13451

П

U

EAMCET ENGINEERING 2013

INSTRUCTIONS TO THE CANDIDATES

(Read the Instructions carefully before Answering)

- Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question 1. Paper Booklet. Please read and follow the instructions on the OMR Sheet for marking the responses and also the required data.
- Candidates should write the Hall Ticket Number only in the space provided on this page and 2. OMR Sheet. Do not Write the Hall ticket number anywhere else.
- 3. Immediately on opening the Question Paper Booklet by tearing off the paper seal please check for (i) The same booklet code (A/B/C/D) on each page, (ii) Serial number of the questions (1-160), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement with same booklet code within five minutes from the commencement of the test.
- Electronic gadgets like Cell Phone, Pager, Calculator, Electronic watches and Mathematical/Log 4. Tables are not permitted into the examination hall.
- Darken the appropriate circles of 1, 2, 3 or 4 in the OMR sheet corresponding to correct or the 5. most appropriate answer to the concerned question number in the sheet. Darkening of more than one circle against any question automatically gets invalidated.
- Rough work should be done only in the space provided for this purpose in the Question Paper Booklet. 6.
- 7. Once the candidate enters the Examination Hall, he/she shall not be permitted to leave the Hall till the end of the Examination.
- Ensure that the Invigilator puts his/her signature in the space provided on Question Paper Booklet 8. and OMR Answer Sheet. Candidate should sign in the space provided on the OMR Answer Sheet and filled in application form.
- The candidate should write the Question Paper Booklet number, OMR Answer Sheet number, 9. sign in the space provided in the Nominal Rolls and affix the left hand thumb impression in the nominal rolls and filled in application form.
- Return the OMR Answer Sheet to the Invigilator before leaving the examination hall. Failure to return the OMR is liable for criminal action. The Question Paper Booklet shall be taken away by the candidate and should be preserved till the declaration of results.
- 11. Filled-in application form shall be submitted to the invigilator in the examination hall. (Enclose attested copy of Caste Certificate in case of SC/ST candidates only).

This booklet consists of 61 Pages for 160 questions + 2 Pages of Rough Work + 1 Title Page i.e. Total 64 Pages.

Time: 3 Hours

Marks: 160

Instructions:

- Each question carries one mark. (i) [పతి [పశ్చకు ఒక మార్కు కలదు.
- (ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with blue/black ball point pen the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

దిగువ ఇచ్చిన [పతి [పశ్మకు ఇవ్వబడిన వాటిలో సరియైన సమాధానమును ఎన్నుకొని దానిని సూచించే అంకె 1, 2, 3 లేక 4 వేరుగా ఇచ్చిన OMR సమాధాన పత్రములో స్థాక్స్ కు సంబంధించిన సంఖ్యగల పేటికను బ్లూ/బ్లాక్ బాల్ పాయింట్ పెన్ను ఉపయోగించి నింపవలెను.

MATHEMATICS

- If $f(x) = (p x^n)^{1/n}$, p > 0 and n is a positive integer, then f(f(x)) = $f(x) = (p - x^n)^{1/n}, p > 0$ మరియు n ధనపూర్హాంకం అయితే. అప్పడు f(f(x)) =
 - (1) x

(2) x^n

- (3) $p^{1/n}$
- (4) $p x^n$

- 2. $\left\{ x \in \mathbb{R} \left[\log \left[(1.6)^{1-x^2} (0.625)^{6(1+x)} \right] \in \mathbb{R} \right\} =$
 - (1) $(-\infty, -1) \cup (7, \infty)$

(3) (1, 7)

- (4) (-1, 7)
- If I is the identity matrix of order 2 and $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then for $n \ge 1$, mathematical induction gives 3.

l అనేది 2వ తరగత్ తత్సమమాత్రిక, A = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ అయితో, అప్పుడు n ≥ 1కు గణితానుగమన౦

నుంచి

(1) $A^n = nA - (n-1)I$

(2) $A^n = nA + (n-1)I$

(3) $A^n = 2^n A - (n+1) I$

(4) $A^n = 2^{n-1} A - (n-1) I$

4.
$${}^{n}C_{r-1} = 330$$
, ${}^{n}C_{r} = 462$, ${}^{n}C_{r+1} = 462 \implies r =$

(1) 3

(2) 4

(3) 5

- (4) 6
- 5. 10 men and 6 women are to be seated in a row so that no two women sit together. The number of ways they can be seated is:

10 మంది పురుషులు, ఆరుగురు స్త్రీలు ఒక వరుసలో ఏ ఇద్దరు స్త్రీలూ ప్రక్క ప్రక్కనే ఉండకుండా కూర్చోవాలి. అలా కూర్చునే విధానాల సంఖ్య :

(1) 11! 10!

(2) $\frac{11!}{6! \, 5!}$

(3) $\frac{10! \ 9!}{5!}$

- (4) $\frac{11! \ 10!}{5!}$
- 6. If t_n denotes the number of triangles formed with n points in a plane no three of which are collinear and if $t_{n+1} t_n = 36$, then n = 36

ఒక తలంలో ఏ మూడు బిందువులూ సరేఖీయాలు కాని ${\bf n}$ బిందువులతో ఏర్పడే (త్రిభుజాల సంఖ్యని ${\bf t}_n$ తో సూచిస్తూ; ${\bf t}_{n+1}-{\bf t}_n=36$ అయితే. ఆప్పుడు ${\bf n}=$

(1) 7

(2) 8

(3) 9

- (4) 10
- 7. The term independent of x $(x > 0, x \ne 1)$ in the expansion of

$$\left[\frac{(x+1)}{(x^{2/3}-x^{1/3}+1)}-\frac{(x-1)}{(x-\sqrt{x})}\right]^{10}$$
 is

(1) 105

(2) 210

(3) 315

(4) 420

If x is small so that x2 and higher powers can be neglected, then the approximate value for 8.

$$\frac{(1-2x)^{-1}(1-3x)^{-2}}{(1-4x)^{-3}}$$
 is

$$x^2$$
, ఆైప ఘాతాలను వదిలివేసేంతగా x చిన్నదయితే, $\frac{(1-2x)^{-1}(1-3x)^{-2}}{(1-4x)^{-3}}$ ఉజ్ఞాయింపు

విలువ

- (1) 1 2x
- (2) 1 3x
- (3) 1 4x
- (4) 1 5x
- 9. If $\frac{1}{x^4 + x^2 + 1} = \frac{Ax + B}{x^2 + x + 1} + \frac{Cx + D}{x^2 x + 1}$, then C + D = TIVI

$$\frac{1}{x^4 + x^2 + 1} = \frac{Ax + B}{x^2 + x + 1} + \frac{Cx + D}{x^2 - x + 1}$$
 అయితే, ఆప్పుడు $C + D =$

(1) -1

(2) 1

(3) 2

(A) 0

10.
$$\frac{1}{2.3} + \frac{1}{4.5} + \frac{1}{6.7} + \frac{1}{8.9} + \dots$$

- (1) $\log\left(\frac{2}{e}\right)$ (2) $\log\left(\frac{e}{2}\right)$ (3) $\log(2 e)$ (4) e-1
- 11. If the harmonic mean between the roots of $(5+\sqrt{2})x^2 bx + (8+2\sqrt{5}) = 0$ is 4, then the value of b

 $(5+\sqrt{2})x^2-bx+(8+2\sqrt{5})=0$ యొక్క మూలాల హరాత్మక మధ్యమం 4 అయితే అప్పుడు b విలువ.

(1) 2

(2) 3

- (3) $4-\sqrt{5}$
- (4) 4+J5

- 12. The set of solutions satisfying both $x^2 + 5x + 6 \ge 0$ and $x^2 + 3x 4 < 0$ is $x^2 + 5x + 6 \ge 0$ మరియు $x^2 + 3x - 4 < 0$ లు రెండింటిన్ తృష్తిపరచే సాధనల సమ్తి
 - (1) (-4, 1)

(2) $(-4, -3] \cup [-2, 1)$

(3) $(-4, -3) \cup (-2, 1)$

- (4) $[-4, -3] \cup [-2, 1]$
- 13. If the roots of $x^3 42x^2 + 336x 512 = 0$, are in increasing geometric progression, then its common ratio is
 - $\mathbf{x}^3 42\mathbf{x}^2 + 336\mathbf{x} 512 = 0$ సమీకరణం మూలాలు ఆరోహణ గుణ(శేఢిలో ఉంటే, (శేణి సామాన్య నిష్పత్తి
 - (1) 2

- (4) 6
- 14. If α and β are the roots of the equation $x^2 2x + 4 = 0$, then $\alpha^9 + \beta^9 =$
 - $x^2-2x+4=0$ కి మూలాలు α,β అయితే, ఆప్పడు $\alpha^9+\beta^9=$
 - $(1) -2^8$

 $(2) 2^9$

- $(3) -2^{10}$
- (4) 2^{10}
- 15. If $A = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix}$ satisfies the equation $x^2 + 4x p = 0$, then p = 0
 - $A = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix}$ మာ ခြိန် $x^2 + 4x p = 0$ సమీకరణాన్ని తృష్తిపరిస్తే, అప్పుడు p = 0
 - (1) 64

(2) 42

(3) 36

(4) 24

16.
$$\begin{vmatrix} x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15 \end{vmatrix} =$$

(1)
$$3x^2 + 4x + 5$$

(2)
$$x^3 + 8x + 2$$

$$(4) -2$$
.

17. The system of equations 3x + 2y + z = 6, 3x + 4y + 3z = 14, 6x + 10y + 8z = a, has infinite number of solutions, if a =

సమీకరణ వ్యవస్థ 3x + 2y + z = 6, 3x + 4y + 3z = 14, 6x + 10y + 8z = a కి అనంతసాధనలు౦టే. ఆపప్పడు <math>a =

$$(2)$$
 12

18. The number of real values of t such that the system of homogeneous equations

$$tx + (t + 1)y + (t - 1)z = 0$$

$$(t + 1)x + ty + (t + 2)z = 0$$

$$(t-1)x + (t+2)y + tz = 0$$

has non-trivial solutions, is

సమ ఘాతీయ సమీకరణ వ్యవస్థ

$$tx + (t + 1)y + (t - 1)z = 0$$

$$(t + 1)x + ty + (t + 2)z = 0$$

$$(t-1)x + (t+2)y + tz = 0$$

తృణేతర సాధనలను కలిగియుండేట్లు t యొక్క వాస్త్రవ విలువల సంఖ్య

(J) 3

(2) 2

(3) 1

(4) 4

19.
$$\left(\frac{1+i}{1-i}\right)^4 + \left(\frac{1-i}{1+i}\right)^4 =$$

(1) 0

(2) 1

(3) 2

(4) 4

20. If a complex number z satisfies $|z^2 - 1| = |z|^2 + 1$, then z lies on :

(1) the real axis

(2) the imaginary axis

(3) y = x

(4) a circle

z సంకీర్ణ సంఖ్య $\mid z^2-1\mid = \mid z\mid^2+1$ సమీకరణాన్ని తృష్టిపరు స్తే అప్పుడు z ఉండేది :

(1) వాస్తవాక్షంపై

(2) కల్ప్రాంక్ల పె

(3) y ≈ x ೌಎ

(4) ఒక వృత్తంపై

21. $\frac{(1+i)x-i}{2+i} + \frac{(1+2i)y+i}{2-i} = 1 \Rightarrow (x, y) = 1$

 $(1) \quad \left(\frac{7}{3}, \frac{-7}{15}\right)$

(2) $\left(\frac{7}{3}, \frac{7}{15}\right)$

 $(3) \quad \left(\frac{7}{5}, \frac{-7}{15}\right)$

(4) $\left(\frac{7}{5}, \frac{7}{15}\right)$

22. The period of $f(x) = \cos\left(\frac{x}{3}\right) + \sin\left(\frac{x}{2}\right)$ is

$$f(x) = \cos\left(\frac{x}{3}\right) + \sin\left(\frac{x}{2}\right)$$
 యొక్క ఆవర్షనం

(1) 2π

(2) 4π

(3) 8 π

(4) 12 π

- 23. $\sin \theta + \cos \theta = p$, $\sin^3 \theta + \cos^3 \theta = q \Rightarrow p(p^2 3) =$
 - (1) q

(2) 2q

(3) -q

- (4) -2q
- 24. If $\tan (\pi \cos \theta) = \cot (\pi \sin \theta)$ then a value of $\cos \left(\theta \frac{\pi}{4}\right)$ among the following is

 $\tan (\pi \cos \theta) = \cot (\pi \sin \theta)$ မာတော့ ဦးဝင်း ဆားသီးကို $\cos \left(\theta - \frac{\pi}{4}\right)$ ထားနှံး ఒక သီလသ

(1) $\frac{1}{2\sqrt{2}}$


(2) $\frac{1}{\sqrt{2}}$

(3) $\frac{1}{2}$

(4) $\frac{1}{4}$

TIM

25. The set of solutions of the system of equations :

$$\cos x + \cos y = \frac{3}{2},$$

where x, y are real, is

x, yలు వాస్తవ సంఖ్యలైతే సమీకరణాల వ్యవస్థ

$$x + y = \frac{2\pi}{3}$$

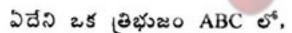
 $\cos x + \cos y = \frac{3}{2}$ కి సాధనాల సమీతి

(1) $\left\{ (x,y) : \cos\left(\frac{x-y}{2}\right) = \frac{1}{2} \right\}$

(2) $\left\{ (x,y) : \sin\left(\frac{x-y}{2}\right) = \frac{1}{2} \right\}$

(3) $\left\{ (x, y) : \cos(x - y) = \frac{1}{2} \right\}$

(4) empty setశూన్య సమీతి



26.
$$\cos^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \cos^{-1}x \Rightarrow x =$$

- (1) $\frac{3}{65}$
- (2) $\frac{-36}{65}$
- (3) $\frac{-33}{65}$ (4) -1

27.
$$\tanh^{-1}\left(\frac{1}{2}\right) + \coth^{-1}(2) =$$

- (1) $\frac{1}{2}\log 3$ (2) $\frac{1}{2}\log 6$
- (3) $\frac{1}{2} \log 12$ (4) $\log 3$

$$r_1r_2 + r_2r_3 + r_3r_1 =$$

$$(1) \quad \frac{\Delta^2}{r^2}$$

(2)
$$\frac{\Delta}{r}$$

(3)
$$\frac{2\Delta}{r}$$

(4)
$$\Delta^2$$

29. If, in
$$\triangle ABC$$
, $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ then the angle $C =$


ఒక
$$\triangle ABC$$
లో $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ అయినపుడు కోణం $C =$

(1) 30°

(2) 45°

(3) 60°

(4) 90°

నేలపై ఒక బిందువు A నుండి ఒక వ్యక్తి ఒక శిఖరాగ్రాన్ని గమనిస్తున్నాడు. ఈ బిందువు నుండి శిఖరాగ్రం ఊర్థ్వకోణం 60°. శిఖరం పాదం నుండి Aను కలెప్ రేఖకు అంబదిశలో అతడు 60 మీ. దూరం కదిలెను. ఈ బిందువు నుండి శిఖరాగ్రాపు ఊర్థ్వకోణం 45°. అపుడు శిఖరం ఎత్తు (మీటర్లలో)

- (1) $60\sqrt{\frac{3}{2}}$
- (2) 60√2

- (3) 60√3
- (4) $60\sqrt{\frac{2}{3}}$

31. The points whose position vectors are $2\vec{i} + 3\vec{j} + 4\vec{k}$, $3\vec{i} + 4\vec{j} + 2\vec{k}$ and $4\vec{i} + 2\vec{j} + 3\vec{k}$ are the vertices of

- (1) an isosceles triangle
- (3) equilateral triangle

- (2) right angled triangle
- (4) right angled isosceles triangle

 $2\vec{i}+3\vec{j}+4\vec{k}$, $3\vec{i}+4\vec{j}+2\vec{k}$, $4\vec{i}+2\vec{j}+3\vec{k}$ లు స్థాన సదిశలుగా మూడు బెందువులు శీర్హాలుగా ఏర్పడునది

(1) సమద్వబాహు త్రిభుజం

(2) စဝဃဒီ်က ခြံဆုံးဆဝ

(3) సమబాహు త్రిభుజం

(4) సమద్వబాహు లంబకోణ త్రిభుజం

32. P, Q, R and S are four points with the position vectors $3\vec{i}-4\vec{j}+5\vec{k}$, $4\vec{k}$, $-4\vec{i}+5\vec{j}+\vec{k}$ and $-3\vec{i}+4\vec{j}+3\vec{k}$ respectively. Then the line PQ meets the line RS at the point పరుసగా $3\vec{i}-4\vec{j}+5\vec{k}$, $4\vec{k}$, $-4\vec{i}+5\vec{j}+\vec{k}$, $-3\vec{i}+4\vec{j}+3\vec{k}$ లు స్థాన సదిశలుగా గల నాలుగు బిందువులు P, Q, R, S లు. అపుడు రేఖ PQ అనేది రేఖ RSను కలిపే బిందువు

(1) $3\vec{i} + 4\vec{j} + 3\vec{k}$

(2) $-3\vec{i} + 4\vec{j} + 3\vec{k}$

(3) $-\vec{i} + 4\vec{j} + \vec{k}$

(4) $\vec{i} + \vec{j} + \vec{k}$

- 33. $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, \vec{c} \neq 0, \vec{a} \times \vec{b} = \vec{0}, \vec{b} \times \vec{c} = 0 \Rightarrow \vec{a} \times \vec{c} = 0$
 - (1) b

(2) a

(3) o

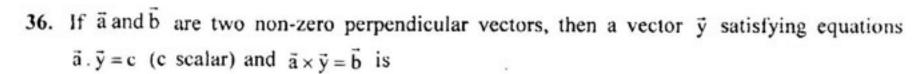
- (4) $\vec{i} + \vec{j} + \vec{k}$
- 34. The shortest distance between the lines $\vec{r} = 3\vec{i} + 5\vec{j} + 7\vec{k} + \lambda(\vec{i} + 2\vec{j} + \vec{k})$ and

$$\vec{r} = -\vec{i} - \vec{j} - \vec{k} + \mu (7\vec{i} - 6\vec{j} + \vec{k})$$
 is

သံဇံစံသုလ $\vec{r} = 3\vec{i} + 5\vec{j} + 7\vec{k} + \lambda(\vec{i} + 2\vec{j} + \vec{k}),$

 $\vec{r} = -\vec{i} - \vec{j} - \vec{k} + \mu (7\vec{i} - 6\vec{j} + \vec{k})$ ల మధ్య అల్పతమదూరం

 $(1) \quad \frac{16}{5\sqrt{5}}$


(3) $\frac{36}{5\sqrt{5}}$

- (4) $\frac{46}{5\sqrt{5}}$
- 35. A unit vector coplanar with $\vec{i}+\vec{j}+3\vec{k}$ and $\vec{i}+3\vec{j}+\vec{k}$ and perpendicular to $\vec{i}+\vec{j}+\vec{k}$ is $\vec{i}+\vec{j}+3\vec{k}$, $\vec{i}+3\vec{j}+\vec{k}$ లంది పత్తియంగా ఉంటూ $\vec{i}+\vec{j}+\vec{k}$ కు లంబంగా ఉంచే ఒక యూనిట్ సదిశ
 - $(1) \quad \frac{1}{\sqrt{2}}(j+k)$

(2) $\frac{1}{\sqrt{3}}(\vec{i} - \vec{j} + \vec{k})$

 $(3) \quad \frac{1}{\sqrt{2}}(\vec{j}-\vec{k})$

(4) $\frac{1}{\sqrt{3}}(\vec{i} + \vec{j} - \vec{k})$

 \vec{a} , \vec{b} లు రెండు సున్నాకాని పరస్పర లంబ సదిశలవుతూ, సదిశ సమీకరణాలు \vec{a} . $\vec{y}=c$ (c అదిశ), $\vec{a} \times \vec{y} = \vec{b}$ లను తృష్టిపరిచేట్లుండే సదిశ \vec{y}

(1)
$$|\vec{a}|^2 (c\vec{a} - (\vec{a} \times \vec{b}))$$

(2)
$$|\vec{a}|^2 \cdot (c\vec{a} + (\vec{a} \times \vec{b}))$$

(3)
$$\frac{1}{|\vec{a}|^2} (c\vec{a} - (\vec{a} \times \vec{b}))$$

(4)
$$\frac{1}{|\vec{a}|^2} (c\vec{a} + (\vec{a} \times \vec{b}))$$

37. Two numbers are chosen at random from {1, 2, 3, 4, 5, 6, 7, 8} at a time. The probability that smaller of the two numbers is less than 4 is

యాదృచ్ఛికంగా రెండు సంఖ్యలను ఒకేసారి {1, 2, 3, 4, 5, 6, 7, 8} నుండి తీసుకోబడ్డాయి. రెండింటిలో చిన్న సంఖ్య 4 కన్నా తక్కువగా ఉండే సంభావ్యత

(1)
$$\frac{7}{14}$$

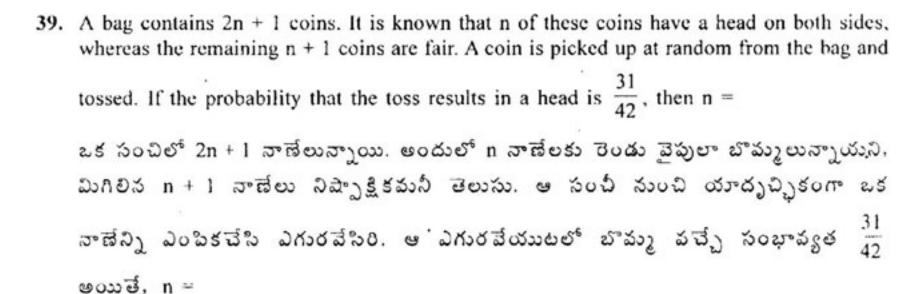
$$(2) \frac{8}{14}$$

(3)
$$\frac{9}{14}$$

(4)
$$\frac{10}{14}$$

38. Two fair dice are rolled. The probability of the sum of digits on their faces to be greater than or equal to 10 is

రెండు నిప్పాక్షిక పాచికలను దొర్లించిరి. వాటి ముఖాలైప మొత్తం 10 లేదా అంతకన్నా ఎక్కువగా వచ్చే సంభావ్యత


(1)
$$\frac{1}{5}$$

(2)
$$\frac{1}{4}$$

1 (m) (cs!

(3)
$$\frac{1}{8}$$

(4)
$$\frac{1}{6}$$

(1) 10

(2) 11

(3) 12

(4) 13

40. The random variable takes the values 1, 2, 3, m. If $P(X \stackrel{\text{IM}}{=} n) = \frac{1}{m}$ to each n, then the variance of X is

అయితే X యొక్క విస్తృతి

(1) $\frac{(m+1)(2m+1)}{6}$

(2) $\frac{m^2-1}{12}$

 $(3) \quad \frac{m+1}{2}$

(4) $\frac{m^2+1}{12}$

41. If X is a Poisson variate and P(X = 1) = 2P(X = 2) then P(X = 3) = X ఒక పారుజన్ చలరాశి, P(X = 1) = 2P(X = 2) అయితే. P(X = 3) =

(1) $\frac{e^{-1}}{6}$

(2) $\frac{e^{-2}}{2}$

- (3) $\frac{e^{-1}}{2}$
- (4) $\frac{e^{-1}}{3}$

- 42. The origin is translated to (1, 2). The point (7, 5) in the old system undergoes the following transformations successively.
 - Moves to the new point under the given translation of origin.
 - (ii) Translated through 2 units along the negative direction of the new X-axis.
 - (iii) Rotated through an angle $\frac{\pi}{4}$ about the origin of new system in the clockwise direction.

The final position of the point (7, 5) is

బిందువు (1, 2)కు మూల బిందుపు సమాంతర పరివర్తనం చేయబడినది. పూర్వ నిరూపక వ్యవస్థలోని బిందువు (7, 5) వరుసగా (కింది పరివర్తనలకు లోనైంది.

- (i) మూలబిందువు సమాంతర పరివర్తనంవల్ల కొత్త బిందువుకు మూరడం.
- (ii) కొత్త X-అక్షం ఋణ దిశలో 2 యుస్ట్లు దూరం సమాంతర పరివర్తనం చెందడం.
- (iii) కొత్త వ్యవస్థలోని మూలబిందువు దృష్ట్యా సవ్యదిశలో $\frac{\pi}{4}$ కోణంతో (భమణం చెందడం.

అప్పుడు (7, 5) బిందువు తుదిస్థానం

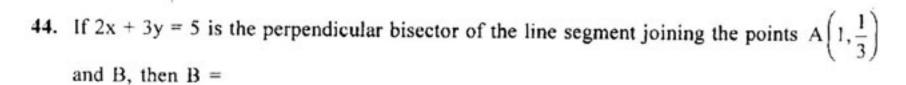
$$(1) \quad \left(\frac{9}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$$

$$(2) \quad \left(\frac{7}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

$$(3) \quad \left(\frac{7}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$$

(1)
$$\left(\frac{9}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$$
 (2) $\left(\frac{7}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (3) $\left(\frac{7}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ (4) $\left(\frac{5}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$

43. If p and q are the perpendicular distances from the origin to the straight lines $x \sec \theta - y \csc \theta = a \text{ and } x \cos \theta + y \sin \theta = a \cos 2\theta, \text{ then}$


మూలబిందుపు నుండి $x \sec \theta - y \csc \theta = a$ మరియు $x \cos \theta + y \sin \theta = a \cos 2\theta$ సరళరోఖలకు ల౦బదూరాలు వరసగా p, q లయితే, ఆప్పుడు

$$(1) 4p^2 + q^2 = a^2$$

(2)
$$p^2 + q^2 = a^2$$

(3)
$$p^2 + 2q^2 = a^2$$

$$(4) 4p^2 + q^2 = 2a^2$$

$$A\left(1,\frac{1}{3}\right)$$
 మరియు B బిందువులను కలోప రేఖాఖండం అంబసమద్విఖండన రేఖ

(1)
$$\left(\frac{21}{13}, \frac{49}{39}\right)$$

(2)
$$\left(\frac{17}{13}, \frac{31}{39}\right)$$

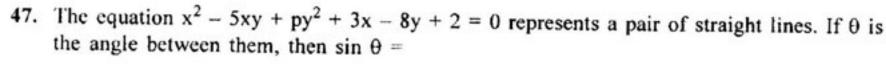
(3)
$$\left(\frac{7}{13}, \frac{49}{39}\right)$$

(4)
$$\left(\frac{21}{13}, \frac{31}{39}\right)$$

45. If the points (1, 2) and (3, 4) lie on the same side of the straight line 3x - 5y + a = 0 then a lies in the set

బిందువులు $(1,\ 2)$, $(3,\ 4)$ లు సరళరేఖ 3x-5y+a=0కి ఒకే వైపు ఉంటే అప్పుడు a ఉందే సమీతి

46. The equation of the pair of lines passing through the origin whose sum and product of slopes are respectively the arithmetic mean and geometric mean of 4 and 9 is


మూల బిందువు గుండా పోయే ఒక సరళరోఖాయుగ్మపు వాలుల మొత్తం, లబ్దంలు వరసగా 4. 9ల అంకమధ్యమం, గుణమధ్యమములయ్యేట్లు ఆ సరళరోఖాయుగ్మం సమీకరణం

$$(1) 12x^2 - 13xy + 2y^2 = 0$$

$$(2) 12x^2 + 13xy + 2y^2 = 0$$

(3)
$$12x^2 - 15xy + 2y^2 = 0$$

$$(4) \quad 12x^2 + 15xy - 2y^2 = 0$$

 $x^2-5xy+py^2+3x-8y+2=0$ ఒక సరళరేఖాయుగ్మాన్ని సూచిస్తుంది. ఆ రేఖల మధ్య కోణం 0 అయితే, అప్పుడు $\sin\theta=$

(1)
$$\frac{1}{\sqrt{50}}$$

(2)
$$\frac{1}{7}$$

(3)
$$\frac{1}{5}$$

(4)
$$\frac{1}{\sqrt{10}}$$

48. If the equation
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
 represents a pair of straight lines, then the square of the distance of their point of intersection from the origin is

సమీకరణం $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ఒక సరళరేఖాయుగ్మాన్ని సూచిేస్తు, మూలబిందువు నుంచి వాటి ఖండన బిందువుకు గల దూరంగాయుక్క వర్గం

$$(1) \frac{c(a+b)-af^2-bg^2}{ab-h^2}$$

(2)
$$\frac{c(a+b)+f^2+g^2}{ab-h^2}$$

(3)
$$\frac{c(a+b)-f^2-g^2}{ab-h^2}$$

(4)
$$\frac{c(a+b)-f^2-g^2}{(ab-h^2)^2}$$

49. The circle
$$4x^2 + 4y^2 - 12x - 12y + 9 = 0$$

(17 touches both the axes

(2) touches the x-axis only

(3) touches the y-axis only

(4) does not touch the axes

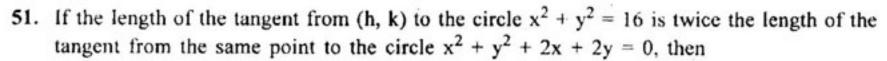
$$4x^2 + 4y^2 - 12x - 12y + 9 = 0$$
 వృత్తం

- (1) నిరూపకాక్షాలు రెండింటినీ స్పృశిస్తుంది
- (2) x-అక్షాన్ని మాత్రమే స్పృశిస్తుంది
- (3) y-అక్షాన్ని మాత్రమే స్పృశిస్తుంది
- (4) అక్షాలను స్పృశించదు

50. For the circle C with the equation $x^2 + y^2 - 16x - 12y + 64 = 0$ match the list-I with the list-II given below:

List-I

- List-II
- (i) The equation of the polar of (-5, 1) with respect to C
- (a) y = 0
- (ii) The equation of the tangent at (8, 0) to C
- (b) y = 6
- (iii) The equation of the normal at (2, 6) to C
- (c) x + y = 7
- (iv) The equation of the diameter of C through (8, 12)
- (d) 13x + 5y = 98
- (e) x = 8
- పృత్తం C సమీకరణం $x^2+y^2-16x-12y+64=0$ కి సంబంధించిన జాబ్తా-Iని జాబ్తా-Iకో జత పరచండి :


ಜಾವಿಶಾ-[

- a වන වන H y = 0
- (i) C దృష్ట్యా (−5, 1) ధృవరేఖ సమీకరణం
- (ii) C కి (8, 0) వద్ద స్పర్శరేఖ సమ్మకరణం
- (b) y = 6
- (iii) C కి (2, 6) వద్ద అభ్లంబరోఖ సమీకరణం
- (c) x + y = 7

(iv) C కి (8, 12) ద్వారా పోయే వ్యాసపు సమీకరణం

- (d) 13x + 5y = 98
- (e) x = 8

- The correct match is:
- సరియైన జోడి :
 - (i) (ii) (iii) (iv)
- (1) (d) (b) (a) (e)
- (2) (d) (a) (b) (e)
- (3) (c). (d) (a) (b)
- (4) (c) (e) (b) (a)

$$(h,\,k)$$
 బ్రదువు నుండి $x^2+y^2=16$ వృత్తానికి స్పర్శారేఖ పొడవు అదే బ్రదువు నుండి $x^2+y^2+2x+2y=0$ వృత్తానికి స్పర్శారేఖ పొడవుకు రౌట్టింపైపోతే, అప్పుడు

(1)
$$h^2 + k^2 + 4h + 4k + 16 = 0$$

(2)
$$h^2 + k^2 + 3h + 3k = 0$$

(3)
$$3h^2 + 3k^2 + 8h + 8k + 16 = 0$$

$$(4) 3h^2 + 3k^2 + 4h + 4k + 16 = 0$$

52. (a, 0) and (b, 0) are centres of two circles belonging to a co-axial system of which y-axis is the radical axis. If radius of one of the circles is 'r', then the radius of the other circle is

y-అక్షం మూలాక్షంగా గల సహక్ష వృత్తసరణికి చెందిన రెండు వృత్తాల కేంద్రాలు (a, 0) మరియు (b, 0). వాటిలో ఒకదాని వ్యాసార్థం 'r' అయితే రెండవదాని వ్యాసార్థం

(1)
$$(r^2 + b^2 + a^2)^{1/2}$$

(2)
$$(r^2 + b^2 - a^2)^{1/2}$$

(4) $(r^2 + b^2 + a^2)^{1/3}$

(3)
$$(r^2 + b^2 - a^2)^{1/3}$$

(4)
$$(r^2 + b^2 + a^2)^{1/3}$$

53. If the circle $x^2 + y^2 + 4x - 6y + c = 0$ bisects the circumference of the circle $x^2 + y^2 - 6x + 4y - 12 = 0$, then c =

వృత్తం $x^2+y^2-6x+4y-12=0$ యొక్క పరిధిని, వృత్తం $x^2+y^2+4x-6y+c=0$ సమద్విఖండన చేస్తే, ఆప్పుడు c =

(1) 16

(2) 24

(3) -42

(4) -62

54. A circle of radius 4, drawn on a chord of the parabola $y^2 = 8x$ as diameter, touches the axis of the parabola. Then, the slope of the chord is

 $y^2 = 8x$ పరావలయానికి ఒక జ్యూ వ్యాసంగా, 4 వ్యాసార్థంతో గీసిన వృత్తం, పరావలయం అక్షాన్ని స్పృశిస్తుంది. అప్పుడు, జ్యా వాలు

(1) $\frac{1}{2}$

(3) 1

(4) 2

55. The midpoint of a chord of the ellipse $x^2 + 4y^2 - 2x + 20y = 0$ is (2, -4). The equation of the chord is

దీర్ఘవృత్తం $x^2 + 4y^2 - 2x + 20y = 0$ కి జ్యా మధ్య బిందువు (2, -4). జ్యా సమీకరణం

(1) x - 6y = 26

(2) x + 6y = 26

(3) 6x - y = 26

- (4) 6x + y = 26
- 56. If the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and the hyperbola $\frac{x^2}{4} \frac{y^2}{b^2} = 1$ coincide, then $b^2 = 1$

దీర్ఘవృత్తం $\frac{x^2}{25} + \frac{y^2}{16} = 1$ మరియు అతి పరావలయం $\frac{x^2}{4} - \frac{y^2}{b^2} = 1$ ల నాభులు ఏకీభవిస్తే, $b^2 = \frac{1}{2}$

(1) 4

(2) 5

- (3) 8
- TM (4) 9
- 57. If x = 9 is a chord of contact of the hyperbola $x^2 y^2 = 9$, then the equation of the tangent at one of the points of contact is

అతి పరావలయం $x^2-y^2=9$ కి ఒక స్పర్శజ్యా x=9 అయితే, స్పర్శ బెందువుల్లో ఒకదాని వద్ద స్పర్శారేఖా సమీకరణం

(1) $x + \sqrt{3}y + 2 = 0$

(2) $3x - 2\sqrt{2}y - 3 = 0$

(3) $3x - \sqrt{2}y + 6 = 0$

- (4) $x \sqrt{3}y + 2 = 0$
- 58. The perpendicular distance from the point $(1, \pi)$ to the line joining $(1, 0^{\circ})$ and $(1, \frac{\pi}{2})$, (in polar coordinates) is
 - $(1,\pi)$ ಬಿಂದುವು ನುಂಡಿ $(1,0^\circ), (1,\frac{\pi}{2})$ ಬಿಂದುವುಲನು ಕಲಿಕು ಕೆಖ್ ಭಾರ್ಭಾಡಾನಿಕೆ ಲಂಬದುರಂ (ರೈವ ನಿರುಕುತ್ಲಲ್)
 - (1) 2

- (2) √3
- (3) 1

(4) $\sqrt{2}$

59. D(2, 1, 0), E(2, 0, 0), F(0, 1, 0) are mid-points of the sides BC, CA, AB of ΔABC respectively. Then, the centroid of AABC is

· ΔABC భుజాలు BC, CA, ABల మధ్య బిందువులు వరసగా D(2, 1, 0), E(2, 0, 0), F(0, 1, 0). అప్పుడు AABC కేంద్రాభాసం

(1)
$$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

(2)
$$\left(\frac{4}{3}, \frac{2}{3}, 0\right)$$

$$(3) \quad \left(-\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

(4)
$$\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

60. The direction ratios of two lines AB, AC are 1, -1, -1 and 2^{M} , -1, 1. The direction ratios of the normal to the plane ABC are

రెండు రేఖలు AB, AC ల దిక్ సంఖ్యలు 1, -1, -1 మరియు 2, -1, 1. ABC తలం యొక్క မားပိုးစဝဃဝါ်ဆု ထိန် ဘြဲဝဆုႏွစာ

$$(1)$$
 2, 3, -1

$$(3)$$
 3, 2, -1

$$(4)$$
 -1, 2, 3

61. A plane passing through (-1, 2, 3) and whose normal makes equal angles with the coordinate axes is

(-1, 2, 3) గుండా పోయే తలం అభిలంబరేఖ నిరూపకాక్షాలతో సమానకోణాలు చేస్తే, ఆ తలం సమీకరణం

(1)
$$x + y + z + 4 = 0$$

(2)
$$x - y + z + 4 = 0$$

(3)
$$x + y + z - 4 = 0$$

(4)
$$x + y + z = 0$$

- 62. A variable plane passes through a fixed point (1, 2, 3). Then the foot of the perpendicular from the origin to the plane lies on
 - (1) a circle
- (2) a sphere
- (3) an ellipse
- (4) a parabola

ఒక చర సమతలం స్థిర బిందువు (1, 2, 3) ద్వారా పోతుంది. అప్పుడు మూల బిందువు నుంచి ఈ తలానికి గిచిన లంబపాదం ఉండేది ఒక

- వృత్త్రాపె
- (2) గోళంపై . (3) దీర్ఘ వృత్తంపై (4) పరావలయంపై
- 63. Let f be a non-zero real valued continuous function satisfying f(x + y) = f(x).f(y) for all x, $y \in \mathbb{R}$. If f(2) = 9, then f(6) =

్పతి $x, y \in \mathbb{R}$ కి, శూన్యేతర వాస్త్రవ మూల్య ప్రమేయం f, f(x + y) = f(x).f(y) ని తృప్తిపరుస్తుందనుకొనుము. f(2) = 9 అయితే f(6) =

(1) 3^2

- $(4) 3^3$

- 64. $\lim_{x \to 0} \frac{\tan^3 x \sin^3 x}{x^5} =$
 - $(1) \frac{5}{2}$
- (2) $\frac{3}{2}$
- (3) $\frac{3}{5}$ (4) $\frac{2}{5}$

- 65. $f(x) = \frac{1}{1 + \frac{1}{x}}$; $g(x) = \frac{1}{1 + \frac{1}{f(x)}} \implies g'(2) = \frac{1}{1 + \frac{1}{f(x)}}$
 - (1) $\frac{1}{5}$

(2) $\frac{1}{25}$

(3) 5

$$66. \quad \sqrt{\frac{y}{x}} + \sqrt{\frac{x}{y}} = 2 \Rightarrow \frac{dy}{dx} =$$

- $(1) \quad \frac{x^2 + y^2}{x + y}$
- $(2) \quad \frac{x^2 y^2}{x + y}$
- (3) 1

(4) 2

67.
$$\frac{d}{dx}[(x+1)(x^2+1)(x^4+1)(x^8+1)] = (15x^p - 16x^q + 1)(x-1)^{-2} \implies (p,q) =$$

- (1) (12, 11)
- (2) (15, 14)
- (3) (16, 14)
- (4) (16, 15)

68.
$$\cos^{-1}\left(\frac{y}{b}\right) = 2\log\left(\frac{x}{2}\right), x > 0 \implies x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} =$$
(1) 4y (2) -4y (3) 0

- (4) -8y
- 69. The relation between pressure p and volume v is given by $pv^{\frac{1}{4}} = Constant$. If the percentage decrease in volume is $\frac{1}{2}$, then the percentage increase in pressure is

ప్రీడనము p మరియు ఘన పరిమాణము vల మధ్య సంబంధము $pv^{\frac{1}{4}} = {\frac{1}{2}}$ రరాశిగా ఇవ్వబడింది. ఘన పరిమాణంలో తరుగుదల శాతం $\frac{1}{2}$ అయినప్పుడు, ప్రీడనమునందు పెరుగుదల శాతం

(1) $-\frac{1}{6}$

(2) $\frac{1}{16}$

(3) $\frac{1}{8}$

(4) =

70. If the curves $x^2 + py^2 = 1$ and $qx^2 + y^2 = 1$ are orthogonal to each other, then $x^2 + py^2 = 1$ మరియు $qx^2 + y^2 = 1$ లు పరస్పర లంబభేదన వక్రాలయితే, అప్పుడు

(1)
$$p - q = 2$$

(2)
$$\frac{1}{p} - \frac{1}{q} = 2$$

(2)
$$\frac{1}{p} - \frac{1}{q} = 2$$
 (3) $\frac{1}{p} + \frac{1}{q} = -2$ (4) $\frac{1}{p} + \frac{1}{q} = 2$

$$\sqrt{4}$$
 $\frac{1}{p} + \frac{1}{q} = 2$

71. The focal length of a mirror is given by $\frac{2}{f} = \frac{1}{V} - \frac{1}{V}$. In finding the values of u and v, the errors are equal and equal to 'p'. Then, the relative error in f is

ఒక దర్పణం నాభ్యంతరం $\frac{2}{f} = \frac{1}{r} - \frac{1}{r}$ గా ఇవ్వబడినది. u, vల విలువలను కనుగొనటంలో దోపాలు సమానం అయి 'p'కి సమానం అగుచున్నాయి. అయితే∞ f లో సాాపేక్ష దోషం

(1)
$$\frac{p}{2} \left(\frac{1}{u} + \frac{1}{v} \right)$$

$$(3) \quad \frac{\mathbf{p}}{2} \left(\frac{1}{\mathbf{u}} - \frac{1}{\mathbf{v}} \right)$$

$$(4) \quad P\left(\frac{1}{u} - \frac{1}{v}\right)$$

- 72. $u = \log(x^3 + y^3 + z^3 3xyz) \Rightarrow (x + y + z)(u_x + u_y + u_z) =$
 - (1) 0

- (2) x y + z
- (3) 2

(4) 3

- 73. $\int e^{x} \left(\frac{2 + \sin 2x}{1 + \cos 2x} \right) dx =$
 - (1) $e^x \cot x + c$

(2) $2e^{x} \sec^{2} x + c$

(3) $e^x \cos 2x + c$

(4) $e^x \tan x + c$

74.
$$\int \frac{x - \sin x}{1 + \cos x} dx = x \tan \left(\frac{x}{2}\right) + p \log \left| \sec \left(\frac{x}{2}\right) \right| + c \implies p =$$

(1) -4

(2) 4

(3) 2

(4) -2

75.
$$\int \frac{dx}{x(\log x - 2)(\log x - 3)} = 1 + c \Rightarrow 1 =$$

$$(1) \quad \frac{1}{x} \log \left| \frac{\log x - 3}{\log x - 2} \right|$$

(2)
$$\log \left| \frac{\log x - 3}{\log x - 2} \right|$$

(3)
$$\log \left| \frac{\log x - 2}{\log x - 3} \right|$$

(4)
$$\log | (\log x_{v_i} - 3) (\log x - 2) |$$

76. If
$$\int_{0}^{b} \frac{dx}{1+x^2} = \int_{b}^{\infty} \frac{dx}{1+x^2}$$
, then b =

$$\int_{0}^{b} \frac{dx}{1+x^2} = \int_{b}^{\infty} \frac{dx}{1+x^2} \quad \text{(a)} \quad b = 0$$

- (1) $\tan^{-1} \left(\frac{1}{3} \right)$ (2) $\frac{\sqrt{3}}{2}$

(3) $\sqrt{2}$

- (4) 1
- 77. The area (in square units) bounded by the curves $x = -2y^2$ and $x = 1 3y^2$ is $x = -2y^2$ మరియు $x = 1 - 3y^2$ వక్రాల మధ్య పరిబద్ధ వైశాల్యం (చ.యు.లలో)
 - (1) $\frac{2}{3}$

(2) 1

 $(3) \frac{4}{3}$

 $(4) \frac{3}{3}$

- 78. The approximate value of $\int_{1}^{3} \frac{dx}{2+3x}$ using Simpson's Rule and dividing the interval [1, 3] into two equal parts is
 - [1, 3] అంతరాన్ని రెండు సమాన భాగాలు చేస్తూ, సింప్సన్ స్టూతాన్ని ఉపయోగిస్తే, $\int \frac{\mathrm{d} x}{2+3x}$ సుమారు విలువ
 - $(1) \quad \frac{1}{3}\log\left(\frac{11}{5}\right)$

(2) $\frac{107}{110}$

(3) $\frac{29}{110}$

- (4) 119 440
- 79. An integrating factor of the equation $(1+y+x^2y)$ dx $+(x+x^3)$ dy =0 is $(1+y+x^2y)$ dx $+(x+x^3)$ dy =0 సమీకరణం యొక్క సమాకలన కారణాంకం
 - (1) e^x

(2) x^2

(3) $\frac{1}{x}$

(4) x

TIVI

- 80. The solution of the differential equation $\frac{dy}{dx} 2y \tan 2x = e^x \sec 2x$ is:
 - $\frac{dy}{dx}$ 2y tan 2x = e^x sec 2x ఆవకలన సమీకరణం సాధన :
 - (1) $y \sin 2x = e^x + c$

 $(2) y cos 2x = e^x + c$

 $(3) y = e^x \cos 2x + c$

 $(4) y cos 2x + e^x = c$

PHYSICS

- 81. If E, M, J and G respectively denote energy, mass, angular momentum and universal gravitational constant, the quantity, which has the same dimensions as the dimensions of $\frac{EJ^2}{M^5G^2}$
 - (1) Time

(2) Angle

(3) Mass

(4) Length

E, M, J మరియు Gలు వరుసగా శక్తి, ద్రవ్యరాశ్, కోణీయ ద్రవ్య వేగము మరియు విశ్వ

గురుత్వాకర్షణ స్థిరాంకము అయినట్లయితే $\frac{{\rm EJ}^2}{{
m M}^5{
m G}^2}$ యొక్క మితులతో సమాన మితులు గల

రాశి

- (1) కాలము
- (3) ద్రవ్యరాశి

- (4) పొడవు
- 82. The work done in moving an object from origin to a point whose position vector is $\vec{r} = 3\hat{i} + 2\hat{j} 5\hat{k}$ by a force $\vec{F} = 2\hat{i} \hat{j} \hat{k}$ is
 - (1) 1 unit

(2) 9 units

(3) 13 units

(4) 60 units

ಒಕ ಬಲಮು $\vec{F}=2\hat{i}-\hat{j}-\hat{k}$ ತ್ ಒಕ ವಸ್ತುವುನು ಮುಲ ಬಿಂದುವು ನುಂಡಿ ಸ್ಥೌನಸರಿಕ $\vec{r}=3\hat{i}+2\hat{j}-5\hat{k}$ ಗಲ ಬಿಂದುವುನಕು చಲಿಂపವೆಯುಟಲ್ ವೆಯಬಡಿನ ಏನಿ

(1) l (పమాణము

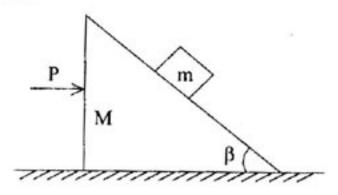
(2) 9 ప్రమాణాలు

(3) 13 (పమాణాలు

(4) 60 [ప్రమాణాలు

83. A particle is projected from the ground with an initial speed of v at an angle of projection θ. The average velocity of the particle between its time of projection and time it reaches highest point of trajectory is

v తొల్ వేగంతో, ప్రక్షిప్త కోణము 0 తో భూమి నుండి ఒక కణము ప్రక్షిప్తం చేయబడినది. ప్రేపేక కాలమునకు మరియు ఆ పధం గరిష్టోన్నత బిందువు చేరుటకు పట్టుకాలముల మధ్య ఆ కణపు సరాసరి వేగము

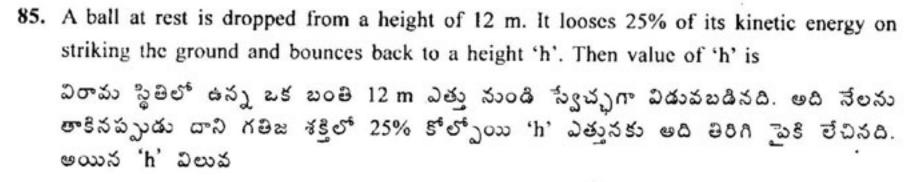

$$(1) \quad \frac{v}{2}\sqrt{1+2\cos^2\theta}$$

(2)
$$\frac{v}{2}\sqrt{1+2\sin^2\theta}$$

(1)
$$\frac{v}{2}\sqrt{1+2\cos^2\theta}$$
 (2) $\frac{v}{2}\sqrt{1+2\sin^2\theta}$ (3) $\frac{v}{2}\sqrt{1+3\cos^2\theta}$ (4) $v\cos\theta$

By © JbigDeal

84. Two wooden blocks of masses M and m are placed on a smooth horizontal surface as shown in figure. If a force P is applied to the system as shown in figure such that the mass m remains stationary with respect to block of mass M, then the magnitude of the force P is పటములో చూపిన విధముగా M, m ద్రవ్యరాశులు గల చెక్క దిమ్మలు, ఒక నునుపైన క్షితిజ సమాంతర తలముైప వుంచబడినవి. పటములో చూపిన విధముగా P అను బలాన్ని ఆ వ్యవస్థపై ప్రయోగించబడినప్పుడు, 'm' ద్రవ్యరాశి, M ద్రవ్యరాశి పరంగా నిశ్చల స్థితిలోనున్న, P బల పరిమాణము



(λ) (M + m) g tan β

(2) g tan β

(3) mg cos β

(4) (M + m) g cosec β

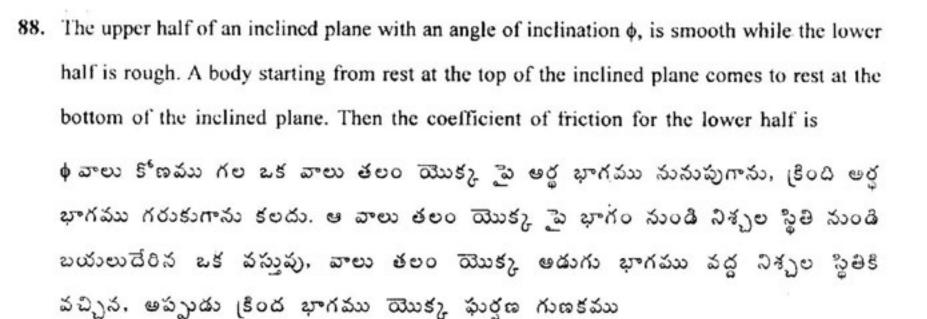
(1) 3 m

(2) 6 m

(3) 9 m

(4) 12 m

86. Two bodies of mass 4 kg and 5 kg are moving along east and north directions with velocities 5 m/s and 3 m/s respectively. Magnitude of the velocity of centre of mass of the system is 4 kg, 5 kg ద్వ్యాంశులు గల రెండు వస్తువులు తూర్పు మరీయు ఉత్తర దశల వెంబడి వరుసగా 5 మీ/సె మరియు 3 మీ/సె వేగములతో చలనములో ఉన్నవి. వ్యవస్థ ద్వ్యాంశి కేంద్రపు వేగ పరిమాణము


- $(1) \frac{25}{9} \text{ m/s}$
- (2) $\frac{9}{25}$ m/s
- (3) $\frac{41}{9}$ m/s
- (4) $\frac{16}{9}$ m/s

87. A mass of 2.9 kg is suspended from a string of length 50 cm and is at rest. Another body of mass 100 g, which is moving horizontally with a velocity of 150 m/s strikes and sticks to it. Subsequently when the string makes an angle of 60° with the vertical, the tension in the string is (g = 10 m/s²)

50 cm పొడవు గల దారము నుండి 2.9 kg ద్వ్యరాశ్ వేలాడ ద్యుబడినది, మరియు అది నిశ్చలముగా నున్నది. క్షిత్జ సమాంతరంగా 150 m/s వేగముతో చలించే 100 g ద్వ్యరాశ్ గల వేరొక వస్తువు దానిని ఢికొని, అతుక్కుపోయినది. తరువాత ఆ దారము క్షిత్జ లంబముతో 60° కోణము చేయుచున్నప్పుడు దారంలోని తన్యత (g = 10 m/s²)

- (1) 140 N
- /(2) 135 N

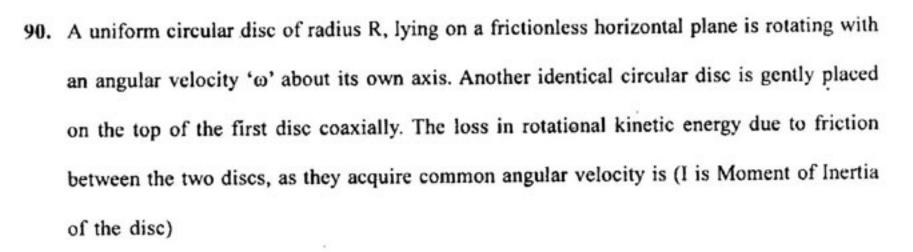
- (3) 125 N
- (4) 90 N

(1) 2 tan \(\phi \)

(2) tan ¢

(3) 2 sin ¢

89. Moment of inertia of a body about an axis is 4 kgm². The body is initially at rest and a torque of 8 Nm starts acting on it along the same axis. Work done by the torque in 20 sec, in Joules, is

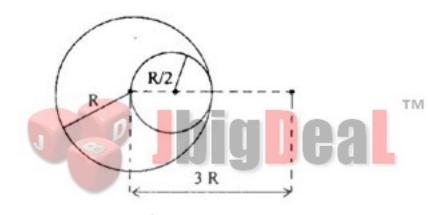

ఒక అక్షం వెంబడి ఒక వస్తువు యొక్క జడత్వ బ్రామకము 4 kgm². తొలిసారి నిశ్చల స్థితిలో ఉన్న ఆ వస్తువుపై అదే అక్షం వెంబడి 8 Nm బల బ్రామకము పనిచేయడం ఆరంభించింది. 20 ెసకనులలో, బల బ్రామకం చేసిన పని, జౌల్స్లో

(1) 40

(2) 640

(3) 2560

(4) 3200


R వ్యాసార్థము గల ఒక ఏక రీతి వృత్తాకారపు బిళ్ళ, ఫుర్షణ లోని క్షిత్జి సమాంతర తలంపై తన స్వంత అక్షం వెంబడి 'య' కోణీయు వేగంతో భామణము చేయుచున్నది. సర్వసమానమైన మరియొక వృత్తాకారపు బిళ్ళ మొదటి బిళ్ళ మై నెమ్ముదిగా సహాక్షీయాంగా ఉంచబడినది. రెండు బిళ్ళల మధ్య ఘర్షణవలన, అవి రెండు ఒకే కోణీయు వేగం పొందినపుడు, నష్టపోయిన భామణ గతిజశక్తి (బిళ్ళ జడత్వ భామకం I)

- (1) $\frac{1}{8}$ I ω^2
- $(2) \quad \frac{1}{4} \operatorname{I} \omega^2$
- (3) $\frac{1}{2} \text{I}\omega^2$
- (4) Ιω²

91. The gravitational force acting on a particle, due to a solid sphere of uniform density and radius R, at a distance of 3R from the centre of the sphere is F₁. A spherical hole of radius (R/2) is now made in the sphere as shown in the figure. The sphere with hole now exerts a force F₂ on the same particle. Ratio of F₁ to F₂ is

ఏక రీతి సాంద్రత మరియు R వ్యాసార్థము గల ఒక ఘన గోళము కేంద్రము నుండి 3R దూరములో గల కణముపై పని చేస్తున్న గురుత్వాకర్షణ బలము F_1 . పటములో చూపిన విధముగా (R/2) వ్యాసార్థము గల ఒక గోళాకార రంద్రము, ఆ గోళములో చేయబడినది. ఆ రంద్రముతో ఉన్న ఆ గోళము, అదే కణముపై F_2 బలాన్ని కలుగచేస్తుంది. F_1 , F_2 ల నిష్పత్తి

(1) $\frac{50}{41}$

(2) $\frac{41}{50}$

(3) $\frac{41}{25}$

 $(4) \frac{25}{41}$

92. Two particles A and B of masses 'm' and '2m' are suspended from two massless springs of force constants K₁ and K₂. During their oscillation, if their maximum velocities are equal, then ratio of amplitudes of A and B is

'm' మరియు '2m' డ్రవ్యరాశులు గల A మరియు B అను రెండు కణములు, K_1 మరియు K_2 స్ప్రింగు స్థిరాంకములు గల రెండు డ్రవ్యరాశ్ లేని స్ప్రింగులకు వేలాడ దీయబడినవి. అవి కంపనంలో వున్నప్పుడు దాని గరిష్ఠ వేగాలు సమానమైనప్పుడు A మరియు B ల డోలన పరిమితుల నిష్పత్తి

(1) $\sqrt{\frac{K_1}{K_2}}$

 $(2) \quad \sqrt{\frac{K_2}{2K_1}}$

 $(3) \quad \sqrt{\frac{K_2}{K_1}}$

 $(4) \quad \sqrt{\frac{2K_1}{K_2}}$

93. A tension of 20 N is applied to a copper wire of cross sectional area 0.01 cm², Young's Modulus of copper is 1.1 × 10¹¹ N/m² and Poisson's ratio is 0.32. The decrease in cross sectional area of the wire is

0.01 cm² అడ్బకోత వైశాల్యము గల ఒక రాగి తీగెపై 20 N తన్యత (పయోంగించబడినది. రాగి యొక్క యంగ్ గుణకము $1.1 \times 10^{11} \, \text{N/m}^2$ మరియు పాయిజాన్ నిష్పత్తి 0.32. ఆ తీగ అడ్డుకోత వైశాల్యంలోని తగ్గుదల

(1) $1.16 \times 10^{-6} \text{ cm}^2$

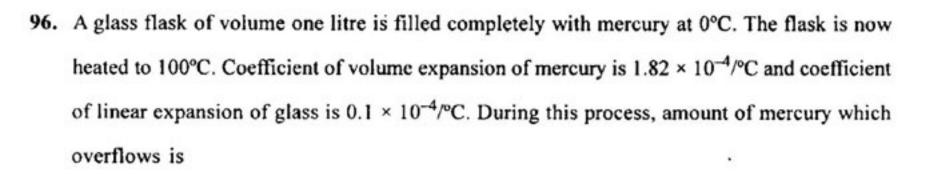
(2) $1.16 \times 10^{-5} \text{ m}^2$

(3) $1.16 \times 10^{-4} \text{ m}^2$

- (4) $1.16 \times 10^{-3} \text{ cm}^2$
- 94. A capillary tube of radius 'r' is immersed in water and water rises to a height of 'h'. Mass of water in the capillary tube is 5×10^{-3} kg. The same capillary tube is now immersed in a liquid whose surface tension is $\sqrt{2}$ times the surface tension of water. The angle of contact between the capillary tube and this liquid is 45°. The mass of liquid which rises into the capillary tube now is, (in kg)

'r' వ్యాసార్థము గల ఒక కేశనాళికను నీటిలో ముంచినప్పుడు నీరు 'h' ఎత్తుకు ఎగ[బాక్నది. కేశనాళికలోని నీటి ద్రమ్యరాశ్ 5×10^{-3} kg. అదే కేశనాళికను, నీటి తలతన్యత కంటే $\sqrt{2}$ రెట్లు ఎక్కువ తల తన్యత కలిగిన (దవములో ముంచినారు. కేశ నాళికకు, (దవానికి మధ్య స్పర్శ కోణము 45°. ఇప్పుడు, కేశ నాళికలోనికి ఎగబాకిన ద్రవపు ద్రవ్యరాశి, (kgలో)

- (1) 5×10^{-3}
- (2) 2.5×10^{-3}
- (3) $5\sqrt{2} \times 10^{-3}$ (4) 3.5×10^{-3}
- 95. The terminal velocity of a liquid drop of radius 'r' falling through air is v. If two such drops are combined to form a bigger drop, the terminal velocity with which the bigger drop falls through air is (Ignore any buoyant force due to air)


'r' వ్యాసార్థము గల ఒక (దవబిందువు గాల్లో పడుతున్నప్పుడు, దాని అంత్య వేగము 'v'. అటువంటి రెండు ద్రవ బిందువులను జతపరచి ఒక పెద్ద బిందువుగా ఏర్పడేటట్లు చేసిన, ఆ పెద్ద బిందువు గాల్లో పడుతున్నపుడు, దాన్ యొక్క అంత్యవేగము (గాల్ ద్వారా కల్గే ఉత్పవనాన్ని ఉపేక్షించండి)

(1) $\sqrt{2} v$

(2) 2 v

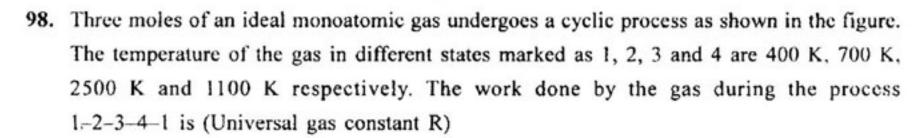
- (3) $\sqrt[3]{4}$ v
- (4) ₹√2 v

0°C వద్ద, 1 లీటరు ఘనపరిమాణము గల ఫ్లాస్క్ పాదరసంతో పూర్తిగా నింపబడినది. ఇప్పుడు ఫ్లాస్క్ 100°C కు వేడి చేయబడినది. పాదరసపు ఘనపరిమాణ వ్యాకోచ గుణకము 1.82×10⁻⁴/°C మరియు గాజు దైర్హ్య వ్యాకోచ గుణకము 0.1×10⁻⁴/°C. ఈ [ప[కియలో బయటికి పొర్లి పోవు పాదరసం పరిమాణము

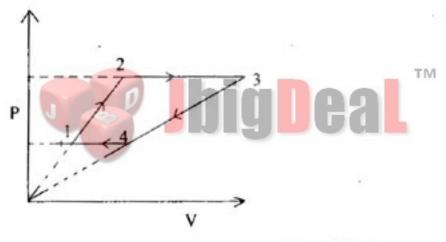
- (1) 21.2 cc
- (3) 2.12 cc

(4) 18.2 cc

97. On a temperature scale Y, water freezes at -160° Y and boils at -50° Y. On this Y scale, a temperature of 340 K is


Y ఉష్ణోగత స్కేలు మీద, నీరు -160° Y వద్ద ఘనీభవించును మరియు -50° Y వద్ద మరుగును. ఈ Y స్కేలుపై 340 K ఉష్ణోగత

(1) -106.3° Y


(2) -96.3° Y

(3) -86.3° Y

(4) -76.3° Y

పటములో చూపించిన విధంగా, 3 మోల్ల ఆదర్శ ఏక పరమాణు వాయువు ఒక చక్రీయ ప్రక్రియ జరుపుతోంది. 1, 2, 3 మరియు 4గా గుర్తించబడిన వేరు వేరు స్థితుల వద్ద వాయువు ఉష్ణోగతలు వరుసగా 400 K, 700 K, 2500 K మరియు 1100 K. ప్రక్రియ 1-2-3-4-1 జరుగుతున్నప్పుడు వాయువు చేసిన పని, (సార్వత్రిక వాయు స్థిరాంకము R)

(1) 1650 R

(2) 550 R

(3) 1100 R

(4) 2200 R

99. Efficiency of a heat engine whose sink is at a temperature of 300 K is 40%. To increase the efficiency to 60%, keeping the sink temperature constant, the source temperature must be increased by

సొంకు ఉష్టోగ్రత 300 K పద్ద ఉన్నపుడు, ఒక ఉష్ణ యంత్రము దక్షత 40%. సొంకు ఉష్టోగ్రతను స్థిరంగా ఉంచి, ఉష్ణ యంత్రపు దక్షతను 60%కు పెంచుటకు జనకపు ఉష్టోగ్రతలో చేయవలస్నిన పొరుగుదల

- (1) 750 K
- (2) 500 K

- (3) 250 K
- (4) 1000 K

100. Two bodies A and B of equal surface area have thermal emissivities of 0.01 and 0.81 respectively. The two bodies are radiating energy at the same rate. Maximum energy is radiated from the two bodies A and B at wavelengths λ_A and λ_B respectively. Difference in these two wavelengths is 1 μ m. If the temperature of the body A is 5802 K, then value of λ_B is

సమాన ఉపరితల వైశాల్యము గల రెండు వస్తువులు A మరియు Bల ఉష్ణ ఉద్ధారతలు వరుసగా 0.01 మరియు 0.81. ఆ రెండు వస్తువులు ఒకే రేటులో శక్తిని ఉద్ధారం చేస్తున్నాయి. ఆ రెండు వస్తువులు A మరియు B వరుసగా λ_Λ మరియు λ_B తరంగ డైర్హ్యముల వద్ద గరిష్ట శక్తిని వికిరణము చేసినవి. ఈ రెండు తరంగ డైర్హ్యముల భేదము l μm. వస్తువు A యొక్క ఉష్ణోగ్రత 5802 K అయితే λ_B విలువ

 $(1) \quad \frac{1}{2} \mu m$

(2) 1 µm

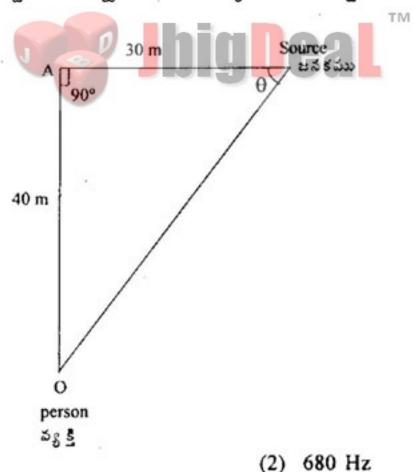
(3) 2 μm

(4) $\frac{3}{2} \mu m$

101. An air column in a tube 32 cm long, closed at one end, is in resonance with a tuning fork. The air column in another tube, open at both ends, of length 66 cm is in resonance with another tuning fork. When these two tuning forks are sounded together, they produce 8 beats per second. Then the frequencies of the two tuning forks are, (Consider fundamental frequencies only)

32 cm పొడవు గల ఒక వైపు మూసిన గొట్టంలో గాలిస్థంభం ఒక శృతి దండముతో అనునాదంలో వుంది. 66 cm పొడవు గల రెండు వైపుల తెరచి వున్న గొట్టంలో ఉన్న గాలిస్థంభం మరియొక శృతి దండముతో అనునాదంలో వున్నది. ఈ రెండు శృతి దండాలను ఒకేసారి ధ్వనింపజోస్తే అవి సెకనుకు 8 విస్పందనాలు కలగచేస్తాయి. అయిన ఆ శృతి దండాల పొనుపున్యాలు (ప్రాథమిక పౌనుపున్యములు తీసుకొనుము)

(1) 250 Hz, 258 Hz


(2) 240 Hz, 248 Hz

(3) 264 Hz, 256 Hz

(4) 280 Hz, 272 Hz

102. A source of sound of frequency 640 Hz is moving at a velocity of $\frac{100}{3}$ m/s along a road, and is at an instant 30 m away from a point A on the road (as shown in figure). A person standing at O, 40 m away from the road hears sound of apparent frequency v^1 . The value of v^1 is (velocity of sound = 340 m/s)

640 Hz పౌన:పున్యము గల ఒక ధ్వని జనకం ఒక రోడ్డు వెంబడి $\frac{100}{3}$ m/s వేగముతో కదలుచున్నది. ఆ ధ్వని జనకం ఒక రోడ్డు పైనున్న A అను బిందువు నుండి 30 m ల దూరంలో ఉన్నది (పటంలో చూపబడినట్లు). రోడ్డు నుండి 40 m దూరంలో O వద్ద నుంచున్న వ్యక్తి v¹ దృశ్యా పాన:పున్యంతో ఆ ధ్వనిని విన్నాడు. v¹ యొక్క విలువ (ధ్వని వేగం = 340 m/s)

(4) 840 Hz

(1) 620 Hz

(3) 720 Hz

- 103. The two surfaces of a concave lens, made of glass of refractive index 1.5 have the same radii of curvature R. It is now immersed in a medium of refractive index 1.75, then the lens
 - (L) becomes a convergent lens of focal length 3.5 R
 - (2) becomes a convergent lens of focal length 3.0 R
 - (3) changes as a divergent lens of focal length 3.5 R
 - (4) changes as a divergent lens of focal length 3.0 R

వక్రిభవన గుణకము 1.5 కలెగిన ఒక గాజు పుటాకార కటకము యొక్క రెండు వక్రతలాలు ఒకే వక్రతా వ్యాసార్థాలు R కలెగివున్నవి. ఇప్పుడు దానిని 1.75 వక్రిభవన గుణకం కలెగిన యానకంలో ముంచినప్పుడు ఆ కటకం,

- (1) 3.5 R నాభ్యాంతరం గల అభిసార కటకం అవుతుంది
- (2) 3.0 R నాభ్యాంతరం గల అభి<mark>సార కటకం అవుతుంది</mark>
- (3) 3.5 R నాభ్యాంతరం గల అప్పరణ కటకం అవుతుంది
- (4) 3.0 R నాభ్యాంతరం గల అపసరణ కటకం అవుతుంది
- 104. A microscope consists of an objective of focal length 1.9 cm and eye piece of focal length 5 cm. The two lenses are kept at a distance of 10.5 cm. If the image is to be formed at the least distance of distinct vision, the distance at which the object is to be placed before the objective is (Least distance of distinct vision is 25 cm)

ఒక సూక్ష్మ దర్శినిలో వస్తుకటకం నాఖ్యాంతరం 1.9 cm మరియు అక్షికటకం నాఖ్యాంతరం 5 cm. రెండు కటకాలు 10.5 cm దూరంలో వుంచబడ్డాయి. వస్తువు యొక్క ప్రతిబింబం స్పష్ట దృష్టి కనిష్టదూరంలో ఏర్పడుటకు వస్తు కటకం ముందర వస్తువును వుంచవలసిన దూరం (స్పష్ట దృష్టి కనిష్ట దూరం 25 cm)

- (1) 6.2 cm
- (2) 2.7 cm
- (3) 21.0 cm
- (4) 4.17 cm

- 105. Fresnel diffraction is produced due to light rays falling on a small obstacle. The intensity of light at a point on a screen beyond an obstacle depends on
 - (1) the focal length of lens used for observation
 - (2) the number of half-period zones that superpose at the point
 - (3) the square of the sum of the number of half period zones
 - (4) the thickness of the obstacle

కాంతి రేఖలు ఒక చిన్న అవరోధం మీద పడినప్పుడు (ఫెనెల్ వివర్తనం చెందుతాయి. అవరోధం ఆవల వున్న ఒక స్క్రీన్ (తెర) మీద వున్న ఒక బిందువు వద్ద, కాంతి తీమ్రత

- (1) పరిశీలించడానికి ఉపయోగించే కటకం యొక్క నాఖ్యాంతరం విలువపై ఆధారపడుతుంది
- (2) బిందువు వద్ద అధ్యాపరోపణం చెందే ఆర్థ ఆవర్తన మండలాల సంఖ్యపై ఆధారపడుతుంది
- (3) ఆర్థ ఆవర్తన మండలాల సంఖ్య యొక్క మొత్తం యొక్క వృద్ధంపై ఆధారపడుతుంది
- (4) ఆవరోధం యొక్క మందర్భాప ఆధారపడుతుంది 🕠 🗊
- 106. A short bar magnet having magnetic moment 4 Am², placed in a vibrating magnetometer, vibrates with a time period of 8 seconds. Another short bar magnet having a magnetic moment 8 Am² vibrates with a time period of 6 seconds. If the moment of inertia of the second magnet is 9 × 10⁻² kg m², the moment of inertia of the first magnet is

(Assume that both magnets are kept in the same uniform magnetic induction field.)

4 Am² అయస్కాంత బ్రామకం కల్గిన ఒక చిన్న దండాయస్కాంతం ఒక కంపన అయస్కాంత మాపకంలో 8 సెకన్ల డోలనావర్తన కాలంతో కంపిస్తుంది. 8 Am² అయస్కాంత బ్రామకం గల్గిన ఇంకొక చిన్న దండాయస్కాంతం 6 సెకన్ల డోలనావర్తన కాలంతో కంపిస్తుంది. రెండవ అయస్కాంత దండం యొక్క జడత్వ బ్రామకం 9 × 10⁻² kg m² అయితే మొదటి దండాయస్కాంతం యొక్క జడత్వ బ్రామకం

(రెండు అయస్కాంతాలు ఒకే ఏకరీతి అయస్కాంత ్రాపీరిత క్షేతంలో వుంచబడ్డాయని అనుకోండి)

(1) $9 \times 10^{-2} \text{ kg m}^2$

(2) $8 \times 10^{-2} \text{ kg m}^2$

(3) 5.33 × 10^{-2} kg m²

(4) $12.2 \times 10^{-2} \text{ kg m}^2$

107. Two short bar magnets have their magnetic moments 1.2 Am2 and 1.0 Am2. They are placed on a horizontal table parallel to each other at a distance of 20 cm between their centres, such that their north poles pointing towards geographic south. They have common magnetic equatorial line. Horizontal component of earth's field is 3.6×10^{-5} T. Then, the resultant

horizontal magnetic induction at mid point of the line joining their centers is $\left(\frac{\mu_0}{4\pi} = 10^{-7} \text{ H/m}\right)$

రెండు పొట్టి దండాయస్కాంతాల అయస్కాంత బ్రామకాలు 1.2 Am² మరియు 1.0 Am²గా పున్నాయి. వాటిని ఒక క్షిత్జ సమతలంగా ఉన్న బల్ల మీద సమాంతరంగా వాటి ఉత్తర ద్రువాలు భౌగోళిక దక్షిణం వైపుకు ఉండేటట్లు ఉంచబడింది. ఆ రెండు అయస్కాంతాలు ఒకే అయుస్కాంత లంబరేఖ కలెగి, వాటి మధ్య బిందువుల మధ్య దూరం 20 cm ఉంది. భూ అయస్కాంత క్షిత్రిజ సమాంతరాంశం 3.6 × 10⁻⁵ T. అయితే వాటి కేం[దాలను కరిపే సరళరేఖ మధ్య బిందుపు వద్ద ఫలిత క్షిత్రిజ సమాంతర అయస్కాంత ైపరణ విలువ,

$$\left(\frac{\mu_o}{4\pi} = 10^{-7} \text{ H/m}\right)$$

(2) 1.84×10^{-4} T

(1)
$$3.6 \times 10^{-5} \text{ T}$$

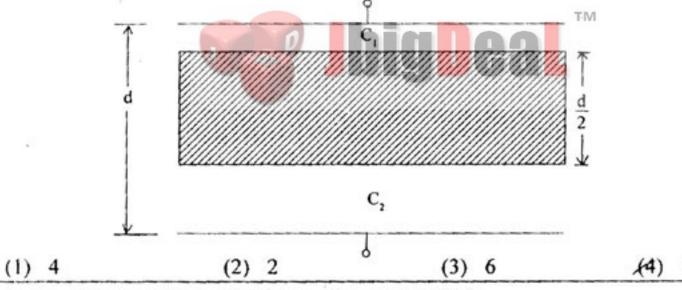
(3) $2.56 \times 10^{-4} \text{ T}$

(4)
$$5.8 \times 10^{-5} \text{ T}$$

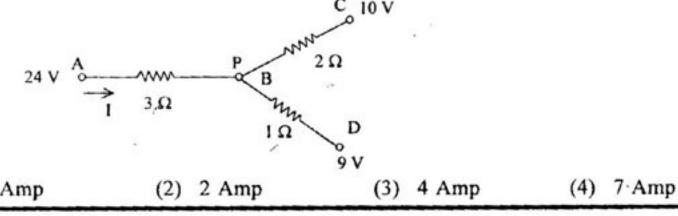
108. A deflection magnetometer is adjusted and a magnet of magnetic moment M is placed on it in the usual manner and the observed deflection is θ . The period of oscillation of the needle before settling to the deflection is T. When the magnet is removed, the period of oscillation of the needle is To before settling to 0°-0°. If the earth's induced magnetic field is B_H, the relation between T and T₀ is

ఒక వర్తన మాపకంైప M అయస్కాంత బ్రామకం కల్గిన అయస్కాంతాన్ని సహజ రీతిలో సర్దుబాటు చేసి పెట్టారు. అయస్కాంత మాపకంలో ఆవర్తనం 'రి'గా పరిశీలించబడింది. సూచిక ఈ స్థితికి వచ్చే ముందు జరిగిన కంపనాల ఆవర్తన కాలము T. అయస్కాంతాన్ని తీసినప్పుడు మళ్ళీ సూచిక 0°-0° స్థితికి వచ్చే ముందర కంపనం చెంది, డోలనావర్తనకాలం T_n ಗ್ ఉంది. భూమి (పేరిత అయస్కాంత క్షేత విలువ B_H అయితే, T మరియు T_0 మధ్య సంబందం

(1)
$$T^2 - T_o^2 \cos \theta$$
 (2) $T^2 = \frac{T_o^2}{\cos \theta}$

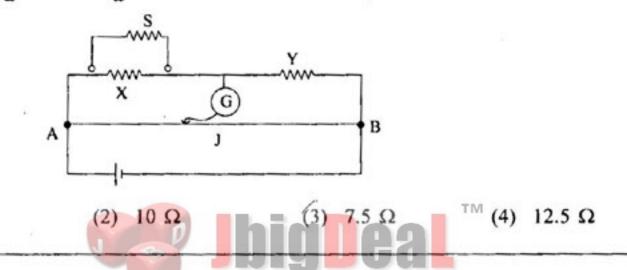

$$(2) \quad T^2 = \frac{T_o^2}{\cos \theta}$$

(3)
$$T = T_0 \cos \theta$$
 (4) $T = \frac{T_0}{\cos \theta}$


$$T = \frac{T_0}{\cos \theta}$$

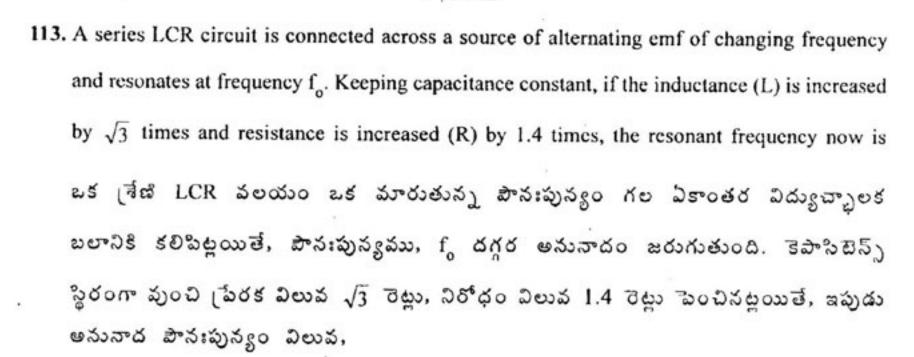
109. Two metal plates each of area 'A' form a parallel plate capacitor with air in between the plates. The distance between the plates is 'd'. A metal plate of thickness $\frac{d}{2}$ and of same area A is inserted between the plates to form two capacitors of capacitances C_1 and C_2 as shown in the figure. If the effective capacitance of the two capacitors is C' and the capacitance of the capacitor initially is C, then $\frac{C'}{C}$ is

ఒక్కొక్క పలక వైశాల్యం 'A' గల రెండు లోహపు పలకలు ఒక సమాంతర పలకల కెపాస్టటర్ను ఏర్పరుచును. పలకల మధ్య యానకం: గాల్, వాటి వాటి మధ్య దూరం 'd'. అదే వైశాల్యం A మరియు $\frac{d}{2}$ కలిగిన ఒక లోహపు పలకను కెపాస్టటరు పలకల మధ్య, పటంలో చూప్పనట్లు కెపాస్టటన్స్ C_1 , C_2 లు గల రెండు కెపాస్టటర్లు ఏర్పరున్నూ ఉంచబడింది. ఈ రెండు కెపాస్టటర్ల ఫలిత కెపాస్ట్రీస్స్ C' అయితే, $\frac{C'}{C}$ ఏలువ (C అనేది తొలుత ఉండే కెపాస్టటన్స్)



110. In the circuit shown in the figure, the current 'I' is పట౦లో చూపబడిన వలయ౦లో విద్యుత్ప్రవాహం 'I' విలువ

111. In the meter bridge experiment, the length AB of the wire is 1 m. The resistors X and Y have values 5 Ω and 2 Ω respectively. When a shunt resistance S is connected to X, the balancing point is found to be 0.625 m from A. Then, the resistance of the shunt is మీటరు ట్రెడ్డ్ ప్రాంగంలో AB తీగ పొడవు 1 m. X, Y నిరోధాల పెలువలు వరసగా 5 Ω మరియు 2 Ω. S పంట్ నిరోధం Xకు కల్పినపుడు, సంతులన బిందువు A నుండి 0.625 మీ. దూరంలో ఏర్పడినది. అప్పుడు పంట్ నిరోధము పెలువ.

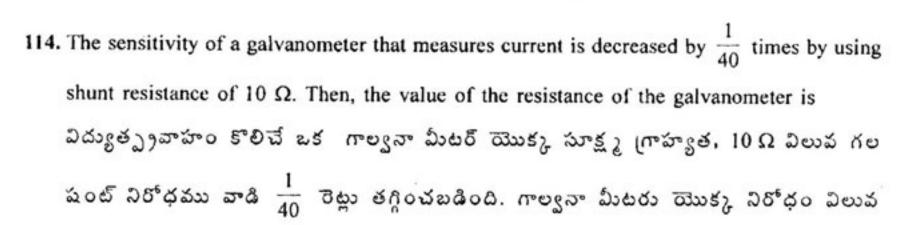

- 112. The ends of an element of zinc wire are kept at a small temperature difference ΔT and a small current (I) is passed through the wire. Then, the heat developed per unit time
 - is proportional to ΔT and I

(1) 5 Ω

- (2) is proportional to I^3 and ΔT
- (3) is proportional to Thomson coefficient of the metal
- (4) is proportional to ΔT only

ఒక జింక్ తీగ ముక్క చివర్ల మధ్య ΔT ఉష్ణో (గత భేదము ఉంచి, కొడ్డిగా విద్యుత్తు ప్రవాహం (I)ని తీగ ద్వారా ప్రవహింపచేశారు. అప్పుడు ఒక ప్రమాణ కాలమునకు జనించే ఉష్ణము

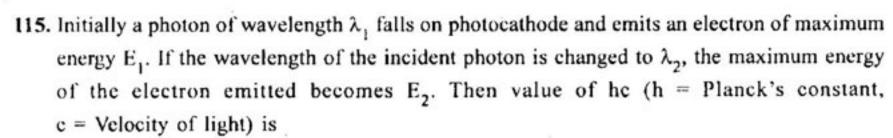
- (1) AT మరియు ! కి అనులోమానుపాతంలో ఉంటుంది
- (2) I³ మర్యు ΔT కి ఆనులోమానుపాతంలో ఉష్ణము జన్సుంద్
- (3) వాహకం యొక్క థామ్సన్ గుణకంకి అనులోమానుపాతంగా ఉంటుంది
- (4) కేవలం AT కి అనులోమానుపాతంగా వుంటుంది



(1) $3^{1/4} f_0$

(2) $\sqrt{3} f_0$

(3)
$$(\sqrt{3}-1)^{1/4} f_0$$



(1) 400 Ω

(2) 410Ω

(3) 30Ω

(4) 390 Ω

λ, తరంగటైర్ఘ్యం గల ఒక ఫోటాన్, ఒక ఫోటో కేథోడ్పై పడినపుడు Ε, గరిష్ఠ శక్తితో ఎలక్ట్రాను ఉద్దారం అవుతుంది. పతనమయ్యే ఫోటాను యొక్క తరంగదైర్ఘము న్ని గా మార్చినపుడు, ఉద్దారము అయ్యే ఎలక్ట్రాన్ గరిష్ట్ర శక్తి విలువ \mathbf{E}_2 . అపుడు hc విలువ (h = ప్లాంక్ స్టిరాంకము, c = కాంతి వేగము)

(1)
$$hc = \frac{(E_1 + E_2)\lambda_1\lambda_2}{\lambda_2 - \lambda_1}$$

(2)
$$hc = \frac{E_1 - E_2}{\lambda_2 - \lambda_1} \cdot (\lambda_1 \lambda_2)$$

(3)
$$hc = \frac{(E_1 - E_2)(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}$$

(4)
$$hc = \frac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2 E_2} \cdot E_1$$

116. The work function of a metal is 2 eV. If a radiation of wavelength 3000 Å is incident on it, the maximum kinetic energy of the emitted photoelectrons is (Planck's constant $h = 6.6 \times 10^{-34}$ JS; Velocity of light $c = 3 \times 10^8$ m/s; $1 \text{ eV} = 1.6 \times 10^{-19}$ J) ఒక లోహం యొక్క పన్నిపమేయం విలువ 2 eV. 3000 Å తరంగ దైర్ఘ్యము గల వికరణము.

దాని మీద పతనమయితే, అప్పుడు వెలువడే ఫోటో ఎలక్ట్రానుల యొక్క గరిష్ఠ గతిజ శక్తి (ప్లాంక్ స్థ్రాంకం h = 6.6 × 10⁻³⁴ JS; కాంత్ వేగం c = 3 × 10⁸ m/s; 1 eV = 1.6 × 10⁻¹⁹ J)

(1)
$$4.4 \times 10^{-19} \text{ J}$$

(2)
$$5.6 \times 10^{-19}$$
.

(2)
$$5.6 \times 10^{-19} \text{ J}$$
 (3) $3.4 \times 10^{-19} \text{ J}$ (4) $2.5 \times 10^{-19} \text{ J}$

117. The radius of 72 Te 125 nucleus is 6 fermi. The radius of 13 Al 27 nucleus in meters is

 $_{72}{
m Te}^{125}$ కేంద్రక వ్యాసార్థము 6 ఫెర్మిలు. $_{13}{
m Al}^{27}$ కేంద్రక వ్యాసార్థము మీటర్లలో

(1)
$$3.6 \times 10^{-12}$$
 m

(2)
$$3.6 \times 10^{-15}$$
 m

(3)
$$7.2 \times 10^{-8}$$
 m

(4)
$$7.2 \times 10^{-15}$$
 m

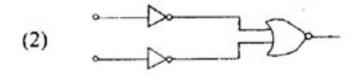
118. A U²³⁵ nuclear reactor generates energy at a rate of 3.70 × 10⁷ J/s. Each fission liberates 185 MeV useful energy. If the reactor has to operate for 144 × 104 seconds, then, the mass of the fuel needed is

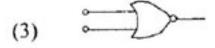
(Assume Avogadro's number = $6 \times 10^{23} \text{ mol}^{-1}$, $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$)

ఒక U^{235} న్యూక్లియర్ రియాక్టర్ $3.70 \times 10^7 \, \mathrm{J/s}$ రేటుతో శక్తిని జనింప చేస్తుంది. ప్రతి విచ్చిత్తు 185 MeV పనికొచ్చే శక్తిని విడుదల చేస్తుంది. రియాక్టరు 144 × 10⁴ెసకన్లు పనిచేయాలంటే కావలసిన ఇంధనపు ద్రమ్యరాశి (అవగాద్రో సంఖ్య = $6 \times 10^{23} \; \mathrm{mol}^{-1}$, l eV = 1.6 × 10^{−19} J అనుకోండి)

- (1) 70.5 kg
- (2) 0.705 kg (3) 13.1 kg
- (4) 1.31 kg
- 119. The base current in a transistor circuit changes from 45 µA to 140 µA. Accordingly, the collector current changes from 0.2 mA to 4.00 mA. The gain in current is

ఒక ట్రాన్స్ట్రెఫ్టర్ వలయంలో ఆధార ప్రాపాలం 45 μΑ నుండి 140 μΑకు మారినది. అనురూపంగా ేవకరణి ప్రవాహం విలువ 0.2 mA నుండి 4.00 mAకి మారింది. ప్రవాహ లాభం విలువ


(1) 9.5


(2) 1

(3) 40

120. Of the following, NAND gate is కింది వానిలో NAND ద్వారం

(4)

CHEMISTRY

121. The number of radial nodes of 3s and 2p orbitals respectively are :

3s మరియు 2p ఆర్బిటాల్ల రేడియల్ నోడ్ల సంఖ్య పరుసగా :

(1) 0, 2

(2) 2, 0

- (3) 1, 2
- (4) 2, 1

122. The basis of quantum mechanical model of an atom is:

- (1) angular momentum of electron
- (2) quantum numbers

(3) dual nature of electron

(4) black body radiation

పరమాణు క్వాంటమ్ యాంత్రిక నమూనాకు ఆధారము :.

- (1) ఎలక్ట్రాన్ కోణీయ ద్రమ్య వేగం
- (2) క్వాంటం సంఖ్యలు
- (3) ఎలక్ట్రాస్ ద్వంద్వ స్వభావము
- (4) కృష్ణ పదార్థ ఉద్గారము

TIM

123. The number of elements present in fourth period is :

నాల్గవ పీరియడ్లోనున్న మూలకాల సంఖ్య

ခံစစ္ဆန္း 📗 🕰 🤉

(4) 2

(1) 32

(2) 8

124. Identify the correct set :

molecule hybridisation of central atom shape

(1) PCl₅ dsp³ square pyramidal

(2) INS(CN) 12- sp³ tetrahedral

(2) $[Ni(CN)_4]^{2-}$

 sp^3 sp^3d^2

d² octahedral

(3) SF₆ (4) IF₃

 dsp^3

pyramidal

పరియొన సమీతిని గుర్తించండి :

	అణువు	కేంద్ర పరమాణువు	సంకరీకరణము	ఆకృతి	
(I)	PCI,	dsp ³		చదరపు	ప్రమిడల్
	[Ni(CN) ₄] ² ··	sp ³		ఔటాహ	(රජේ
	SF ₆	sp ³ d ²	2	అక్టాబ్	డల్
(4)	IF ₃	dsp ³		ప్రచిపడ	్

125. Which one of the following statements is correct ?

- (1) Hybrid orbitals do not form σ bonds
- (2) Lateral overlap of p-orbitals or p- and d-orbitals produces π-bonds
- (3) The strength of bonds follows the order:

$$\sigma_{p-p} < \sigma_{s-s} < \pi_{p-p}$$

(4) s-orbitals do not form σ bonds

క్రింది వాటిలో సరీయొన వివరణ ఏది?

- (1) సంకర ఆర్బెటాళు) రా బంధాలనేర్పరచవు
- (2) p-ఆర్బిటాళ్ళ లేదా p- మరియు d-ఆర్బిటాళ్ళ పార్శీయ అత్పాతం ద్వారా π-బంధాలు ఏర్పడుతాయి
- (4) s-ఆర్బిటాళు) రాబంధాలనేర్పరచవు

126. Which one of the following is an example of disproportionation reaction ?

- (1) $3Cl_2(g) + 6OH^-(aq) \rightarrow ClO_3^-(aq) + 5Cl^-(aq) + 3H_2O(l)$
- (2) Ag^{2+} (aq) + Ag (s) $\rightarrow 2Ag^{+}$ (aq)
- (3) $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$
- (4) $2KCIO_3$ (s) $\rightarrow 2KCl$ (s) $+ 3O_2$ (g)

క్రింది వాటిలో అననుపాత చర్యకు ఉదాహరణ ఏది?

- (1) $3\text{Cl}_2(\varpi) + 6\text{OH}^-(జ.[\varpi]) \rightarrow \text{ClO}_3^-(జ.[\varpi]) + 5\text{Cl}^-(జ.[\varpi]) + 3\text{H}_2\text{O}$ (ద్ర
- (2) Ag^{2+} (జ. $[a^{\circ}]$ + Ag (ఫు) $\rightarrow 2Ag^{+}$ (జ. $[a^{\circ}]$
- (3) Zn (ఘ) + $CuSO_4$ (జ. $(దా) \rightarrow Cu$ (ఘ) + $ZnSO_4$ (జ.(దా)
- (4) 2KClO₃ (ఘ) → 2KCl (ఘ) + 3O₂ (హ)

127. At T(k), the ratio of kinetic energies of 4 g of $H_{2(g)}$ and 8 g of $O_{2(g)}$ is :

$$T(k)$$
 వద్ద, 4 m $H_{2_{(2^n)}}$ మరియు 8 m $O_{2_{(2^n)}}$ గత్జ శక్తుల నిష్పత్తి :

(1) 1:4

(2) 4:1

- (3) 2:1
- (4) 8:1

128. Which one of the following is an isotonic pair of solutions?

- 0.15 M NaCl and 0.1 M Na₂SO₄
- (2) 0.2 M Urea and 0.1 M Sugar
- (3) 0.1 M BaCl₂ and 0.2 M Urea
- TIVI (4) 0.2 M MgSO₄ and 0.1 M NH₄Cl క్రింది వాటిలో ఏది ఐసోటోనిక్ దావణాల జత?
- (1) 0.15 M NaCl మరియు 0.1 M Na₂SO₄
- (2) 0.2 M యూరియా మరియు 0.1 M చెక్కెర
- (3) 0.1 M BaCl, మరియు 0.2 M యూరియా
- (4) 0.2 M MgSO₄ మరియు 0.1 M NH₄Cl
- 129. The vapour pressure in mm of Hg, of an aqueous solution obtained by adding 18 g of glucose (C₆ H₁₂ O₆) to 180 g of water at 100°C is:

100℃ వద్ద 18 గ్రా గ్లూకోజ్ ($C_6 \; H_{12} \; O_6$)ను $180 \;$ గ్రా సీటిలో కలుపగా ఏర్పడిన జల దావణపు బాష్ప ప్రశనము మిమీ Hgలలో :

(1) 7.60

(2) 76.0

(3) 759

(4) 752.4

130. During the electrolysis of copper sulphate aqueous solution using copper electrode, the reaction taking place at the cathode is :

(1)
$$Cu \rightarrow Cu_{(aq)}^{2+} + 2e^{-}$$

(2)
$$Cu_{(aq)}^{2+} + 2e^{-} \rightarrow Cu_{(s)}$$

(3)
$$H_{(aq)}^+ + e^- \rightarrow \frac{1}{2} H_{2(g)}$$

(4)
$$SO_{4(aq)}^{2-} \rightarrow SO_{3(g)} + \frac{1}{2}O_{2(g)} + 2c^{-}$$

కాపర్ ఎలక్ట్ఫ్డ్తో, కాపర్ సల్ఫేట్ జల ద్రావణం విద్యుద్విశ్లేషణలో కాథోడ్ వద్ద జరుగు చర్య :

(1)
$$Cu \rightarrow Cu_{(\omega,|\varpi)}^{2+} + 2e^{-}$$

(2)
$$Cu_{(\mathfrak{A},[\mathfrak{Q}^*)}^{2+} + 2e^- \rightarrow Cu_{(\mathring{\mathfrak{P}}_{\mathfrak{I}})}$$

(3)
$$H_{(\alpha, \alpha)}^{+} + e^{-} \rightarrow \frac{1}{2} H_{2(\alpha)}$$

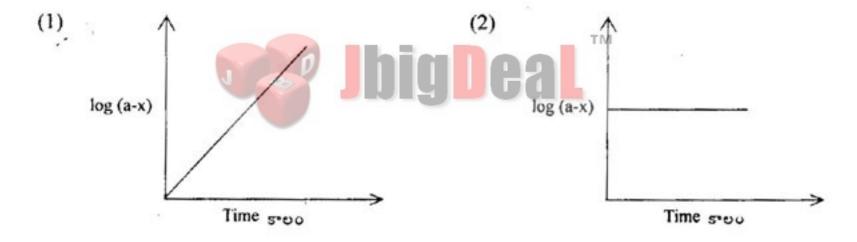
(4)
$$SO_{4(z_{\cdot}, [\overline{\omega}^{*}])}^{2-} \rightarrow SO_{3(\overline{\omega}^{*})} + \frac{1}{2}O_{2(\overline{\omega}^{*})} + 2e^{-\frac{1}{2}O_{2(\overline{\omega}^{*})}} + 2e^{-\frac{1}{2}O_{2(\overline{\omega}^{*})}}$$

131. The extent of charge of lead accumulator is determined by

- (1) amount of PbSO₄ in the battery
- (2) amount of PbO₂ in the battery
- (3) specific gravity of H₂SO₄ of the battery
- (4) amount of Pb in the battery

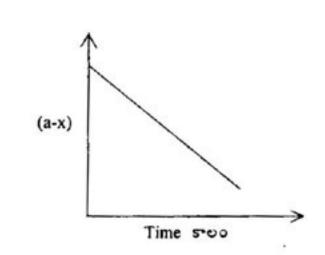
లెడ్ ఎక్యూమలేటర్లో ఛార్ట్ పరిమితిని నిర్ణయించేది

- (1) బ్యాటరీలో PbSO₄ పరిమాణము
- (2) బ్యాటరీలో PbO, పరిమాణము
- (3) బ్యాటరీలో H,SO, విశిష్ట సాంద్రత
- (4) బ్యాటరీలో Pb పరిమాణము


132. The number of octahedral and tetrahedral holes respectively present in a hexagonal close packed (hcp) crystal of 'X' atoms are :

'X' పరమాణువులు గల షట్కోణ్య సన్నిహిత కూర్పు (hcp) సృటికంలో ఆష్ఠ భుజీయ သပါတယာ ပေးကြူး ေနာ်မျိန္မွာ ပြင့္သေတြေ့မ သိလည္း ေ

(1) X, 2X


(2) X, X

- (3) 2X, X (4) 2X, 2X
- 133. Which one of the following plots is correct for a first order reaction? క్రింది వాటిలో ప్రథమ క్రమాంక చర్యకు సరియైన పటము ఏది?

(4)

(3) log (a-x) Time seo

134. The degree of ionization of 0.10 M lactic acid is 4.0%

$$H_{3}C$$
— C — $COOH$ \Longrightarrow $H^{+}_{(aq)} + H_{3}C$ — C — COO^{-}
 $OH (aq)$ $OH (aq)$

0.10 M లాక్టిక్ ఆమ్లం అయనీకరణ అవధి 4.0%

The value of Kc is

K విలువ

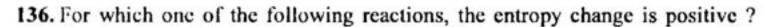
(1) 1.66×10^{-5}

(2) 1.66×10^{-4}

(3) 1.66×10^{-3}

(4) 1.66×10^{-2}

135. The pH of a buffer solution made by mixing 25 ml of 0.02 M NH₄OH and 25 ml of 0.2 M NH₄Cl at 25°C is: (pK_b of NH₄OH = 4.8)


25°C వద్ద 25 మిల్ల్ 0.02 M NH₄OH ను 25 మిల్ల్ 0.2 M NH₄Cl కు కలుపగా ఏర్పడిన బఫర్ ద్రావణపు pH : (pK_b NH₄OH = 4.8)

(1) 5.8

(2) 8.2

(3) 4.8

(4) 3.8

(1) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ (g) (g) (ℓ)

(2) $Na^+ + Cl^- \rightarrow NaCl$ (g) (g) (s)

- (3) NaCl → NaCl
 - (*l*) (s)

(4) $H_2O \rightarrow H_2O$ (ℓ) (g)

కింది వాటిలో ఏ చర్యకు ఎంట్లోపి మార్పు ధనాత్మకం?

- (1) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ $(3) \quad (3) \quad (3) \quad (4)$
- (3) NaCl → NaCl
 (ద) (ప్రం)

(2) $Na^+ + Cl^- \rightarrow NaCl$ (x) (x) (x)

TIVI

 $(4) \quad \underset{((\Delta)}{\text{H}_2\text{O}} \rightarrow \underset{(\varpi)}{\text{H}_2\text{O}}$

137. Match the following:

List-I

- (A) Solid dispersed in liquid
- (B) Liquid dispersed in liquid
- (C) Gas dispersed in liquid
- (D) Liquid dispersed in solid

DIG CList-II

- (I) Emulsion
- (II) Foam
- (III) Gel
- (IV) Sol
- (V) Aerosol

క్రింది వాటిని జతపరుచుము :-జాబితా !

- (A) ద్రవంలో ఘనం విక్లేపణం చెందింది
- (B) ద్రవంలో ద్రవం విక్లేపణం చెందింది
- (C) ద్రవంలో వాయువు విక్లేపణం చెందింది
- (D) ఘనంలో ద్రవం విక్లేపణం చెందింది

ಜಾವಿಕ್ II

- (I) ఎమల్షన్
- (III) 포인
- (IV) సాల్
- (V) ఎయిరోసాల్

The correct match is:

సరియొన జోడి :

- (A)
- (B)
- (C)
 - (D)
- (1) (IV) (I)
- (II)
- (III)
- (2) (III) (I)
- (V)
- (II) (IV)

- (3) (III) (4) (IV)
- **(I)**

(I)

- (II)
- (V) (III)
- Rough Work

138. Observe the following statements:

- 1. Heavy water is harmful for the growth of animals
- Heavy water reacts with Al₄C₃ and forms deuterated acetylene
- BaCl₂.2D₂O is an example of interstitial deuterate
 కింది వివరణలను పరిశీలించుము :
- 1. జంతువుల పెరుగుదలకు భారజలం హానీ చేస్తుంది
- Al₄C₃ & భారజలం చర్యనొంది డ్యుటిరేటెడ్ ఎసిటలీస్ను ఏర్పరుస్తుంది
- అల్పాంతరాళ డ్యుటిరేట్కు ఉదాహరణ BaCl₂.2D₂O

The correct statements are :

సరియొన వివరణలు :

- (1) 1 & 3
- (3) 1, 2 & 3

- (2) 1 & 2
- (2) 1 00 2

139. Solution "X" contains Na₂CO₃ and NaHCO₃. 20 ml of X when titrated using methyl orange indicator consumed 60 ml of 0.1 M HCl solution. In another experiment, 20 ml of X solution when titrated using phenolphthalein consumed 20 ml of 0.1 M HCl solution. The concentrations (in mol lit⁻¹) of Na₂CO₃ and NaHCO₃ in X are respectively

"X" ద్రావణంలో Na₂CO₃ మరియు NaHCO₃ ఉన్నాయి. 20 మి.లీ.ల Xని మిథైల్ ఆరెంజ్ సూచికనుపయోగించి అంశమాపనం చేసినపుడు 60 మి.లీ.ల 0.1 M HCl ద్రాపణము వినియోగమైనది. వేరొక ప్రయోగంలో 20 మి.లీ.ల X ద్రావణాన్ని ఫినాఫ్తలీన్ సూచికనుపయోగించి అంశమాపనం చేసినపుడు 20 మి.లీ.ల 0.1 M HCl వినియోగమైనది. Xలో నున్న Na₂CO₃ మరియు NaHCO₃ గాఢతలు (మో.లీ⁻¹.లలో) వరుసగా

(1) 0.01, 0.02

(2) 0.1, 0.1

(3) 0.01, 0.01

(4) 0.1, 0.01

140. Diborane reacts with HCl in the presence of AlCl3 and liberates :

డైబొరేన్ HCIతో AlCl3 సమక్షంలో చర్యనొంది విడుదల చేయునది :

(1) H₂

(2) Cl,

(3) BCl₃

(4) Cl₂ & BCl₃

141. How many corners of SiO₄ unit are shared in the formation of three dimensional silicates?

SiO4 యూనిట్లో ఎన్ని మూలలను పంచుకున్నపుడు త్రిమితీయ నిర్మాణం కలిగియున్న సిలికేట్లు ఏర్పడుతాయి.

- (1) 3
- (3) 4

142. Which one of the following is not correct?

- (1) Pyrophosphoric acid is a tetrabasic acid
- (2) Pyrophosphoric acid contains P-O-P linkage
- (3) Pyrophosphoric acid contains two P-H bonds
- (4) Orthophosphoric acid can be prepared by dissolving P₄O₁₀ in water

క్రింది వాటిలో ఏది సరియైనది *కాదు?*

- (1) పైరోఫాస్పోరిక్ ఆమ్లం, ఒక చతు: క్షార ఆమ్లం
- (2) ైపరోఫాస్పోరిక్ ఆమ్లంలో P-O-P బంధనముంటుంది
- (3) పైరోఫాస్పోరిక్ ఆమ్లంలో రెండు P—H బంధాలుంటాయి
- (4) P_4O_{10} ను నీటిలో కరిగించి ఆర్థోఫాస్ఫారిక్ ఆమ్లాన్ని తయారుచేయవచ్చును

143. Na₂S₂O₃ reacts with moist Cl₂ to form Na₂SO₄, HCl and X. Which one of the following is X ?

 $Na_2S_2O_3$ తడి Cl_2 తో చర్యనొంది Na_2SO_4 , HCl మరియు \underline{X} ల నేర్పరిచింది. క్రింద్ వాటిలో X 50?

(1) H,S

(2) SO,

- (3) SO₃ /(4) S

TIM

144. The role of copper diaphragm in Whytlaw-Gray's method is :

- (1) preventing the corrosion of electrolytic cell
- (2) preventing the mixing of H₂ and F₂
- (3) as anode
- (4) as cathode

విట్లా-(గే పద్ధతిలో రాగి విభాజకం యొక్క పాత్ర

- (1) ఏద్యుత్ ఘట క్షయాన్ని నిరోధించటం
- (2) H₂ మరియు F₂ లను కలవకుండా ఆపడం
- (3) ఆనోడ్గా
- (4) కాథోడ్గా

145. Liquid X is used in Bubble chamber to detect neutral mesons and gamma photons. Then, X = \underline{X} ద్వమును బబుల్ చాంబర్ (Bubble chamber)లో తటస్థ మీసాస్లను మరియు గామ ఫొటాన్లను కనుక్కోవడానికి ఉపయోగిస్తారు. అప్పుడు X =

(1) He

(2) Ne

(3) Kr

(4) Xe

146. A o	compound absorbs light in the wavelength re	egion	490-500 nm. Its complementary colou			
(1)	Red	(2)	Blue			
(3)	Orange	(4)	Blue-green .			
	ఒక సమ్మేళనము, 490—500 nm అవధి తరంగడైర్హ్యం గల కాంతిని శోషణం చేసుకొంటుంది దాని సంపూరక రంగు :					
(1)	ఎరుపు	(2)	వీలం			
(3)	පටිටසි	(4)	నీలి-ఆకుపచ్చ			
147. Which of the following is <i>not</i> added during the extraction of silver by cyanide process ' పైవైడ్ పద్ధత్లో స్ల్వర్ను నిష్కర్షణ చేయునపుడు క్రింద్ వాటిలో ఏది కలుపబడదు?						
(1)	NaCN	(2)	Air (mD)			
(3)	Zn	(4)	$Na_2S_2O_3$			
148. Cat	taract and skin cancer are caused by					
(1)	Depletion of Nitric oxide	(2)	Depletion of Ozone layer			
(3)	Increase in Methane	(4)	Depletion of Nitrous oxide			
కార	కాటరాక్ట్ మరియు చర్మపు క్యాన్సర్ వలన కలుగును.					
(1)	వైటిక్ ఆకైృడ్ తగ్గుదల	(2)	ఓజోన్ పొర తగ్గుదల			
(3)	వీుథేన్ పెరుగుదల	(4)	వైట్స్ ఆకైృడ్ తగ్గుదల			

149. Which one of the following gives Prussion blue colour?

క్రిందివాటిలో ఏది ప్రష్యన్ నీలం రంగు ఏర్పర్చును?

(1) Fe₂ [Fe(CN)₆]

(2) $Na_4[Fe(CN)_6]$

(3) Fe₃ [Fe(CN)₆]₃

(4) Fe4[Fe(CN)6]3

150.
$$C_2H_6 \xrightarrow{450^{\circ}C} C_2H_4 + H_2$$

Above reaction is called as

(1) Combustion

(4) Cleavage

$$C_2H_6 \xrightarrow{450^{\circ}C} C_2H_4 + H_2$$

ైప చర్యను _____ అంటారు.

(1) దహనచర్య

(2) పునరమరిక

(3) మహోష్టీయ విఘటనము

(4) విచ్చిన్నం

- 151. Assertion (A): -NH₂ group of aniline is ortho, para directing in electrophilic substitutions.
 - Reason (R): -NH₂ group stabilises the arenium ion formed by the ortho, para attack of the electrophile.

The correct answer is

- (1) Both (A) and (R) are correct, (R) is the correct explanation of (A)
- (2) Both (A) and (R) are correct, (R) is not the correct explanation of (A)
- (3) (A) is correct, but (R) is not correct
- (4) (A) is not correct, but (R) is correct
- నిశ్చితము (A) : ఎలక్ట్రోఫిలిక్ [పతిక్షేపణలలో ఎనిలీన్ యొక్క –NH2 సమూహము ఆర్థో. పారా నిర్దేశకము.
- కారణము (R) : ఎలక్ట్ర్మైల్ యొక్క ఆర్థో, పారా దాడి వలన ఏర్పడు అరీనియమ్ అయాన్ను —NH2 సమూహము స్థిరపరుస్తుంది.

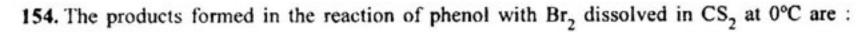
సరియైన సమాధానము

- (1) (A) మరియు (R)లు సరియొనవి, (A)కు (R) సరియొన వివరణ
- (2) (A) మరియు (R)లు సరియైనవి, (A)కు (R) సరియైన వివరణ కాదు
- (3) (A) సరియొనది, కాని (R) సరియైనది కాదు
- (4) (A) సరియైనది కాదు, కాని (R) సరియైనది

- 152. In which of the following properties, the two enantiomers of lactic acid differ from each other?
 - (1) Sign of specific rotation
 - (2) Density
 - (3) Melting point
 - (4) Refractive index

లాక్టిక్ ఆమ్లం యొక్క రెండు ఎనాన్షియోమర్లు క్రింది ఏ ధర్మంలో విభేదిస్తాయి?

- (1) သီရိရွ် భုံသဂၢ၀ ကတ္ခ
- (2) సాంద్రత
- (3) ద్రవీభవన స్థానం
- (4) వృకీభవన గుణకం



153. Heating chloroform with aqueous sodium hydroxide solution forms :

- (1) Sodium acetate
- (2) Sodium oxalate
- (3) Sodium formate
- (4) Chloral

క్లోరోఫారమ్ను సోడియమ్ హైడాకైృడ్ జల ద్రావణంతో వేడిచేయగా ఏర్పడునది :

- (1) సోడియమ్ ఎసిటేట్
- (2) సోడియమ్ ఆక్టరేట్
- (3) సోడియమ్ ఫార్మేట్
- (4) క్లోరాల్

- (1) o-bromo, m-bromo and p-bromophenols
- (2) o-bromo and p-bromophenols
- (3) 2, 4, 6-tribromo and 2, 3, 6-tribromophenols
- (4) 2, 4-dibromo and 2, 6-dibromophenols

ఫినాల్, CS2లో కరగించిన Br2తో 0°C వద్ద చర్యనొందగా ఏర్పడే ఉత్పన్న పదార్థాలు :

- (1) o-బోమో, m-బోమో మరియు p-బోమో ఫినాల్లు
- (2) o-బ్ మో మరియు p-బ్ మో ఫినాల్లు
- (3) 2, 4, 6-టై y బోమా పురియు 2, 3, 6-టై y బోమోఫీ నాల్లు TM
- (4) 2, 4-డైబ్రోమో మరియు 2, 6-డైబ్ మో ఫి<mark>నాల్</mark>లు

155. The structure of PCC is:

PCC యొక్క నిర్మాణము :

- (1) C₆H₅NHCrO₂Cl[⊖]
- (2) C₆H₅NHCrO₃Cl[⊖]
- (3) C₅H₅NHCrO₂Cl[©]
- (4) C₅H₅NHCrO₃Cl^Θ

156. The pK_a values of four carboxylic acids are given below. Identify the weakest carboxylic acid.

నాలుగు కార్చాక్సిలిక్ ఆమ్లాల pK_{a} విలువలు క్రింద ఇవ్వబడినవి. వాటిలో అత్యంత బలహీనమైన కార్చాక్సిలిక్ ఆమ్లమును గుర్తింపుము

(1) 4.89

(2) 1.28

(3) 4.76

(4) 2.56

157. Identify X and Y in the following reactions:

కింది చర్యలలో X మరియు Yలను గుర్తింపుము : NO_2 NO_2 NO_3 NO_4 NO_4

X

- (t) O-NO
- \bigcirc N-N-

Y

(2) \(\bigcirc \rightarrow \text{NH,}

 \bigcirc $N-N-\bigcirc$

(3)

- \bigcirc N-N-0
- $(4) \quad \bigcirc \longrightarrow \stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow} \bigcirc$

158. Example of a biodegradable polymer pair is :

- (1) Nylon-6,6 and Terylene
- (2) PHBV and Dextron
- (3) Bakelite and PVC
- (4) PET and Polyethylene

బయోక్షయకృతమయ్యే పాలిమర్ జతకు ఉదాహరణ :

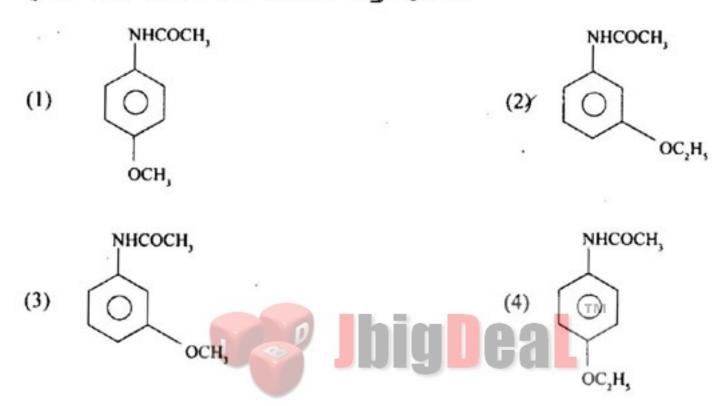
- (1) నైలాన్-6,6 మరియు టెరిలీన్
- (2) PHBV మరియు డెక్స్ట్ర్మ్ స్
- (3) బేక్లైట్ మరియు PVC
- (4) PET మరియు పాలిఇథిల్స్

159. The number of hydrogen bonds between Guanine & Cytosine; and between Adenine & Thymine in DNA is:

DNA లోని గ్వానైన్ & సైంటోసిన్ల మధ్య మరియు ఎడనైన్ & టైమీన్ల మధ్య గల హైడ్జోజన్ బంధాల సంఖ్య :

(1) 1, 2

(2) 3, 2


(3) 3, 1

(4) 2, 1

160. Identify Phenacetin from the following:

క్రింది వాటి నుండి ఫీనాస్టిన్ను గుర్తింపుము :

Rough Work