nuclide undergoes β decay, which of these is unchanged?
(a) proton number
(b) neutron number
(c) proton number + neutron number
(d) proton number - neutron number

Q2. Given that the most stable isotope of lead is ${ }^{208} \mathrm{~Pb}$, which of the following is a magic number?
(a) 122
(b) 124
(c) 126
(d) 128

Q3. Given that the binding energy per nucleon of an α-particle is 7 MeV , and that the energy released in the reaction $d+d \rightarrow \alpha$ is 23.6 MeV , total binding energy of a deuteron is
(a) 1.1 MeV
(b) 2.2 MeV
(c) 3.3 MeV
(d) 4.4 MeV

Q4. A pion of mass $140 \mathrm{MeV} / c^{2}$ decays at rest in the laboratory to a muon of mass $105 \mathrm{MeV} / c^{2}$ and a massless neutrino. The momentum of the muon in the laboratory is:
(a) $30.625 \mathrm{MeV} / \mathrm{c}$
(b) $15.313 \mathrm{MeV} / \mathrm{c}$
(c) $40.833 \mathrm{MeV} / \mathrm{c}$
(d) $20.147 \mathrm{MeV} / \mathrm{c}$

Q5. $\quad{ }^{238} \mathrm{U}$ decays via α-particle emission to
(a) ${ }^{236} \mathrm{U}$
(b) ${ }^{234} \mathrm{U}$
(c) ${ }^{236} \mathrm{Th}$
(d) ${ }^{234} \mathrm{Th}$

Q6. The following expression

$$
\frac{1 / 1!-1 / 3!(\pi / 4)^{3}+1 / 5!(\pi / 4)^{5}-\ldots . .}{1-1 / 2!(\pi / 4)^{2}+1 / 4!(\pi / 4)^{4}-\ldots .}
$$

equals to
(a) $1 / 2$
(b) $1 / \sqrt{2}$
(c) $\sqrt{2}$
(d) 1

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

fiziks

Q7. Given the three matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which of the following statements is true for all positive integers n and $i=1,2,3$?
(a) $\sigma_{i}^{n}=I$
(b) $\sigma_{i}^{n}=\sigma_{i}$
(c) $\sigma_{i}^{2 n}=I$
(d) $\sigma_{i}^{2 n}=\sigma_{i}$

Q8. The trace of a 2×2 matrix is 1 and its determinant is 1 . Which of the following has to be true?
(a) One of the eigenvalues is 0
(b) One of the eigenvalues is 1
(c) Both of the eigenvalues are 1
(d) Neither of the eigenvalues is 1

Q9. Let M by a 3×3 Hermitian matrix which satisfies the matrix equation

$$
M^{2}-7 M+12 I=0
$$

Where I refers to the identity matrix. What is the determinant of the matrix M given that the trace is 10 ?
(a) 27
(b) 36
(c) 48
(d) 64

Q10. Consider the equation

$$
x-\tanh \beta x=0
$$

The change in the number of real solutions to this equation when β is varied from $1 / 2$ to $3 / 2$ is
(a) none
(b) an increase by 2
(c) a decrease by 2
(d) an increase by 3

Q11. A point particle is moving in the (x, y) plane on a trajectory given in polar coordinates by the equation

$$
25+r^{2} \cos 2 \theta=0
$$

The trajectory of the particle is a
(a) parabola
(b) circle
(c) ellipse
(d) hyperbola
fiziks
t! ! ! k

Q12. From the solution of the differential equation

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}},
$$

what can you say regarding the following series?

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\ldots .
$$

(a) The series is divergent
(b) The series is absolutely convergent
(c) The series converges to $\frac{\pi}{4}$
(d) The series converges to 0

Q13. Let us suppose there are 2 dice with faces numbered from 1 to 6 . One die is such that in any throw the probability of obtaining any number is equal. The other is such that the probability of obtaining 2,4 or 6 is $1 / 5$ each, while the probability of obtaining odd numbers is equal. In a simultaneous throw of both the dice, what is the probability of obtaining an outcome of 5
(a) $\frac{2}{15}$
(b) $\frac{1}{9}$
(c) $\frac{4}{45}$
(d) $\frac{1}{3}$

Q14. Consider the system of differential equations

$$
\frac{d x}{d t}=-y, \quad \frac{d y}{d t}=x
$$

Plotting the various solutions in the x, y-plane one obtains
(a) Hyperbolae
(b) Parabolae
(c) Circles
(d) Straight lines

Q 15 . The value of the line integral

$$
\oint \frac{x d y-y d x}{x^{2}+y^{2}}
$$

along a circle of radius 3 centered at the origin in the counter clockwise direction is given by
(a) 0
(b) $\frac{3}{2 \pi}$
(c) 2π
(d) 6π
fiziks
t! ! ! K2

Q16. Consider two free particles in 3 dimensions of equal mass, the wave functions are given by

$$
\begin{aligned}
& \Psi_{1}(\vec{r}, t)=\frac{1}{(2 \pi)^{3}} \exp \left(-i \frac{\hbar^{2}\left|\vec{k}_{1}\right|^{2}}{2 m} t+i \vec{k}_{1} \cdot \vec{r}\right), \\
& \Psi_{2}(\vec{r}, t)=\frac{1}{(2 \pi)^{3}} \exp \left(-i \frac{\hbar^{2}\left|\vec{k}_{2}\right|^{2}}{2 m} t+i \vec{k}_{2} \cdot \vec{r}\right)
\end{aligned}
$$

where m refers to the masses of the particles, and the wave vectors \vec{k}_{1}, \vec{k}_{2} are given by

$$
\vec{k}_{1}=\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}), \quad \vec{k}_{2}=\frac{1}{\sqrt{3}}(-\hat{i}+\hat{j}-\hat{k})
$$

The direction vector along which the probability density of the wave function $\Psi(\vec{r}, t)=\Psi_{1}(\vec{r}, t)-\Psi_{2}(\vec{r}, t)$ vanishes is
(a) \hat{i}
(b) \hat{j}
(c) \hat{k}
(d) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$

Q17. Consider the wave function $\Psi(x, t)$ which satisfies the Schrödinger wave equation in one dimension with the time dependent potential

$$
V(x, t)=\frac{1}{2} k x^{2}+E_{0} \cos \omega t
$$

Which of the following is true
(a) $\int_{-\infty}^{\infty}|\Psi(x, t)|^{2} d x$ is time independent
(b) $\int_{-\infty}^{\infty}|\Psi(x, t)|^{2} d x$ is time dependent
(c) $|\Psi(x, t)|^{2} d x$ is time independent
(d) $\int_{-\infty}^{\infty} d x\left(\Psi^{*}\right)(x, t) \partial_{x}^{2} \Psi(x, t)-\partial_{x}^{2} \Psi^{*}(x, t) \Psi(x, t)$ is time dependent
fiziks

Q18. A hydrogen beam is prepared in the state

$$
\Psi(\vec{r}, t)=\frac{1}{\sqrt{14}} \exp \left(i \frac{E_{1} t}{\hbar}\right) \Psi_{1}(\vec{r})+\sqrt{\frac{2}{7}} \exp \left(i \frac{E_{2} t}{\hbar}\right) \Psi_{2}(\vec{r})+\frac{3}{\sqrt{14}} \exp \left(i \frac{E_{3} t}{\hbar}\right) \Psi_{3}(\vec{r})
$$

where E_{1}, E_{2}, E_{3} are the energies of the ground state and the first excited state of the hydrogen atom and $\Psi_{1}(\vec{r}), \Psi_{2}(\vec{r}), \Psi_{3}(\vec{r})$ are their normalized wave functions respectively. The beam is incident on a detector which measures their energy. Let E_{0} be the ionization energy of the hydrogen atom. The average energy measured by the detector is given by
(a) $-E_{0}$
(b) $-\frac{3}{14} E_{0}$
(c) $-\frac{1}{7} E_{0}$
(d) $-\frac{1}{14} E_{0}$

Q19. A particle of mass m is confined to move in one dimension and is prepared such that the uncertainty in the measurement of its momentum at time t after it is released from the source is given by $\quad \Delta p=\sqrt{\frac{m \hbar}{2 t}}$
where p is the momentum of the particle. An experimentalist has a device which can detect the particle only if the uncertainty in position of the particle Δx is $\Delta x \leq \sqrt{\frac{\hbar \tau}{m}}$ where τ is the time scale of the device. What is the maximum time beyond which it is impossible to detect the particle with the experimentalist's device?
(a) τ
(b) 2τ
(c) 4τ
(d) $\sqrt{2} \tau$

Q20. A quantum mechanical particle of mass m is confined to move in a circle of radius R. The energy levels are
(a) $E=\frac{\hbar^{2}}{2 m R^{2}} l(l+1), \quad l \in\{0,1,2,3, \ldots .$.
(b) $E=\frac{\hbar^{2}}{2 m R^{2}} l^{2}, l \in\{\ldots,-3,-2,-1,0,1,2,3, \ldots .$.
(c) $E=\frac{\hbar^{2}}{2 m R^{2}} l(l-1), \quad l \in\{0,1,2,3, \ldots .$.
(d) $E=\frac{\hbar^{2} R^{2}}{2 m} l^{2}, \quad l \in\{\ldots,-3,-2,-1,0,1,2,3, \ldots .$.

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

fiziks

Q21. Consider a one dimensional quantum mechanical oscillator of frequency ω. If the energy levels of this oscillator are populated by 3 electrons, then the lowest energy is
(a) $\frac{3}{2} \hbar \omega$
(b) $\hbar \omega$
(c) $\frac{7}{2} \hbar \omega$
(d) $\frac{5}{2} \hbar \omega$

Q22. The Planck length is given by
(a) $\sqrt{G c / h^{3}}$
(b) $\sqrt{G h / c^{3}}$
(c) $\sqrt{h c / G}$
(d) $\sqrt{G / h c}$

Q23. A wheel of radius $R=1 \mathrm{~m}$ is rolling on the ground with slipping. Its angular velocity is $200 \mathrm{rad} / \mathrm{s}$. If it's linear speed is $100 \mathrm{~ms}^{-1}$ in the positive x direction then the bottom most part of the wheel is traveling with respect to the ground at
(a) $-300 \mathrm{~m} / \mathrm{s}$
(b) $-100 \mathrm{~m} / \mathrm{s}$
(c) $100 \mathrm{~m} / \mathrm{s}$
(d) $300 \mathrm{~m} / \mathrm{s}$

Q24. A man climbs down a hemispherical hill, of radius 100 m from the topmost point. If the coefficient of friction between his shoes and the hill is $\mu=0.1$ then approximately how much distance does he have to walk before he slips?

(a) 5 m
(b) 10 m
(c) 20 m
(d) will never slip

Q25. A small ball of mass m is lying on top of a massive ball of mass $M \gg m$. They are both released from a given height simultaneously. If the small ball was at height H when it was released then after the balls have collided once with the ground the small ball rises approximately to a height

(a) 3 H
(b) 9 H
(c) H
(d) 27 H

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

Q26. A block attached to a spring moves on a horizontal table with a small coefficient of friction such that it executes damped oscillatory motion. The amplitude as a function of time decreases
(a) Linearly
(b) Quadratically
(c) Exponentially
(d) Logarithmically

Q27. A pendulum consists of a massive bob suspended from a hook by an elastic band. The spring constant k of the band and the mass m of the bob are such that $k / m=\omega^{2}=10 \mathrm{rad}^{2} / \mathrm{s}^{2}$, and the unstretched length of the band is $L=1 \mathrm{~m}$. The pendulum is released from an angle from the vertical of 60 degree. Initially the speed of the bob is zero and the band is in a relaxed (unstretched) state. The total length of the band at the lowest point in the bob's trajectory is
(a) 1.6 m
(b) 2.6 m
(c) 3.5 m
(d) 0.6 m

Q28. Two identical point charges of mass m and charge q are separated by a distance d and are moving at a relative speed u. What is their relative speed when they are at a large distance from each other?
(a) $\sqrt{u^{2}-Q^{2} / \pi \varepsilon_{0} m d}$
(b) $\sqrt{u^{2}+2 Q^{2} / \pi \varepsilon_{0} m d}$
(c) $\sqrt{u^{2}+Q^{2} / \pi \varepsilon_{0} m d}$
(d) $\sqrt{u^{2}-2 Q^{2} / \pi \varepsilon_{0} m d}$

Q29. A capacitor is made of two conducting spheres each of radius R and covered by a thin insulating sheet. They carry charge Q and $-Q$ respectively and their centers are separated by a distance d. If the capacitance of this capacitor is given by $C=Q / V$ where V is the potential difference between the two spheres then
(a) C is maximum when d is infinity
(b) C is maximum when d approaches $2 R$
(c) C does not depend on d
(d) C is maximum for $d=4 R$

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai
 Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

Q30. A U shaped tube of uniform cross section A contains a liquid of density ρ. The total length of the column is L. If the fluid is displaced then the frequency of oscillation is
(a) $\frac{1}{2 \pi} \sqrt{g / L}$
(b) $\frac{1}{2 \pi} \sqrt{g L / A}$
(c) $\frac{1}{2 \pi} \sqrt{g \rho A}$
(d) $\frac{1}{2 \pi} \sqrt{g / A}$

Q31. If the mechanical system shown below is in static equilibrium then what is the value of tension T ?

(a) $m g$
(b) $\sqrt{2} m g$
(c) $m g / \sqrt{2}$
(d) $2 m g$

Q32. A pump is used to push water of density ρ through a tube of constant crossection A shown below. What is the value of Δp ?

(a) $\rho g H+\rho u^{2} / 2$
(b) 0
(c) $\rho g H$
(d) $-\rho g H$
fiziks

Q33. A freely rotating disc is pierced through by an infinite superconducting solenoid containing a magnetic flux Φ. A charge Q is fixed to the disc at a distance R from the centre of the solenoid. If the solenoid is heated and it loses its magnetic flux in time T then the net angular momentum acquired by the disc is given by

(a) $q \Phi / T$
(b) $q \Phi / 2 \pi$
(c) $q \Phi$
(d) $q \Phi / 2 \pi R$

Q34. In the following circuit, capacitor $C 1$ is initially charged to 10 Volts while $C 2$ and $C 3$ are uncharged. At time $t=0$, the switch S is closed.

Which of the following waveforms of voltage versus time best represents the voltage across $C 2$ for $t>0$?

Figure 1

Figure 2

Figure 3

Figure 4
(a) Figure 1
(b) Figure 2
(c) Figure 3
(d) Figure 4
fiziks

Q35. In the following R-L circuit, the switches $S 1$ and $S 2$ are initially closed at time $\mathrm{t}=0$.

Switch $S 2$ is then opened after a time interval T. The peak voltage across the resistor R is given by
(a) $V_{0}\left(1-\exp \left(-\frac{R}{L} T\right)\right)$
(b) $V_{0} \exp \left(-\frac{R}{L} T\right)$
(c) $\frac{V_{0} R T}{L}$
(d) $V_{0}\left(1-\frac{R}{L} T\right)$

Q36. In the following circuit, D1 and D2 are identical diodes with forward voltage drop of 0.6 Volts and Reverse Breakdown Voltage of 5 Volts.

The current through resistor $R 2$ is approximately
(a) zero
(b) 0.2 mA
(c) 0.7 mA
(d) 5 mA

Q37. The Boolean algebra expression $A+B+A \bar{B} C+B C$ reduces to
(a) $A+B C$
(b) $A+B$
(c) $A C+\bar{B} C$
(d) $A+C$
fiziks
t! !!k

Q38. A confocal laser cavity consists of two concave mirrors with equal focal lengths f separated by a distance of L along their axis as shown below:

An object is placed inside the cavity at a distance of L/4 from one of the mirrors. If the final image coincides in position with the object, the focal length f is
(a) $2 L$
(b) L
(c) $L / 2$
(d) $L / 4$

Q39. Two beams of monochromatic light with intensities I_{1} and I_{2} interfere constructively to produce an intensity of 100 mW . If one of the beams is shifted in phase by 60 degrees, the intensity reduces to 84 mW . Then I_{1} and I_{2} are
(a) 64 mW and 4 mW
(b) 36 mW and 16 mW
(c) 10 mW and 9 mW
(d) 92 mW and 8 mW

Q40. The refractive index of a medium in which the electric field of an electromagnetic wave is given in MKS units by

$$
\vec{E}=E_{0} \cos \left(10^{7} x+10^{7} y-10^{15} t\right) \hat{z}
$$

is
(a) 1.4
(b) 3.0
(c) 4.2
(d) 6.0

Q41. In a certain process, the temperature (T) and entropy (S) are related by $T \propto S^{n}$, where n is a number. What is the heat capacity in terms of the entropy for this process?
(a) $\frac{S^{2}}{k_{B} n^{2}}$
(b) $\frac{S}{n}$
(c) $n k_{B} e^{S / k_{B}}$
(d) $n \sqrt{S k_{B}}$
fiziks

Q42. The probability of a system to be in a state with energy E at temperature T is proportional to $e^{-E / k_{B} T}$. If the system in question is a one dimensional quantum harmonic oscillator of frequency ω, the average energy at temperature T is
(a) $\frac{\hbar \omega}{2}$
(b) $\hbar \omega\left(e^{-\hbar \omega / k_{B} T}+\frac{1}{2}\right)$
(c) $\hbar \omega\left(\frac{1}{e^{-\hbar \omega / k_{B} T}-1}+\frac{1}{2}\right)$
(d) $\hbar \omega\left(\frac{1}{e^{-\hbar \omega / k_{B} T}+1}+\frac{1}{2}\right)$

Q43. Two solid blocks, one at temperature T_{1} and the other $T_{2}\left(T_{1}>T_{2}\right)$, with the same temperature independent heat capacity C are put in contact with each other. The change in entropy of the universe after they have equilibrated is
(a) $C \ln \left[\frac{\left(T_{1}+T_{2}\right)^{2}}{4 T_{1} T_{2}}\right]$
(b) $C \ln \left(\frac{T_{1}}{T_{2}}\right)$
(c) $C \ln \left(\frac{T_{1}-T_{2}}{T_{1}+T_{2}}\right)$
(d) C

Q44. A thin spherical rubber balloon is blown up to a radius R by filling it with air, which can be assumed to be an ideal gas of average molecular mass m . If the temperature of the balloon is T, the pressure outside is P and the surface tension of rubber is γ, the density of air inside the balloon is
(a) $\frac{m P}{k_{B} T}$
(b) $\frac{m P}{k_{B} T}\left(P-\frac{4 \gamma}{R}\right)$
(c) $\frac{m P}{k_{B} T}\left(P+\frac{4 \gamma}{R}\right)$
(d) $\frac{m P}{k_{B} T} \sqrt{\frac{4 P \gamma}{R}}$

Q45. N molecules of an ideal monoatomic gas and diatomic gas are kept in identical containers at the same pressure. If the temperatures of the monoatomic gas and diatomic gas are T_{M} and T_{D} respectively and their entropies are S_{M} and S_{D}, in general
(a) $T_{M}=T_{D}$ and $S_{M}=S_{D}$
(b) $T_{M}=T_{D}$ and $S_{M} \neq S_{D}$
(c) $T_{M} \neq T_{D}$ and $S_{M}=S_{D}$
(d) $T_{M} \neq T_{D}$ and $S_{M} \neq S_{D}$

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai
 Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

fiziks

Q46. A shooter fires a bullet with velocity u in the \hat{x} direction at a target. The target is moving with velocity v in the \hat{x} direction relative to the shooter and is at a distance L from him at the instant the bullet is fired. If $\gamma=1 \sqrt{1-v^{2} / c^{2}}$, how long from the bullet is fired will it take to hit the target in the target's frame of reference?
(a) L / c
(b) $\gamma L c / u v$
(c) $\gamma L\left(1-u v / c^{2}\right) /(u-v)$
(d) $L\left(1+u v / c^{2}\right) /[\gamma(u-v)]$

Q47. A source of light S and detector D are approaching an observer O from opposite directions with speed v related to O. If S is emitting light of frequency v in its rest frame in the direction of D, the frequency observed by D is
(a) v
(b) $v \sqrt{\frac{1-v / c}{1+v / c}}$
(c) $v \sqrt{\frac{1+v / c}{1-v / c}}$
(d) $v\left(\frac{1+v / c}{1-v / c}\right)$

Q48. A beam of relativistic particles of mass m 0 and kinetic energy K is normally incident upon a perfectly absorbing surface. If the particle flux (number of particles per unit area pre unit time) is J, the pressure on the surface is
(a) $\frac{J K}{c}$
(b) $\frac{J \sqrt{K\left(K+m_{0} c^{2}\right)}}{c}$
(c) $\frac{J\left(K+m_{0} c^{2}\right)}{c}$
(d) $\frac{J \sqrt{K\left(K+2 m_{0} c^{2}\right)}}{c}$

Q49. A spherical black body has the following relations between its energy E , temperature T and radius $R ; T \propto 1 / E$ and $R \propto E$. If the initial energy of the black body is E_{0} the time t after which it evaporates due to black body radiation (as given by Stefan's law) are related as
(a) $\mathrm{t} \propto \mathrm{E}_{0}$
(b) $t \propto 1 / E_{0}^{2}$
(c) $t \propto E_{0}^{3}$
(d) $t \propto 1 / E_{0}^{3 / 2}$

Q50. Water rises to a certain height in a thin vertical capillary of radius r. Assuming that the contact angle is 0° throughout and the density and surface tension of water are ρ and γ respectively, the heat released in the process is
(a) 0
(b) γr^{2}
(c) $4 \pi r^{3} \sqrt{\rho g \gamma}$
(d) $\frac{2 \pi \gamma^{2}}{\rho g}$

