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2.1 INTRODUCTION 

Vectors are used extensively in almost all branches of physics, mathematics and 
engineering. The usefulness of vectors in engineering mathematics results from 
the fact that many physical quantities – for example, velocity of a body, the forces 
acting on a body, linear and angular momentum of a body, magnetic and 
electrostatic forces, may be represented by vectors. In several respects, the rule of 
vector calculations are as simple as the rules governing the system of real 
numbers. 
It is true that any problem that can be solved by the use of vectors can also be 
treated by non-vectorial methods, but vector analysis simplifies many calculations 
considerably. Further more, it is a way of visualizing physical and geometrical 
quantities and relations between them. For all these reasons, extensive use is 
made of vector notation in modern engineering literature. It is a very useful tool 
in the hands of scientists and engineers. 
Many of you may have studied vectors at school level while some of you might 
not have done so. This unit has been developed keeping in view the interest of all 
the students. 
We have listed important results of vector algebra. The proofs of some of 
elementary properties have been omitted. Interested learner may look up for the 
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Algebra and Probability proofs in the books recommended for your further study, which are available at 
your study centers. We have begun this unit by giving basic definitions in 
Section 2.2. The operations on vectors, such as addition and subtraction of 
vectors, multiplication of a vector by a scalar, etc. have been taken up in 
Section 2.3. We have devoted Section 2.4 to the representation of the vectors in 
component forms. Sections 2.5 and 2.6 have been used to discuss vector products. 
Polar and axial vectors as well as different coordinate systems for space have 
been taken up in Sections 2.7 and 2.8. We have given the geometrical and 
physical interpretations, wherever possible. In the following units we shall take 
up differentiation and integration of vectors. 

Objectives 
After studying this unit you should be able to 

• distinguish between scalars and vectors, 
• define a null (or zero) vector, a unit vector, negative of a vector and 

equality of vectors, 
• identify coinitial vectors, like and unlike vectors, free and unlike 

vectors, free and localized vectors, coplanar and co-linear vectors, 
• add and subtract vectors, graphically and analytically,  
• multiply a vector by a scalar, 
• define the system of linearly independent and dependent vectors, 
• compute scalar and vector products of two vectors and give their 

geometrical interpretation, 
• compute the scalar triple products and vector triple products and give 

their geometrical interpretation, 
• compute quadruple product of vectors, and 
• solve problems on the application of vector algebra. 

2.2 BASIC CONCEPTS 

In physics, geometry or engineering mathematics, we come across physical 
quantities such as mass of a body, the charge of an electron, the specific heat of 
water, the resistance of a resistor, the diameter of a circle and the volume of a 
cube. With a suitable choice of units of measure, each of these quantities is 
described by a single number. Such a quantity is called a scalar. Length, 
temperature, time, density, frequency are some other familiar examples of scalars. 
Thus we may define a scalar as follows : 
Definition 

A physical quantity is called a scalar if it can be completely specified by a 
single number (with a suitable choice of units of measure). 

On the other hand physical quantities like velocity, acceleration, displacement, 
momentum, force, electric field intensity, etc. are entities which cannot be 
specified by a single number. They require for their complete characterization the 
specification of a direction as well as a magnitude. 
Figure 2.1 shows the force of attraction for the earth’s motion around the sun. The 
instantaneous velocity of the earth may be represented by an arrow of suitable 
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Vector Algebralength and direction. This illustrates that velocity is characterized by a magnitude 

and a direction. 
 
 
 
 
 
 
 
 

Figure 2.1 : Force and Velocity 

Figure 2.2 shows a displacement (without rotation) of a triangle in the plane. We 
may represent this displacement graphically by a directed line segment whose 
initial point is the original position of a point P of the given triangle and where 
terminal point is the new position Q of that point after displacement. 
 
 
 
 
 
 
 
 

Figure 2.2 : Displacement 

Definition 
Quantities, which are specified by a magnitude and a direction are called 
vector quantities. 

We know that a directed line segment is a line segment with an arrow-head 
showing direction (Figure 2.3). 
 
 
 
 
 
 

Figure 2.3 : Directed Line Segment AB 

A directed line segment is characterized by 
Length 

Length of directed line segment AB is the length of line segment AB. 
Support 

The support of a directed line segment AB is the line P of infinite length of 
which AB is a portion. It is also called line of action of that directed line 
segment. 

Sense 
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The sense of a directed line segment AB is from its tail or the initial point A 
to its head or the terminal point B. 

Algebra and Probability 

Thus we may also define a vector as follows. 
A directed line segment is called a vector. Its length is called the length or 
Euclidean norm or magnitude of the vector and its direction is called the 
direction of the vector. 
In Figure 2.3, the direction of directed line AB is from A to B. The two end points 
of a directed line segments are not interchangeable and you must think of 
directed line segments AB and BA as different. 
From the definition of a vector, we see that a vector may be translated (displaced 
without rotation) or, in other words, its initial point may be chosen in an arbitrary 
fashion. Once we choose a certain point as the initial point of a given vector, the 
terminal point of the vector is uniquely determined. 
For the sake of completeness, we mention that in physics there are situations 
where we want to impose the restrictions on the initial point of a vector. For 
example, in mechanics a force acting on a rigid body may be applied to any point 
of the body. This suggests the concept of sliding vector, which is defined as “a 
vector where initial point can be any point on a straight line which is parallel to 
the vector.” However, a force acting on an elastic body is a vector where initial 
point cannot be changed at all. In fact, it we choose another point of application 
of the force, the effect of the force will in general be different. This suggests the 
notion of a bounded-vector, whose definition is ‘a vector having a certain fixed 
initial point (or point of application)’. 
When there is no restriction to choose the initial point of a vector, it is called a 
free vector. When there is restriction on the choice of a certain point as the initial 
point of a vector, then it is called a localized vector. 
Throughout the block, we shall denote vectors by bold face letters, e.g., v, a, F, 
etc. You may also denote vectors by drawing arrows above them. e.g., Fav

ρρρ
,, or 

by drawing a line (straight or curly) below them, e.g., FavFav ,,or,, . The 
magnitude of vector v is denoted by | v |, called modulus of v, or by v (a light 
letter in italics). In diagrams we shall show vectors as straight lines with 
arrowheads on them (as in Figure 2.3) and denote directed line segment AB as 
AB. 
Before taking up the algebra of vectors, we state some definitions related to 
vectors. 
Zero Vector or Null Vector 

A vector whose length is zero is called a Null or Zero Vector and is denoted 
by 0. 
Clearly, a null vector has no direction. 
Thus a = AB is a null vector if and only if | a | = 0, 
i.e., if and only if | AB | = 0, i.e., if and only if A and B coincide. 
Any non-zero vector is called a proper vector or simply vector. 

Unit Vector 
A vector whose length (modulus or magnitude) is unity is called a unit 
vector. 
Generally, a unit vector is denoted by a single letter with a cap ‘^’ over it. 
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Vector AlgebraThus denotes a unit vector. â

Again   
||

ˆ
a
aa = . 

Co-initial Vectors 
All vectors having the same initial point are called co-initial vectors. 

Hence AB, AC, AD are all co-initial vectors. 
Like and Unlike Vectors 

Vectors are said to be like if they have the same direction and unlike if they 
have opposite directions (Figure 2.4). 

 
 
 
 
 
 

(a) Like Vectors  (b) Unlike Vectors  (c) Vectors having Different Directions 

Figure 2.4 

Both unlike and like vectors have the same line of action or have the lines 
of action parallel to one another; such vectors are also called Collinear or 
Parallel Vectors. 

Coplanar Vectors 

Vectors are said to be coplanar if they are parallel to the same plane or 
they lie in the same plane. 

Negative of a Vector 

 A vector whose magnitude is the same as that of the given vector a but has 
the direction opposite to that of a is called the negative of a and is denoted 
by – a. 

Thus, if AB represents the vector a, then BA represents the vector – a. 

It is evident that | a | = | − a |. 

Equal Vectors 

Two vectors are said to be equal if they have 

(i) the same length 

(ii) the same or parallel supports 

(iii) the same sense. 

In Figure 2.5, the three vectors a, b, c represented by the directed line 
segments. 

AB, CD, EF respectively have different initial and terminal points but the 
same length, the same or parallel supports and the same sense and hence are 
equal. 

We write  a = b = c  or  AB = CD = EF 
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Algebra and Probability  
 
 
 
 
 
 
 

Figure 2.5 : Equal Vectors 

Thus equal vectors may be represented by directed segment of equal length 
in the same sense along the same or parallel supports. 
We may remark here that if AB = CD and AB and CD do not lie along the 
same line, then it is evident that ABCD is a parallelogram. 
Further, two vectors cannot be equal if 

(i) they have different magnitudes, or 
(ii) they have inclined supports, or 
(iii) they have different senses. 

Let us consider an example. 
Example 2.1 

ABCDEF is a regular hexagon. If P = AB, Q = BC and R = CD, name the 
vectors represented by AF, ED and FE. 

Solution 
Since ABCDEF is a regular hexagon, 

 
 
 
 
 
 
 

Figure 2.6 : A Regular Hexagon 

∴ AB = BC = CD = AF = ED = FE 
Also AB || ED, 

BC || FE, 
and CD || AF. 
Further sense of AB is the same as that of ED, sense of BC is the same as 
that of FE and sense of CD is the same as that of AF. 
∴ AB = ED, BC = FE and CD = AF 
Thus ED = P, FE = Q and AF = R. 

So far we have introduced vectors geometrically (using the notion of a directed 
line segment). We have defined vectors without referring them to any coordinate 
system. A point in three-dimensional space is a geometric object, but if we 
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Vector Algebraintroduce a coordinate system, we may describe it by (or even regard it as) an 

ordered triple of numbers (called its coordinates). Similarly if we use a coordinate 
system, we may describe vectors in algebraic terms. This alternative way to 
represent the vectors is also termed as analytic, approach. In the next section, we 
shall discuss how to express a vector analytically, i.e. in terms of its components. 
We shall also give a new and precise way of defining vectors, which will be of 
practical use to you in the study of your other courses also. 

2.3 COMPONENTS OF A VECTOR 

Let us introduce a coordinate system in space whose axes are three mutually 
perpendicular straight lines. On all the three axes, we choose the same scale. Then 
the three unit points on the axes, whose coordinates are (1, 0, 0), (0, 1, 0) and (0, 
0, 1), have the same distance from the origin, the point of intersection of the axes. 
The rectangular coordinate system thus obtained is called a Cartesian coordinate 
system in space (refer Figure 2.7(a)). 
 
 
 
 
 
 
 
 
 
 

(a) Cartesian Coordinate System  (b) Components of a Vector 

Figure 2.7 

We now introduce a vector a obtained by directing a line segment PQ such that P 
is the initial point and Q is the terminal point (Figure 2.7(b)). Let (x1, y1, z1) and 
(x2, y2, z2) be the coordinates of the point P and Q respectively. Then the numbers  

a1 = x2 – x1,  a2 = y2 – y1, a3 = z2 – z1              . . . (2.1) 

are called the components of the vector a with respect to that coordinate system. 

By definition, the length or magnitude | a | of the vector a is the distance PQ  and 
from Eq. (2.1) and the theorem of Pythagoras, it follows that 

2
3

2
2

2
1|| aaa ++=a               . . . (2.2) 

For instance, the vector a with initial point P : (3, 1, 4) and terminal point 
Q : (1, − 2, 4) has the components 044,312,231 321 =−=−=−−=−=−= aaa  
and the length 

130)3()2(|| 222 =+−+−=a . 

Conversely, if a has the components – 2, – 3 and 0 and if we choose the initial 
point of a as (– 1, 5, 8) then the corresponding terminal point is 
(– 1 – 2, 5 –3, 8 + 0), i.e., (–3, 2, 8). 
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You may observe from Eq. (2.1) that if we choose the initial point of a vector to 
be the origin, then its components are equal to the coordinates of the terminal 
point and the vector is then called the position vector of the terminal point (with 
respect to our coordinate system) and is usually denoted by r (refer Figure 2.8). 

Algebra and Probability 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 : Position Vector r of a Point A (x, y, z) 

We see that   OAr =  

   AAMAOM 00 ++=  

    kji ˆˆˆ zyx ++=

where, are unit vectors parallel to the axes of x, y, z respectively. kji ˆ,ˆ,ˆ

The vector are mutually perpendicular. kji ˆ,ˆ,ˆ

From Eq. (2.1), we can also see that the components a1, a2, a3 of the vector a are 
independent of the choice of initial point of a. 
This is because if we translate (displace without rotation) a then corresponding 
coordinates of P and Q are altered by the same amount. 
Hence, given a fixed Cartesian coordinate system, each vector is uniquely 
determined by the ordered triple of its components w.r.t. that coordinate system. 
We may introduce the null vector or zero vector O as the vector with components 
0, 0, 0. 
Further two vectors a and b are equal if and only if corresponding components of 
these vectors are equal. Consequently, a vector equation. 

a = b 
is equivalent to three equations for the components of a and b, i.e., 

332211 ,, bababa === , 

where the components  of a and  of b refer to the same 
Cartesian coordinate system. 

321 ,, aaa 321 ,, bbb

From Eq. (2.1), you may note that  are the projections of a on 
coordinates axes as  

321 ,, aaa

kjia ˆˆˆ
321 aaa ++=  

In Figure 2.7(b), if α, β, γ are the angles which PQ makes with the three axes, 
then 

γ=β=α= cos||,cos||,cos|| 321  aa aa aa  
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Vector AlgebraThe three angles α, β, γ which any vector makes with the three coordinate axes 

are called direction angles and the cosines of these angles are called direction 
cosines. Let us now consider an example. 
Example 2.2 

If cos α, cos β, cos γ are the direction cosines of r, show that 

kji
|r|

rr ˆcosˆcosˆcosˆ γ+β+α==  

Solution 
Let the position vector of a point with coordinates (x, y, z) be r, so that x, y, 
z are the projections of r on the coordinate axes. 

Q  We have   kji  r ˆˆˆ zyx ++=

Also   γ=β=α= cos||,cos||,cos|| rrr zyx  

    Q krjrirr ˆcos||ˆcos||ˆcos|| γ+β+α=

⇒   kjir
|r|

r ˆcosˆcosˆcosˆ γ+β+α==  

You may now try the following exercises. 

SAQ 1 
(a) If P (3, – 2, 1) and Q (1, 2, – 4) are the initial and terminal points 

respectively of a vector a, find the components of a and | a |. 

(b) If 
2
3,1,

2
1  are the components of a vector a and ⎟

⎠
⎞

⎜
⎝
⎛−=

2
1,1,

2
1P  is a 

particular initial point of a, find the corresponding terminal point and 
the length of a. 

 
 
 
We now introduce algebraic operations for vectors in the next section. These 
operations help us to do various calculations with the vectors. 

2.4 OPERATIONS ON VECTORS 

By ‘algebraic operations on vectors’, we mean various ways of combining vectors 
and scalars, satisfying different laws, called laws of calculations. Let us take this 
one by one. 

2.4.1 Addition of Vectors 
The motivation for addition of two vectors is provided by displacements. Also, 
experiments show that the resultant of two forces can be determined by the 
familiar parallelogram law or by the triangle law. We now define addition of 
vectors and their properties. 

Let a and b be two vectors. Let the vector a be the directed line segment AB and 
the vector b be the directed segment BC (so that the terminal point B of a is the 
initial point of b) (Figure 2.9). Then the directed line segment AC (i.e., AC) 
represents the sum (or resultant) of a and b and is written as a + b. 
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 Algebra and Probability 

 
 
 
 
 
 
 
 

Figure 2.9 : Addition of Two Vectors 

Thus   AC = AB + BC = a + b. 

The Method of drawing a triangle in order to define the vector sum (a + b) is 
called triangle law of addition of two vectors, which states as follows : 

If two vectors are represented by two sides of a triangle, taken in order, then their 
sum (or resultant) is represented by the third side of the triangle taken in the 
reverse order. 

Since any side of a triangle is less than the sum of the other two sides of the 
triangle; hence modulus of AC is less than the sum of module of AB and BC. 

It may be noted that the vector sum does not depend upon the choice of initial 
point of the vector as can be seen from Figure 2.10. 

If in some fixed coordinate system, a has the components  and b has the 
components , then the components  of the sum vector c = a + b 
are obtained by the addition of corresponding components of a and b; thus  

321 ,, aaa

321 ,, bbb 321 ,, ccc

333222111 ,, aacbacbac +=+=+=              . . . (2.3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 : Vector Sum is Independent of Initial Point 



    

85

 
Vector AlgebraThis fact is represented in Figure 2.11 in the case of plane. In space the situation 

is similar. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 : Vector Addition in Terms of Components in a Plane 

2.4.2 Properties of Vector Addition 
From the definition of vector addition and using Eq. (2.3), it can be shown that 
vector addition has the following properties. 

Vector Addition is Commutative 

If a and b are any two vectors, then 

a + b = b + a 

Let  OA = a and AB = b  (Figure 2.12) 

Q   OB = OA + AB 

      = a + b               . . . (2.4) 

Let us complete the parallelogram OABC. Then OC = AB = b and CB = OA 
= a 

∴  OB = OC + CB 

       =  b + a                . . . (2.5) 

From Eqs. (2.4) and (2.5), we have 

a + b = b + a 
 
 
 
 
 
 
 
 
 
 

Figure 2.12 : Commutative Vector Addition 



 
 

 
86 

Algebra and Probability Vector Addition is Associative 

If a, b, c are any three vectors, then 

a + (b + c) = (a + b) + c 

Above equation can be easily verified from Figure 2.13. 

Note that the sum of three vectors a, b, c is independent of the order in 
which they are added and is written as 

a + b + c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13 : Associative Law of Vector Addition 

Existence of Additive Identity 

For any vector a, 

a + 0 = a = 0 + a, 

where 0 is a null (or zero) vector. 

Thus 0 is called additive identity of vector addition. 

Existence of Additive Inverse 

For any vector a, there exists another vector – a such that 

   a + (− a) = 0, 

where – a denotes the vector having the length | a | and the direction 
opposite to that of a. 

In view of the above property, the vector (– a) is called the additive inverse 
of vector a. 

Let us take an example from geometry to illustrate the use of vector addition. 

Example 2.3 

Show that the sum of three vectors determined by the medians of a 
triangle directed from the vertices is zero. 
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Vector Algebra 

 
 
 
 
 
 
 
 

Figure 2.14 : Meridians of a Triangle 

Solution 

In Δ ABC, AD, BE, and CF are the median. 

Now  AD + BE + CF 

       = (AB + BD) + (BC + CE) + (CA + AF) 

       ABCABCCA BCAB
2
1

2
1

2
1

+++++=  

         )(
2
3 CABCAB ++=              . . . (2.6) 

By triangle law of addition, 

AB + BC = AC 

From Eqs. (2.6) and (2.7), we get 

AD + BE + CF 

         )(
2
3 CAAC +=  

         ])([
2
3 ACAC −+=  

         3 ( )
2

= =0 0  

You may now attempt the following exercise. 

SAQ 2 
Show that the sum of vectors represented by the sides AB and DC of any 
quadrilateral ABCD is equal to the sum of the vectors represented by the 
diagonals AC and DB. 
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It may be mentioned that associative law of vector addition is true even if PQRS, 
as shown in Figure 2.13, is a skew quadrilateral (i.e., when a, b, c are 
non-coplanar vectors). 

Algebra and Probability 

Further, instead of a + a, we also write 2a. This and the notion-a suggests that we 
define the second algebraic operation for vectors viz., the multiplication of a 
vector by an arbitrary real number (called a scalar). 

2.4.3 Multiplication of Vectors by Scalars 
Let a be any vector and m be any given scalar. Then the vector m a (product of 
vector a and scalar m) is a vector whose 

(i) magnitude | m a | = | m | . | a | 

          = m | a | if  0m ≥

          = − m | a | if m < 0 

(ii) support is the same or parallel to that of support of a if a ≠ 0 and m > 
0, and 

(iii) ma has the direction of vector a if a ≠ 0 and m > 0 and ma has the 
direction opposite to vector a if a ≠ 0 and m < 0. 

Further, if a = 0 or m = 0 (or both), then ma = 0. Geometrically, we can represent 
ma as follows : 

Let AB = a, then AC = m a if m > 0. Here we choose the point C on AB on the 
same side of A as B (see Figure 2.15(a)). 

Now if m < 0 and AB = a, then AC = m a where we have choosen the point C on 
AB on the side of A opposite to that of B (Figure 2.15(b)). 

 
 
 

(a) 

 
 

(b) 
Figure 2.15 

Further, if a has the component , then ma has the components 
, (w.r.t. the same coordinate system). 

321 ,, aaa

321 ,, mamama

Multiplication of a vector by a scalar helps us to define linearly dependent and 
independent vectors, which we take up next. 

Linearly Dependent and Independent Vectors 
Two non-zero vectors a and b are said to be linearly dependent if there 
exists a scalar t ( ≠ 0) such that 

a = t b 
Thus two vectors can be linearly dependent if and only if the vectors a and b are 
parallel. 
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Vector AlgebraFurther, if a = AB and b = BC, then a and b are linearly dependent if and only if 

A, B, C lie in a straight line. 
If the vectors a and b are not linearly dependent, they are said to be linearly 
independent and in this case a and b are not parallel vectors. 
From the definition, we have the following properties of multiplication of a 
vector by a scalar. 
 
 
 
 
 
 
 
 
 

Figure 2.16 

(i) m (a + b) = ma + mb 
Here bBAaAO mm =′′=′ and  

Q    baBO mm +=′  

Also  )( baBO +=′ m  

(ii) aaa nmnm +=+ )(  (Distributive law) 

(iii) aaa mnmnnm == )()(  (Associative Law) 

(iv) 1a = a  (Existence of multiplicative identity) 
(v) 0a = 0 
(vi) (– 1) a = – a 

Also if a  is the unit vector, then ˆ

||
ˆandˆ||

a
aaaaa == . 

Let us take up some examples to illustrate the above properties. 
Example 2.4 

If a is a non-zero vector, find a scalar λ such that | λa | = 1. 
Solution 

We have to determine λ such that 
| λa | = 1 

⇒  | λ | | a | = 1 

⇒  
||

1||
a

=λ  (  is non-zero, aΘ 0|| ≠∴ a ) 

⇒    
||

1
a

±=λ  

The + sign is to be taken when λ > 0 and the – sign is to be taken when 
λ < 0. 



 
 

 
90 

Example 2.5 Algebra and Probability 

Show that the vectors  constitute a 
linearly dependent set. 

jickbkjia ˆ4ˆ2andˆ3,ˆˆ2ˆ +==++=

Solution 
Here    jic ˆ4ˆ2 +=

    kkji ˆ2)ˆˆ2ˆ(2 −++=

   kkji ˆ3.
3
2)ˆˆ2ˆ(2 −++=  

   ba
3
22 −=  

Hence the vectors a, b, c as given here, constitute a linearly dependent set.  
We can now define the difference of two vectors. 
Difference of Two Vectors 

The difference a – b of two vectors is defined as the sum a + (– b), where 
(– b) is the negative of b. We can geometrically represent the difference 
a – b as in Figure 2.17. 
It is evident that 

a – a = 0 
and  a – 0 = a 

 
 
 
 
 
 
 
 
 

Figure 2.17 : Difference of Two Vectors 

If two vectors are given in their component forms then to obtain their 
difference, subtract the vectors component wise. 

For example, if 

kjia ˆˆˆ
321 aaa ++=  

and  kjib ˆˆˆ
321 bbb ++=

then  kjiba ˆ)(ˆ)(ˆ)( 332211 bababa −+−+−=−

Let us take a few examples. 

Example 2.6 

If the sum of two unit vectors is a unit vector, prove that the magnitude of 
their difference is 3 . 
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Vector AlgebraSolution 

Let OA and AB be two unit vectors . ba ˆandˆ

Then by triangle law of addition, 

OBba =+ ˆˆ  

 
 
 
 
 
 
 

Figure 2.18 

We are given   1|ˆˆ|,1|ˆ|,1|ˆ| =+== baba

∴  OA = AB = OB = 1 

Let . Then  bAC ˆ−= 1|ˆ||ˆ||| ==−== bbACAC

Since OA = OB = AC, then by geometry Δ BOC is a right-angled triangle, 

with 
2
π

=∠ BOC . 

Now   OCAC OAbaba =+=−+=− )ˆ(ˆˆˆ

∴  OC==−  OCba |||ˆˆ|

Now  31412 2222222 =−=−=−=⇒+= OBBCOCOCOBBC  

Example 2.7 
What is the geometrical significance of the relation | a + b | = | a – b |? 

Solution 
Let a = AB and b = AD 
We complete the parallelogram ABCD having AB and AD as adjacent sides. 
Let us draw the two diagonals AC and BD also. 

 
 
 
 
 
 
 

Figure 2.19 

By definition, 
AC = AB + BC 
      = AB + AD   )( ADBC =Θ

      = a + b 
∴     | a + b | = | AC | 



 
 

 
92 

Again,    DB = DA + AB Algebra and Probability 

     = − AD + AB 
       = − b + a 
       = a – b 

∴    | a – b | = | DB | 
We are given  

| a + b | = | a – b | 
∴ | AC | = | DB | 
⇒ AC = BD 
⇒  Diagonals of the parallelogram are equal. 
⇒ Parallelogram ABCD is a rectangle and hence a is perpendicular 

to b. 
You may now attempt the following exercises. 

SAQ 3 
(a) Prove that  

(i) | a + b | ≤ | a | + | b | 
(ii) | a | − | b | ≤ | a – b | 

(b) Show that the vectors 

  jicjbjia ˆ3ˆ33,ˆ6,ˆ3ˆ33 +==−=  

form the sides of an equilateral triangle. 

(c) Show that the three points with position vectors jiji ˆ
4
9ˆ3,ˆ3ˆ2 ++  and 

 are collinear. ji ˆ75.0ˆ5 +

(d) Show that the set of vectors 5a + 6b + 7c, 7a – 8b + 9c, 3a + 20b + 5c 
are coplanar. 

 
 
 
 
 
So far we have defined addition and subtraction of vectors as well as 
multiplication of vectors by scalars. We shall now introduce multiplication of 
vectors by vectors. 

2.5 PRODUCT OF TWO VECTORS 

When one vector is multiplied with another vector, result can be a scalar or a 
vector. There are in general two different ways in which vectors can be 
multiplied. These are the scalar or inner or dot product which is a mere number 
(or scalar) having magnitude alone and the other is called vector or cross product, 
which is a vector having a definite direction. We shall now take up these two 
products one by one. 
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Vector Algebra2.5.1 Scalar or Dot Product 

The scalar or dot or inner product of two vectors a and b in the 
two/three-dimensional space is written as a . b (read as ‘a dot b’) and is defined 
as 

⎥
⎦

⎤
⎢
⎣

⎡
==

≠≠γ
=

00
00

ba
baba

ba
orwhen0

,when,cos||||
.             . . . (2.8) 

 
 
 
 
 
 
 

Figure 2.20 : Angle between Vectors and their Dot Product 

where γ (0 ≤ γ ≤ π) is the angle between a and b (computed when the vectors have 
their initial points coinciding) (Refer Figure 2.20). 

The value of the dot product is a scalar (a real number), and this motivates the 
term “scalar product”. Since the cosine in Eq. (2.8) may be positive, zero or 
negative, the same is true for the dot product. 

Angle γ in Eq. (2.8) lies between 0 and π and we know that cos γ = 0, if and only 
if 
γ = π/2, we thus have the following important result : 

Two non-zero vectors are orthogonal (perpendicular to each other) if and only if 
their dot product is zero. 

If we put  in Eq. (2.8), we have a . a = | ab a= 2 | 2||a
ρ

=  and this shows that the 
length (or Euclidean norm or modulus or magnitude) of a vector can be written in 
terms of scalar product as 

)0(.|| ≥= aaa                . . . (2.9) 

From Eqs. (2.8) and (2.9), we obtain the angle γ between two non-zero vectors as  

bbaa
ba

ba
ba

..
.

||||
.cos ==γ  

The scalar product has the following properties : 

Property 1 

cbcacba ...)( 2121 qqqq +=+  (linearity) 

Property 2 

a . b = b . a (symmetry or commutative law) 

Property 3 

a . a ≥ 0 

Also a . a = 0 if and only if a = 0 (positive definiteness) 

Property 4 

In Property 1, with q1 = 1 and q2 = 1, we have  
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(a + b) . c = a . c + b . c (distributivity) Algebra and Probability 

Hence scalar product is commutative and distributive with respect to vector 
addition. 

Property 5 

From the definition of scalar product, we get 

| a . b | ≤ | a |  | b | (Θ  | cos γ | ≤ 1) (Schwarz Inequality) 

Property 6 

Also using the definition and simplifying, we get 

| a + b |2 + | a – b |2 = 2 (| a |2 + | b |2) (parallelogram equality) 

Property 7 

Further, if are unit vectors forming an orthogonal triad, then, from 
definition of scalar product, we have 

kji ˆ,ˆ,ˆ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

===
===

0ˆ.ˆ,0ˆ.ˆ,0ˆ.ˆ
1ˆ.ˆ,1ˆ.ˆ,1ˆ.ˆ

ikkjji
kkjjii  

If vectors a and b are represented in terms of components, say, 

kjibkjia ˆˆˆandˆˆˆ
321321 bbbaaa ++=++=  

then their scalar product is given by the formula 

332211. bababa ++=ba   (using Property 7) 

and  
)(

)(
||||

.cos
2
3

2
2

2
1

2
3

2
2

2
1

332211

bbbaaa

bababa

++++

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=γ

ba
ba  

where γ is the angle between a and b. 

Before we take up some applications of scalar products, we give below the 
geometrical interpretation of scalar product of two vectors. 

Geometrical Interpretation of Dot Product 

The scalar product of two vectors is the product of the modulus of either 
vector and the resolution (projection) of the other in its direction. 

 
 
 
 
 
 
 
 
 

(a) Projection of a in the Direction of b (b) Projection of b in the Direction of a 
Figure 2.21 
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Vector AlgebraLet  OA = a, OB = b and ∠ BOA = γ 

By definition, a . b = | a |  | b | cos γ where | a | = OA and | b | = OB 

From the point B draw BC perpendicular on OA (Figure 2.21(b)) and from 
the point A, draw AD perpendicular on OB (Figure 2.21(a)) 

∴ OC = Projection of OB on OA = OB cos cosγ γ| |b=  

and  OD = Projection of OA on OB = OA cos cosγ γ| |a=  

Thus a . b = | a |  | b | cos γ = | b | (| b | cos γ) = | a | (projection of b in the 
direction of a). 

Also a . b = | a |  | b | cos γ = | b | (| a | cos γ) = | b | (projection of a in the 
direction of b). 

Hence the result. 

Remember that if a and b are two vectors and a ≠ 0, then 

||
.cos||
a

bab =γ=p  is called the component of b in the direction of a, or the 

projection of b in the direction of a, where γ is the angle between a and b. If 
a = 0, then γ is undefined and we set p = 0. 

It follows that | p | is the length of the orthogonal projection of b on a 
straight line l in the direction of a. Here p may be positive, zero or negative. 
See Figure 2.22 

 
 
 
 
 
 
 
 
 

Figure 2.22 : Components of b in the Direction of a 

In particular, if a is a unit vector, then we simply have 

   p = a . b 

The following examples illustrate the application of dot product. 

Example 2.8 

Give a representation of work done by a force in terms of scalar product. 

Solution 

Consider a particle P on which a constant force a acts. Let the particle be 
given a displacement d by the application of this force. Then the work done 
W by a in this displacement is defined as the product of | d | and the 
component of a in the direction of d, i.e., 

W = | a | (| d | cos α) = a . d, 
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Algebra and Probability where α is the angle between a and d. 

 
 
 
 
 
 
 

Figure 2.23 : Word Done by a Force 

Example 2.9 

Find a representation of the straight line l1 through the point P in the xy-
plane and perpendicular to the line l2 represented by x – 2y + 2 = 0. 

Solution 

Any straight line l1 in the xy-plane can be represented in the form 
. If cybxa =+ 11 0,c =  then l1 passes through the origin. If c ≠ 0, then 
 represents a line 011 =+ ybxa 1l′  through the origin and parallel to l1. The 

position vector of a point on the line 1l′  is . jir ˆˆ yx +=

If we introduce the vector , then, by the definition of dot 
product, we can give a representation of 

jia ˆˆ
21 aa +=

1l′  as 

a . r = 0 

Certainly a ≠ 0 and vector a is perpendicular to r and, therefore, 
perpendicular to the line 1l′ . It is called normal vector to . 1l′

Since l1 and 1l′  are parallel lines, thus a is also normal to line l1. 

Hence two lines l1 and l2 are perpendicular or orthogonal if and only if their 
normal vectors say a and b are orthogonal, i.e. a . b = 0 (Figure 2.24). You 
may note that this implies that the slopes of the lines are negative 
reciprocals. 

 
 
 
 
 
 
 

Figure 2.24 : Normal Lines 

For the given line l2 the form of the vector is  and a vector 
perpendicular to b is . Hence the representation of line l

jib ˆ2ˆ −=

jia ˆˆ2 += 1 must be 
of the form cyx =+2 . The value of c can be obtained by substituting the 
coordinate of P in this representation. 

Example 2.10 
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Find the projection of b on the line of a if  and 
  

kjia ˆˆˆ ++=

kjib ˆ5ˆ4ˆ2 ++=

Vector Algebra

Solution 
Here   a . b = 1.2 + 1.4 + 1.5 = 2 + 4 + 5 = 11 

Also    3111| 222 =++=|a  

∴ Projection of b on the line of a 

       
3

311
3

11
||

.
===

a
ba  

Example 2.11 
Show by vector method that the diagonals of a rhombus are at right angles. 

Solution 
Let ABCD be a rhombus. 
Let A be taken on the origin. 
Let b and d be the position vectors of vertices B and D respectively referred 
to the origin A (refer Figure 2.25). 
Then the position vector of C (using triangle or parallelogram law of 
addition) is b + d. 
Also  BD = d – b 
Now ABCD is a rhombus. 
∴  AB = AD ⇒ AB2 = AD2

⇒  b2 = d2

 
 
 
 
 
 
 
 

Figure 2.25 

Now  AC = b + d 
∴ AC . BD = (b + d) . (d – b) 

               = (d + b) . (d – b) 
   = d2 – b2

  = 0 
Hence AC is perpendicular to BD 
Thus diagonals AC and BD of the rhombus ABCD are at right angles. 

You may try the following exercises. 

SAQ 4 
(a) Prove by vector method that the angle in a semi-circle is a right angle. 
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(b) A particle is acted on by constant forces 
 and is displaced from the point (2, – 1, 

–3) to the point (4, –3, 7). Find the total work done by the forces. 
kjikji ˆ3ˆˆ2andˆ5ˆ2ˆ3 −+++−

Algebra and Probability 

(c) Vectors a and b are given by . 
Find 

kjibkjia ˆ4ˆ2ˆ2andˆˆ2ˆ3 ++−=+−=

(i) magnitudes of a and b and the angle between them 

(ii) projection of the vector ⎟
⎠
⎞

⎜
⎝
⎛ + ba

2
1  onto a 

(iii) Which of the following vectors are perpendicular to a? 

kjiekidkjic ˆ2ˆ2ˆ2,ˆˆ3,ˆ2ˆ4ˆ −+=+−=+−−=  

 
 
 
 
 
 
 
Dot multiplication of two vectors gives the product as a scalar. Various 
applications suggest another kind of multiplication of vectors such that the 
product is again a vector. We next take up such vector product or cross product 
between two vectors. Cross products play an important role in the study of 
electricity and magnetism. 

2.5.2 Vector Product of Two Vectors 
The vector product or the cross product of two vectors a and b, denoted by a × b, 
is defined as 

n̂sin|||| θ=× baba             . . . (2.10) 

where | a | and | b | are the magnitudes of the vectors a and b respectively, is 
the angle between vectors a and b and  is a unit vector perpendicular to both a 
and b and is such that a, b,  in this order, form a right-handed triple or 
 right-hand triod (see Figure 2.26). 

θ
n̂

n̂

 
 
 
 
 
 
 
 
 
 
 

Figure 2.26 : Vector Product 
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Vector AlgebraThe term right-handed comes from the fact that the vectors a, b,  in this order, 

assume the same sort of orientation as the thumb, index finger, and middle finger 
of right hand when these are held as shown in Figure 2.27(a). Let us now look at 
the screw shown in Figure 2.27(b). You may observe that if a is rotated in the 
direction of b through an angle θ (< π) then n  advances in a direction pointing 
towards the reader or away from the reader according as the screw is right-handed 
or left-handed. On the same account an ordered vector triad a, b,  is 
right-handed or left-handed. 

n̂

ˆ

n̂

 
 
 
 
 
 
 
 
 
 

(a) Right-handed Triple of Vectors a, b,     (b) Right-handed Screw n̂
Figure 2.27 

You may note here that 
(i)  π≤θ≤0

(ii)  is perpendicular to the plane which contains a and b both  n̂
(iii) vector product of two vectors is always a vector quantity 
(iv) The sine of the angle between two vectors a and b is given by 

)||.|(|
||sin

ba
ba ×

=θ . 

Vector product a × b is also called the cross product because of the notation used 
and is read as a cross b. 
From the definition of vector product, you know that b × a is a vector of 
magnitude | a |  | b | sin θ and is normal to a and b and in a direction such that b, a 
and b × a from a right-handed system (Figure 2.28). This is possible only if b × a 
is opposite to the direction of a × b. Since b × a and a × b have equal magnitudes, 
thus  

b × a = − a × b, 
 
 
 
 
 
 
 
 
 

Figure 2.28 
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which shows that the cross-product of vectors is not commutative. Algebra and Probability 

Hence the order of the factors in a vector product is of great importance and must 
be carefully observed. 

It may be observed that the unit vector normal to both a and b, namely,  is given 
by 

n̂

||
ˆ

ba
ba

×
×

=n  

If the vectors a and b are parallel (or collinear) then θ = 0 or 180º ⇒  sin θ = 0 

Hence a × b = 0 is the condition for the two vectors a and b to be parallel. 

In particular a × a = 0. 

You know that  represent unit vectors along the axes of a Cartesian 
coordinate system. Also since  in this order, form a right-handed system of 
mutually perpendicular vectors, therefore,  is a vector having modulus as 
unity and direction parallel to k . 

kji ˆ,ˆ,ˆ

kji ˆ,ˆ,ˆ

ji ˆˆ ×
ˆ

Thus   ijkji ˆˆˆˆˆ ×−==×

Similarly  jkikj ˆˆˆˆˆ ×−==×

and   kijik ˆˆˆˆˆ ×−==×

Also   ˆ ˆ ˆ ˆ ˆ ˆ× = × = × = 0i i j j k k

From the definition of cross product, it follows that for any constant λ 
)()()( bababa λ×=×λ=×λ  

Further, cross-multiplication is distributive w.r. to vector addition, i.e., 
cabacba ×+×=+× )(  

cbcacba ×+×=×+ )(  

Cross multiplication has a very unusual and important property, namely, Cross 
multiplication is not associative, i.e., in general 

cbacba ××≠×× )()(  

For instance, , jkijii ˆˆˆ)ˆˆ(ˆ −=×=××

whereas  0=×=×× jjii ˆ0ˆ)ˆˆ(

From the definition of cross-product and dot product of two vectors, we have 

θ=× 2222 sin|||||| baba  

)cos1(|||| 222 θ−−= ba  

222 ]cos|||[||||| θ−= baba  

2).().().( babbaa −=  

From the above identity, we obtain a useful formula for the modulus of a vector 
product as 
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Vector Algebra2).().().(|| babbaaba −=×  

Before taking up geometrical interpretation of vector product we list all the 
properties of vector product discussed above for the ready reference. 

PC 1 

a × b = − b × a  

i.e., vector product is not commutative. 

PC 2 

,0ˆ)0sin||||( ==× nbaba if a is Parallel to b. 

Vector product of parallel vectors is zero. In particular, a × a = 0 and 
a × 0 = 0. 

PC 3 

If m and n are scalars then (ma × nb) = mn (a × b) 

PC 4 

For a right handed triad of unit vectors  kji ˆ,ˆ,ˆ

ˆ ˆ ˆ ˆ ˆ ˆ× = × = × = 0i i j j k k  

jikikjkji ˆˆˆ,̂ˆˆ,ˆˆˆ =×=×=×  

jkiijkkij ˆˆˆ,̂ˆˆ,ˆˆˆ −=×−=×−=×  

PC 5 

Vector product is distributive w.r.t vector addition, i.e., 
cabacba ×+×=+× )(  

PC 6 
cbacba ××≠×× )()(  

i.e. vector product is not associative. 

We next take up geometrical interpretation of vector product. 

Geometrical Interpretation of Vector Product 

Consider a parallelogram OACB with a and b as adjacent sides. 

Let a = OA, b = OB 
 
 
 
 
 
 
 
 
 
 

Figure 2.29 
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and let BN be perpendicular to OA from B Algebra and Probability 

Let ∠ BON = θ 

∴        BN = OB sin θ 

             = | b | sin θ 

Now  | a × b | = | a |  | b | . sin θ 

              = OA . BN = Area of the parallelogram OACB. 

Thus, the magnitude of a × b is equal to the area of the parallelogram whose 
adjacent sides are the vectors a and b. 

The sign may also be assigned to the area. When a person travels along the 
boundary and the area lies to his left side, the area is positive and if the area 
lies to his right side, then the area is negative. 

Thus | a × b | = vector area of the parallelogram OACB 

and | b × a | = vector area of the parallelogram OBCA 

We shall now represent a vector product in terms of the components of its 
factors with respect to a Cartesian coordinate system. In this connection it is 
important to note that there are two types of such systems, depending on the 
orientation of the axes, namely, right-handed and left-handed. 

Vector Product in Terms of Components 

We shall first define right-handed and left-handed triples. We call a 
Cartesian coordinate system to be right-handed if the unit vector  in 
the directions of positive x, y, z-axes form a right-handed triple (Figure 
2.30(a); and it is called 
left-handed, if vectors  form a left-handed triple. In applications, we 
usually consider a right-handed system. 

kji ˆ,ˆ,ˆ

kji ˆ,ˆ,ˆ

Let us consider a right-handed Cartesian coordinate system and let 
 and  be the components of two vector a and b 

respectively, so that 
321 ,, aaa 321 ,, bbb

kjibkjia ˆˆˆandˆˆˆ
321321 bbbaaa ++=++=  

∴  )ˆˆˆ()ˆˆˆ( 321321 kjikjiba bbbaaa ++×++=×

          )ˆˆ()ˆˆ()ˆˆ( 312111 kijiii ×+×+×= bababa

                )ˆˆ()ˆˆ()ˆˆ( 322212 kjjjij ×+×+×+ bababa

             )ˆˆ()ˆˆ()ˆˆ( 332313 kkjkik ×+×+×+ bababa

     jk ˆˆ0 3121 baba −+=

         0ˆˆˆ0ˆ
23133212 +−+++− ijik babababa

⇒ , 
or in terms of second-order determinants, 

kjiba ˆ)(ˆ)(ˆ)( 122131132332 babababababa −+−+−=×
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21

21

13

13

32

32 ˆˆˆ
bb
aa

bb
aa

bb
aa

kjiba ++=×  

 
 
 
 
 
 
 
 
 
 
 

(a) Right-handed System   (b) Left-handed System 
Figure 2.30 

This enables us to obtain the cross product by expanding the third order 
determinant viz. 

321

321

ˆˆˆ

bbb
aaa
kji

ba =×  

by its first row. Remember it is not an ordinary determinant as the elements 
of the first row are vectors and it must be expanded only by the first row. 

In a left-handed Cartesian coordinate system,  (Figure 2.30(b)), 
and other similar expression lead to  

kji ˆˆˆ −=×

321

321

ˆˆˆ

bbb
aaa
kji

ba −=×  

Linear dependence or independence of two vectors can also be tested by 
their cross product. We say that ‘Two vectors form a linearly dependent set 
if and only if their vector product is zero’. 
Cross product has many applications. 

We shall now take up a few examples to illustrate them. 
Example 2.12 

Express Velocity of a rotating body as a vector product. 
Solution 

A rotation of a rigid body B in space can be simply and uniquely described 
by a vector ω. The direction of ω is that of axis of rotation of the body and 
such that the rotation appears clockwise, if one looks from the initial point 
of ω to its terminal point. The magnitude of ω is equal to the angular speed 
ω (> 0) of the rotation. 
Now let P be any point of body B and let d be its distance from the axis. 
Then P has the speed ω d. Let r be the position vector of P referred to a 
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Algebra and Probability coordinate system with origin O on the axis of rotation. Then d = | r | sin γ, 
where γ is the angle between ω and r. Therefore,  

||sin|||| rr ×ω=γω=ωd  

 
 
 
 
 
 
 
 
 

Figure 2.31 : Rotation of a Rigid Body 

The angular speed rotation of a body is the linear speed of a joint of the 
body divided by its distance from the axes of rotation. 
From the above result and the definition of vector product, we see that the 
velocity V of P can be represented in the form 

V = ω × r 
This formula is useful for determining velocity V at any point P of the 
body B. 

Example 2.13 
Find the moment of a force about a point in terms of vector product. 

Solution 
In mechanics the moment of a force p about a point Q is defined as the 
product m = | p | d, where d is the perpendicular distance between Q and the 
line of action l of p (Refer Figure 2.32). 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.32 : Moment of a Force 

If r is the vector from Q to any point A on l, then 
d = | r | sin γ 

and  m = | r |  | p | sin γ, 
where γ is the angle between r and  p. 
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Vector AlgebraTherefore, m = | p |  | r | sin γ 

    = | r × p | 
The vector m = r × p is called the moment vector or vector moment of p 
about Q. Its magnitude is m and its direction is that of the axis of the 
rotation about Q which p has the tendency to produce. 

Example 2.14 
Express force on a charged particle and an element of current carrying 
conductor placed in a magnetic field in terms of cross product. 

Solution 
The magnitude of the force on a point charge q moving with velocity V in a 
magnetic field B is proportional to | V | times the perpendicular component 
of B. Thus it can be expressed as a vector product as 

 )( BVF
ρρ

×= q  

If I is the current through the conductor, then the force on an element dI of 
a current carrying conductor in a magnetic field B is  

BIF ×= d  

Example 2.15 
If a, b, c are the position vectors of A, B, C in a Δ ABC, show that the vector 
area of the triangle is 

][
2
1 accbba ×+×+×  

Hence deduce the condition that the three points A, B, C may be collinear. 
Solution 

Let O be the origin of reference with respect to which a, b, c are the 
position vectors of A, B, C in Δ ABC (Figure 2.33). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.33 

∴ OA = a, OB = b, OC = c 
Now BC = OC – OB = c – b 

BA = OA – OB = a – b 
∴ Vector area of the triangle ABC 
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BABC ×=

2
1  

)()(
2
1 babc −×−=  

][
2
1 bba bbcac ×+×−×−×=  

][
2
1 bacbac ×+×+×=  

Now if the points A, B, C are collinear, then the vector area of the Δ ABC 
must be zero, i.e. 

  0][
2
1

=×+×+× bacbac  

⇒ ,0=×+×+× a ccbba  

which is the required condition. 
You may now attempt the following exercises. 

SAQ 5 
(a) Consider a force  newtons acting at a point 

m. What is the torque about the origin? 
)ˆ5ˆˆ3( kjiF ++−=

)ˆˆ3ˆ7( kjiP ++=

(Hint : Torque τ is a measure of the ability of an applied force to 
produce a twist or to rotate a body  τ = r × F.) ⇒

(b) Show that for any two vectors a and b 
),(2)()( bababa ×=+×−  

and give its geometrical interpretation. 
(c) Find the values of a for which the vectors 

kjikji ˆ3ˆˆandˆ9ˆ2ˆ3 ++++ a  

are (i) perpendicular (ii) parallel. 

(d) A force represented by  is acting at a point . Find 
its moment about the point . 

ki ˆˆ5 + kji ˆ2ˆˆ9 +−

kji ˆˆ2ˆ3 ++

 
 
 
 
 
 
In physics, repeated products of more than two vectors occur very often. For 
example, the electromotive force dE induced in an element of a conducting wire 
dI moving with velocity V through a magnetic field B is represented by 

IBV ddE .)( ×=  

It is real economy in thinking to represent the result in the compact vector form 
that removes the necessity of carrying factors such as sine of the angle between B 
and V and the cosine of the angle between the normal to their plane and the vector 
dI. These are taken into account by the given product of the three vectors. 
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Vector AlgebraLet us now discuss the product of three or more vectors in the next section. 

2.6 MULTIPLE PRODUCTS OF VECTORS 

Some of the commonly occurring multiple products in physical and engineering 
applications are the scalar and vector products of three vectors. 
We know that if b and c are two vectors, then b × c is a vector perpendicular to 
the plane of b and c. If a is a third vector, then scalar (or dot) product of a with (b 
× c) is a scalar. This is called scalar triple product or mixed triple product. The 
cross (or vector) product of a with (b × c) yields a vector and is called the vector 
triple product. Let us discuss the two types of products one by one. 

2.6.1 Scalar Triple Product 
The scalar triple product of three vectors a, b and c, denoted by a. (b × c), is 
defined as 

a . (b × c) = | a |  | b × c | cos β, 
where β is the angle between a and the vector (b × c) 
Here a . (b × c) is evidently a scalar. The scalar triple product a . (b × c) can be 
interpreted as the component of a along the vector (b × c). 
Note that (a . b) c merely represents a vector in the direction of c, whose modulus 
is (a . b) times the modulus of c, whereas (a . b) × c is meaningless since a . b is 
not a vector but a scalar. 
The different ways the scalar triple product of vectors a, b, c is written are as 
follows : 

a . (b × c) or [a b c] or [a, b, c] or (a b c) 
The absolute value of the scalar triple product has a geometrical meaning too. Let 
us see what it is? 
Geometrical Interpretation of the Scalar Triple Product 

Let a, b, c by any three vectors. Consider a parallelopiped with its three 
coterminus edges having the magnitude and directions as of a, b and c 
respectively (Figure 2.34). 

 
 
 
 
 
 
 
 
 

Figure 2.34 : Geometrical Interpretation of a Scalar Triple Product 

Let θ be the angle between b and c and β be the angle between a and n , the 
unit vector normal to b and c. 

ˆ

Then, we have 
a . (b × c) 
= a . [ n | b |  | c | sin θ] ˆ
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Algebra and Probability = (| a | cos β) (| b |  | c | sin θ) 
Now (| b |  | c | sin θ) is the area of the parallelogram formed by the vectors 
b and c, i.e., the base of the prallelopiped. Also (| a | cos β) is the height h of 
the parallelopiped. Thus )( cb.a

ρρρ
×  gives the volume of the parallelopiped. 

Hence, the absolute value of the scalar triple product a .(b × c) is equal to 
the volume of the parallelopiped with a, b, c as adjacent  edges. 
From this geometrical consideration it follows that the value of the scalar 
triple product is a real number, which is independent of the choice of 
Cartesian coordinates in space. 
In the parallelopiped in Figure 2.34 if we take the area of the face formed 
by a and b and multiply it by the height perpendicular (projection of c on 
(a × b), we get the volume of the same parallelopiped. Thus 

a . (b × c) = (a × b) . c 
Thus the positions of dot and cross in a scalar triple product are 
interchangeable provided the cyclic order of the factors is maintained. 
∴  a . (b × c) = b . (c × a) = c . (a × b) 
The change of cyclic order of factors brings about a change of sign in the 
value of the scalar triple product. 

The scalar triple product of the orthonormal right handed vectors  is 
equal to unity because 

kji ˆ,ˆ,ˆ

1ˆ.ˆ)ˆˆ(.ˆ ==× iikji  

Next consider three coplanar vectors a, b, c. Now b × c is a vector 
perpendicular to the plane of b and c and is, therefore, perpendicular to a 
also. 
∴ Scalar product of a and b × c must be zero 
∴  a . (b × c) = 0 
Thus, if three vectors are coplanar, their scalar triple product is zero. 
Further if we consider a, a, b and form a scalar triple product, then 

a . (a × b) = (a × a) . b 
        =  0 . b 
        = 0 

If two vectors in a scalar triple product are equal or parallel, then their 
scalar triple product vanishes. 

With respect to any right-handed Cartesian coordinate system, let 

   kjickjibkjia ˆˆˆ,ˆˆˆ,ˆˆˆ
321321321 cccbbbaaa ++=++=++=

Then           
321

321

ˆˆˆ

ccc
bbb
kji

cb =×  

Hence   
321

321321

ˆˆˆ

.)ˆˆˆ()(.
ccc
bbbaaa
kji

kj icba ++=×  
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⇒  
321

321

321

)(.
ccc
bbb
aaa

=× cba  

Since interchanging of two rows reverses the sign of the determinant, we 
have 

        [a, b, c] = − [b, a, c] 

Let us consider some examples giving applications of scalar triple product. 

Example 2.16 

Show that the force acting on a charged particle q which moves with 
velocity V in the magnetic field B does not bring about any change in the 
energy of the charge. 

Solution 

The force acting on a charge particle q moving with velocity V in the 
magnetic field B is given by  

    )( BVF
ρρ

×= q  

We know that the change in energy is equal to the work done. 

Now work done on the charge for an infinitesimal displacement dr is 

rBVrFW
ρρρ

dqd .)(. ×==  

If the displacement dr takes place in time dt, then 

 dr = V dt 

∴  ( ) .q d= × t
r r

W V B V  

∴        [ ]q dt , ,= V B V

∴        . 0q dt=

     = 0 

Since the work done is zero, hence the force F does not bring about any 
change in the energy of the charge. 

Example 2.17 

Find the volume of the tetrahedron whose three sides are given by 

kjikjikji ˆ2ˆˆ3andˆˆ2ˆ,ˆ4ˆ3ˆ2 +−−++−  

Solution 

We know that volume of a tetrahedron is one-sixth the volume of the 
parallelopiped with three sides of tetrahedron as its three adjacent edges. 

∴ Reqd volume cbacba .)(
6
1)(.

6
1

×=×=  

where   kjia ˆ4ˆ3ˆ2 +−=

kjib ˆˆ2ˆ −+=  

kjic ˆ2ˆˆ3 +−=  
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Now kj i
kji

ba ˆ7ˆ6ˆ5
121

432

ˆˆˆ

++−=
−

−=×  

∴  )ˆ2ˆˆ3(.)ˆ7ˆ6ˆ5(.)( kj ikj icba +−++−=×

    = – 15 – 6 + 14 = – 7 

Neglecting negative sign, the volume of tetrahedron 
6
7

= . 

Example 2.18 
Find the constant λ so that the vectors 

kjickjibkjia ˆ5ˆˆ3,ˆ3ˆ2ˆ,ˆˆˆ2 +λ+=−+=+−=  

are coplanar. 
Solution 

If a, b, c are coplanar, then their scalar triple product is zero, i.e., 
a . (b × c) = 0. 

⇒  0
53
321

112
=

λ
−

−
 

⇒  2 (10 + 3λ) + (5 + 9) + (λ − 6) = 0 
⇒   20 + 6λ + 14 + λ − 6 = 0 
⇒   28 + 7λ = 0 
⇒   λ = − 4 

You may now attempt a few exercise to test your knowledge. 

SAQ 6 
(a) Prove that (a + b) . [(b + c) × (c + a)] = 2 [a, b, c] 
(b) If the volume of the parallelopiped whose edges are 

 and  is 546, determine α. kjki ˆˆ3,ˆˆ12 −α+− kji ˆ15ˆˆ2 −+

(c) The position vectors of the points A, B, C, D are 
  respectively. 

If the points A, B, C, D lie in a plane, find the value of λ. 
,ˆ4ˆ3ˆ2,ˆˆ2ˆ3 kjikji −+−− kjikji ˆˆ5ˆ4andˆ2ˆˆ λ++++−

 
 
 
 
Let us now discuss the second type of vector product, that is, the vector triple 
product. 

2.6.2 Vector Triple Product 
We first give the definition of vector triple product. 
Definition 

The vector product of two vectors, one of which is itself the vector product 
of two vectors, is a vector quantity called the vector triple product. 
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Vector AlgebraThus if a, b, c be three vectors, then a × (b × c) and (a × b) × c are vector triple 

products. 
We next give geometrical interpretation for vector triple product. 
Geometrical Interpretation of Vector Triple Product a × (b × c) 

You know that b × c, by definition, is perpendicular to both b and c, that is, 
b × c is perpendicular to the plane containing b and c. Also a × (b × c), 
being the vector product of vector a and vector (b × c) is perpendicular to 
both a and (b × c). 
Hence a × (b × c) must be parallel to the plane determined by b and c and is 
perpendicular to a. 
From the above geometrical interpretation of vector triple product, you may 
note that where as a × (b × c) is a vector parallel to the plane of b and c and 
is perpendicular to the vector a, the vector triple product (a × b) × c is a 
vector parallel to the plane of a and b is perpendicular to the vector c. 
Hence, in general, 

a × (b × c) ≠ (a × b) × c 
Thus cross (or vector) product is not associative. As a word of caution we 
may mention that always keep track of the brackets for correct 
interpretation and expansion of vector triple product. 
The geometrical interpretation of vector triple product can also be used to 
find its expansion formula. 

Expansion Formula for Vector triple product a × (b × c) 

Since a × (b × c) lie in the plane containing b and c, we can, therefore, 
resolve 
a × (b × c) into components parallel to b and c, i.e., it is possible to find 
scalars m and n such that 

a × (b × c) = mb + nc            . . . (2.11) 
Multiplying both sides by a, we get 

])([. cbaa
ρρρρ

××  = m (a . b) + n (a . c)          . . . (2.12) 

The left-hand side of Eq. (2.12) is a scalar triple product of a, a and (b × c). 
Since in this scalar triple product, two of the vectors are equal, therefore it 
is zero. 
Hence  m (a . b) + n (a . c) = 0 

or  pnm
=

−
=

).().( baca
ρ , say 

Putting the values of m and n in Eq. (2.11), we get 

a × (b × c) = p (a . c) b − p (a . b) c          . . . (2.13) 
We note that both the sides of Eq. (2.13) are equally balanced in a, b and c. 
Hence p must be some numerical constant independent of a, b and c. Also 
Eq. (2.13) is true for any three vectors a, b, c. Thus to determine p, we take 
the special case where 

jciba ˆandˆ ===  

Then   jiiijijii ˆ)ˆ.ˆ(ˆ)ˆ.ˆ()ˆˆ(ˆ pp −=××

⇒           jiki ˆ)1(ˆ)0(ˆˆ pp −=×
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⇒                  p = 1 

Substituting for p = 1 in Eq. (2.13), we get the required expansion formula 
as 

   a × (b × c) = (a . c) b – (a . b) c 

Let us consider a physical example of the vector triple product from 
electromagnetism. 

Example 2.19 

Show that parallel wires carrying current in the same direction attract each 
other. 

Solution 

Consider two wires w1 and w2 carrying current i1 and i2 respectively. Let dI1 
and dI2 be the infinitesimal elements of the wire in the direction of current 
flow. Then the force experienced by the infinitesimal element dI2 due to dI1 
is given by 

,)(
4 3

12
21 r

ddii rIIF
ρρρ

××
π
μ

=  

where μ is the permeability of the free space and r is the position vector of 
dI2  w.r. to dI1. 

If we take dI1 and r in the plane of this paper, then dI1 × r is a vector 
perpendicular to the plane of this paper and points to it. Thus dI2 × (dI1 × r) 
is a vector in the plane of this paper and perpendicular to dI2. This means 
that parallel wires carrying current in the same direction attract each other. 

In case the direction of any one of the currents is reversed, the wires will 
repulse each other. 

Let us take another example to illustrate the use of vector triple products. 

Example 2.20 

Prove that 

a × (b × c) + b × (c × a) + c × (a × b) = 0 

Solution 

From the expansion of vector triple products, we have 

a × (b × c) = (a . c) b – (a . b) c           . . . (2.14) 

b × (c × a) = (b . a) c – (b . c) a           . . . (2.15) 

c × (a × b) = (c . b) a – (c . a) b           . . . (2.16) 

Since scalar product is commutative, hence adding Eqs. (2.14), (2.15) and 
(2.16) we see that the terms in the right cancel and we get 

a × (b × c) + b × (c × a) + c × (a × b) = 0  

You may now attempt the following exercises. 
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(a) If , find kjickjibkjia ˆˆ3ˆ,ˆˆˆ2,ˆ3ˆ2ˆ −+=−+=−−=

(i) a × (b × c) and 

(ii) (a × b) × c 

(b) Prove that 

akakjajiai 2)ˆ(ˆ)ˆ(ˆ)ˆ(ˆ =××+××+××  

for any arbitrary vector a. 

(c) If a, b, c are three unit vectors, such that bcba
2
1)( =×× , find the 

angle which a makes with b and c, given that b and c are non-parallel. 

(d) Show that (a × b) × c = a × (b × c) if and only if a and c are collinear 
vectors. 

 

 
 
 
 
Using the results of the Sub-sections 2.6.1 and 2.6.2 the product of four (or more) 
vectors can also be evaluated. It will be seen that other repeated products which 
occur in applications may be expressed in terms of dot product or vector product 
or scalar triple products. We now discuss briefly the product of four vectors. 

2.6.3 Quadruple Product of Vectors 
Quadruple product means the product of four vectors. Some of the relevant 
quadruple products are : 

(i) (a × b) . (c × d)  

(ii) (a × b) × (c × d) 

(iii) a × [b × (c × d)] 

Let us now find their simplified expressions. 

(i) Let  p = c × d 

∴  (a × b) . (c × d) = (a × b) . p 

   = a . (b × p) 

since dot and cross product are interchangeable in  scalar triple 
product. 

⇒  (a × b) . (c × d) = a . [b × (c × d)] 

  = a . [(b . d) c – (b . c) d] 

   = (a . c) (b . d) – (b . c) (a . d) 

Hence, (a × b) . (c × d) = (a . c) (b . d) – (b . c) (a . d)       . . . (2.17) 
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Next consider 

(ii) (a × b) × (c × d) = (a × b) × p, where p = c × d 

       = − p × (a × b) 

       = − [(p . b) a – (p . a) b] 

       = (p . a) b – (p . b) a 

         = {a . (c × d)} b – {b . (c × d)} a  

Hence, (a × b) × (c × d) = [a, c, d] b – [b, c, d] a         . . . (2.18) 

In case we start with a × b = q and expand vector triple product 
(a × b) × (c × d) as q × (c × d), we get another expression for this 
quadruple product as 

(a × b) × (c × d) = [a, b, d] c – [a, b, c] d         . . . (2.19) 

Lastly, we consider 

(iii) a × [b × (c × d)] = ])()([ dc.bcd.ba
ρρρρρρρ

−×  

          = (b . d) (a × c) – (b . c) (a × d) 

Hence a × [b × (c × d)] = (b . d) (a × c) – (b . c) (a × d)   . . . (2.20) 

Let us consider some example illustrating the use of quadruple products. 

Example 2.21 

Prove that 

(a × b) . {(b × c) × (c × a)} = [a . (b × c)]2

Solution 

Using result (2.18), we have 

           )()( accb
ρρρρ

×××  = [b, c, a] c − [b, c, c] a 

 = [b, c, a] c )0],,[( =ccbΘ  

Hence (a × b) . [(b × c) × (c × a)] 

                 = (a × b) . {[b, c, a] c}  

     = [b, c, a] {a × b) . c} 

   = [a, b, c] [a, b, c] 

Cyclic change in scalar triple product 

     = [a . (b × c)]2

Hence from the above result, it immediately follows that if a, b, c are three 
non-coplanar vectors, then a × b, b × c and c × a are also non-coplanar. 

You may now try this exercise. 
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Prove that 

[(a × b) × (a × c)] . d = (a . d) [a, b, c] 

 
 
 
 
On the basis of the above knowledge, we shall like to discuss in brief in the next 
section the two categories of vectors into which all vector quantities of 
mechanics/physics can be grouped. These are termed as proper (or polar) vectors 
and pseudo vectors (or axial vectors). 

2.7 POLAR AND AXIAL VECTORS 

The direction of some of the vector quantities is clearly indicated by the direction 
of motion of a system. Examples of such vectors are displacements, velocity, 
acceleration, etc. Such vectors are called polar vectors. 

Vectors, namely, angular velocity, angular acceleration, angular momentum, etc. 
associated with the rotation motion are such that their direction does not indicate 
the direction of rotation of the body. Their direction is taken to be along the axis 
of rotation. Such vectors are called axial vectors. 

The transformation of coordinates 
zzyyxx −=′−=′−=′ ,,  

is called the parity transformation. 

The difference between polar and axial vectors can be expressed in terms of 
parity transformation as follows: 

If a vector changes sign under the parity transformation, it is called a proper or a 
polar vector. The vectors which do not change sign under a parity transformation 
are called axial vectors. 

It may be observed that 

The cross product of two polar vectors is an axial vector. 

Before we move on to the next units, wherein we shall discuss vector differential 
calculus and vector integral calculus, it will be worthwhile to look briefly to the 
three coordinate systems in space and give their relations. We take up these 
coordinate systems briefly in the next section. 

2.8 COORDINATE SYSTEMS FOR SPACE 

Let us look briefly at three coordinate systems for space. The first, Cartesian 
coordinates, is the system we have been using the most in our discussion so far. 
Cylindrical and spherical polar coordinates will come handy when we study 
integration of vectors because surfaces that have complicated representation in 
Cartesian coordinates sometimes have simpler equations in one of these other 
systems. 

2.8.1 Cartesian Coordinates 
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Algebra and Probability Consider a system of mutually orthogonal coordinate axes Ox, Oy and Oz (see 
Figure 2.35). The Cartesian coordinates of a point P (x, y, z) in space may be read 
from the coordinate axes by passing planes through P perpendicular to each axis. 
The three coordinate planes x = 0, y = 0, z = 0 divide the space into eight cells, 
called octants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.35 : Cartesian Coordinates 

The octant in which all the three coordinates are positive is called the first octant. 
We next take up cylindrical coordinates. 

2.8.2 Cylindrical Coordinates 
It is frequently convenient to use cylindrical coordinates (r, θ, z) to locate a point 
in space. There are first the polar coordinates (r, θ) used instead of (x, y) in the 
plane z = 0 coupled with the z-coordinate (refer Figure 2.36). 
 
 
 
 
 
 
 
 
 
 

Figure 2.36 : Cylindrical Coordinates 

Equations relating Cartesian and Cylindrical Coordinates are 
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Vector Algebra222,cos yxrrx +=θ=  

x
yry =θθ= tan,sin  

   z = z  
Here r = 0 is the equation for z-axis and r = constant describes a circular cylinder 
of radius r whose axis is the z-axis. 
The equation θ = constant describes a plane containing the z-axis and making an 
angle θ with the positive x-axis. 
Cylindrical coordinates are convenient when there is an axis of symmetry in a 
physical problem. 

2.8.3 Spherical Coordinates 
Spherical coordinates are useful when there is a center of symmetry. The 
spherical coordinates (R, θ, φ) of a point in space are shown in Figure 2.37 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.37 : Spherical Coordinates 

The first coordinate R = | OP | is the distance from the origin to the point P. It is 
never negative. 

The second coordinate θ is the same as in cylindrical coordinates, namely, the 
angle from xz-plane to the plane through P and the z-axis. 

The third spherical coordinate φ is the angle measured down from the z-axis to the 
line OP. 

Every point in space can be represented in terms of spherical coordinates 
restricted to the ranges. 

π≤φ≤π≤θ≤≥ 0,20,0R  

Equations relating Cartesian and Cylindrical Coordinates to Spherical Polar 
Coordinates are 

θφ=θ=φ= cossin,cos,sin RxrxRr  

θφ=θ=φ= sinsin,sin,cos RyryRz  

  φ==θ=θ cos,, Rzzz  
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The equation R = constant describes the surface of a sphere of radius R with 
center at 0. 

Algebra and Probability 

The equation θ = constant in spherical polar coordinates defines a half-plane 
Θ    )0and,0( π≤φ≤≥R  

The equation φ = constant describes a cone with vertex at 0, axis OZ, and 
generating angle φ provided we broaden our interpretation of the word ‘cone’ to 
include the 

xy-plane for which 
2
π

=φ  and comes with generating angles greater than 
2
π . 

2.9 SUMMARY 

In this unit, you have learnt 

• A physical quantity completely specified a single number (with a 
suitable choice of units of measure) is called a scalar. 

• Quantities specified by a magnitude and a direction are called vector 
quantities. 

• Length, support and sense characterize a directed line segment. 
Length of a directed line segment is called magnitude or modulus or 
norm of the vector it represents. Direction of a vector is from its 
initial to terminal point. 

• A vector with a certain fixed initial point is called a bounded vector 
and when there is no restriction to choose the initial point, it is called 
a free vector. 

• A vector whose length is zero is called a null vector. 

• A vector whose length is unity is called unit vector. 

• All vectors having the same initial point are called coinitial vectors. 

• Vectors having the same or parallel line of action are called like or 
parallel or collinear vectors and vectors are called unlike if they have 
opposite directions. 

• Vectors parallel to the same plane or lying in the same plane are 
called coplanar vectors. Three vectors are coplanar if their scalar 
triple product is zero. 

• Two vectors are said to be equal if they have the same length, same or 
parallel supports and the same sense. 

• Projections of a vector on the axes of an orthogonal Cartesian 
coordinate system are called its components. If  
in component form, then 

kjia ˆˆˆ
321 aaa ++=

2
3

2
2

2
1|| aaa ++=a  

and direction cosines of the vector are 
||

,
||

,
||

321
aaa
aaa . 
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Vector Algebra• If initial point of a vector is chosen to be the origin of a Cartesian 

coordinate system, then components of the vector are the coordinates 
of its terminal point and the vector is called position vector of its 
terminal point. 

• Two vectors a and b can be added graphically using triangle law or 
parallelogram law of vector addition. 

• Vector addition is commutative and associative. There exist additive 
identity (0) and additive inverse (negative of the vector). 

• The difference a – b of two vectors a and b is obtained by adding (– 
b) to a. 

• Given   kjibkjia ˆˆˆ,ˆˆˆ
321321 bbbaaa ++=++=

.ˆ)(ˆ)(ˆ)( 332211 kjiba bababa ±+±+±=±  

• If m is a scalar and a a vector, then m a is a vector whose magnitude 
= | m |  | a |, support is same or parallel to a and direction of vector m 
a is same as a if  and opposite to a if 0m > 0.m <  

• Two vectors are linearly dependent if and only if they are parallel, 
otherwise they are linearly independent. The condition of linear 
dependence is that their vector product is zero. 

• The scalar product of two vectors a and b is defined as 
a . b = | a | | b | cos γ, where )0( π≤γ≤γ  is the angle between a and b. 
In component form, 332211. bababa   ++=ba

ρρ . 

• Two non zero vectors are perpendicular to each other if and only if 
their dot product is zero. 

• 
| | 

    | 
ba
baaaa

||
.cosand.| =γ= for angle γ between a and b. 

• Geometrically, scalar product of two vectors is the product of the 
modulus of either vector and projection of the other in its direction. 

• The vector product of two vectors a and b is defined as 

   )0(,ˆsin|| π≤γ≤γ=× nbaba | |   , 

where γ is the angle between a and b and  is a unit vector 
perpendicualr to both 

n̂
a
ρ and b

ρ
 in the direction such that a, b,  form 

a right-handed trial. 
n̂

• a × b = 0 is the condition for vectors a and b to be parallel. 

• Geometrically, a × b represents the vector area of the parallelogram 
having adjacent sides represented by a and b. 

• 2).().().(|| babbaaba −=×  . 

• In the component form 

   
321

321

ˆˆˆ

bbb
aaa
kji

ba =×  

• The scalar triple product a . (b × c) is given by 
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Algebra and Probability  a . (b × c) = | a |  | b × c | cos β, 

where β is the angle between a and (b × c). 
In the component form,  

321

321

321

)(.
ccc
bbb
aaa

=× cba  

• Geometrically, a . (b × c) is the volume of the parallelopiped with a, 
b, c as adjacent sides. 

• The positions of dot and cross products in a scalar triple product are 
interchangeable provided the cyclic order of the factors is maintained. 

• The vector triple product of three vectors a, b, c is given by 

a × (b × c) = (a . c) b – (a . c) c 

• Geometrically, a × (b × c) is parallel to the plane of b and c and is 
perpendicular to a. 

• Some quadruple products of a, b, c and d are 

(a × b) . (c × d) = (a . c) (b . d) – (a . d) (b . c) 

   (a × b) × (c × d) = [a, b, d] c – [a, b, c] d 

   a × [b × (c × d)] = (b . d) (a × c) – (b . c) (a × d) 

• The component of polar vector change their sign under a parity 
transformation, while those of an axial vector do not. 

• Equations relating Cartesian and Cylindrical Coordinates to Spherical 
Polar Coordinates are 

 θφ=θ=φ= cossin,cos,sin RxrxRr  

θφ=θ=φ= sinsin,sin,cos RyryRz  

   φ==θ=θ cos,, Rzzz  

2.10 ANSWERS TO SAQs 

SAQ 1 

(a) If a1, a2, a3 are the components of a vector a with initial point P (3, − 
2, 1) and terminal point Q (1, 2, − 4) then 

514,4)2(2,231 321 −=−−==−−=−=−= aaa  

and 2
3

2
2

2
1 aaa|a| ++=  

       222 )5()4()2( −++−=  

       25164 ++=  

       45=   

       53=  
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(b) Since 
2
3,1,

2
1 are components of a vector a and 

⎟
⎠
⎞

⎜
⎝
⎛−

2
3,1,

2
1P  is the initial point of a and if Q (x, y, z) is the terminal 

point of a then, 2
2
3

2
1,211,0

2
1

2
1

=+==+==+−= zyx  i.e., 

terminal point of (0, 2, 2) 

Also length of  
2 2

21 3(1)
2 2

| | ⎛ ⎞ ⎛ ⎞= = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

a a  

         
4
91

4
1

++=  

        
4

14
=  

        
2
7

=  

SAQ 2 
 
 
 
 
 

Figure 

In Δ ABC, by triangle law of addition, AB = AC + CB 

In  Δ BCD by triangle law of addition, DC = DB + BC 
Adding, we get AB + DC = AC + CB + DB + BC 
                = AC + DB + CB – CB  )0)(( =−+ aa

ρρ
Θ  

                = AC + DB 
Hence the result. 

SAQ 3 
(a) (i) Let A, B, C be three non-linear point. Draw a Δ ABC such that 

AB = a    and    BC = b 
 
 
 
 
 
 
 
 
 

Figure 
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As sum of two sides of a triangle is greater than the third side, Algebra and Probability 

∴  | AC | < | AB | + | BC | 
When A, B, C are collinear, then 

  a = AB,  b = BC 
∴  a + b = AC 
Q   AC = AB + BC 
∴  | AC | = | AB | + | BC | 
⇒  | a + b | = | a | + | b | 
Combining the results for collinear and non-collinear points A, 
B and C, we get 
  | a + b | ≤ | a | + | b | 

(ii) Here          | a | = | a + (b – b) | = | (a – b) + b | 
        ≤ | a – b | + | b | 
⇒  | a | – | b | ≤ | a – b | 

(b) Here       jicjbjia ˆ3ˆ33,ˆ6,ˆ3ˆ33 +==−=  

Now  jjiba ˆ6ˆ3ˆ33 +−=+  

            ji ˆ3ˆ33 +=  

            = c 
Also      636927|| ==+=a  

       636|| ==b  

                       636927|| ==+=c  

Hence a, b, c form an equilateral triangle. 
(c) Let us denote the three points by A, B, C. With reference to some 

origin of regerence O, we have 

  jiOCjiOBjiOA ˆ
4
3ˆ5,ˆ

4
9ˆ3,ˆ3ˆ2 +=+=+=  

Now )ˆ3ˆ2(ˆ
4
9ˆ3 jijiOAOBAB +−⎟

⎠
⎞

⎜
⎝
⎛ +=−=  

     ji ˆ
4
3ˆ −=  

  )ˆ3ˆ2(ˆ
4
3ˆ5 jijiOAOCAC +−⎟

⎠
⎞

⎜
⎝
⎛ +=−=  

     ji ˆ
4
9ˆ3 −=  

     ⎟
⎠
⎞

⎜
⎝
⎛ −= ji ˆ

4
3ˆ3  

     = 3 AB  
∴ AC and AB are parallel, but AC and AB have one point A 
common. 
Hence A, B, and C are collinear. 
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Vector Algebra(d) If the three vectors are coplanar, they should be linearly dependent. 

Thus one of them can be expressed as linear combination of the 
remaining two, i.e., there should exist two scalars x and y such that  
  )5203()987(765 cbacbacba ++++−=++ yx  

Equating coefficients of like vectors, we get 
          yx 375 +=

         yx 2086 +−=  
          yx 597 +=

Solving the first two of these equations, we get 

         
2
1,

2
1

== yx  

These values of x and y also satisfy the third of the above equations. 
Here the three vectors are coplanar. 

SAQ 4 
(a) Let O be the centre of the semicircle with AB as diameter. 

Let P be the any point on the circumference of the semi-circle. 
Let O be the origin of reference 
and OA = a so that OB = − a 
let  OP = r 
Now for the semi-circle, 
  | OP | = | OA | 
∴  OP2 = OA2

 
 
 
 
 

Figure 

⇒  r2 = a2

⇒             (r – a) . (r  + a) = 0 

⇒  (OP – OA) . (OP – OB) = 0 

⇒  AP . BP = 0 

⇒  AP is perpendicular to BP 

Hence  o90=∠ APB

(b) F = Total force = Sum of forces 

        )ˆ3ˆˆ2()ˆ5ˆ2ˆ3( kjikji −++++−=

             kji ˆ2ˆ3ˆ ++−=

d = Total displacement  )ˆ3ˆˆ2()ˆ7ˆ3ˆ4( kjikji −−−+−=

           kji ˆ10ˆ2ˆ2 +−=
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Work done  )ˆ10ˆ2ˆ2(.)ˆ2ˆ3ˆ(. kjikjidF +−++−=Algebra and Probability 

           = – 2 – 6 + 20 = 12 

(c) Here  kjibkjia ˆ4ˆ2ˆ2andˆˆ2ˆ3 ++−=+−=

(i) ∴ 14149.|| =++== aaa  

241644.|| =++== bbb  

If α is the angle between a and b, then 

cos α = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=α⇒−=

+−−
= −

84
3cos

84
3

2414
446

||||
. 1

ba
ba  

(ii) Here   )ˆ4ˆ2ˆ2(
2
1)ˆˆ2ˆ3(

2
1 kjikjiba ++−++−=+  

        kji ˆ3ˆˆ2 +−=

Now projection of ⎟
⎠
⎞

⎜
⎝
⎛ + ba

2
1 on a 

   
||

.
2
1

a

aba ⎟
⎠
⎞

⎜
⎝
⎛ +

=  

  
14

)ˆˆ2ˆ3(.)ˆˆ2ˆ2( kjikji +−+−
=  

  
14

11
14

)326(
=

++
=  

(iii) Vector a is perpendicular to b if a . b = 0 

Here  07283)ˆ2ˆ4ˆ(.)ˆˆ2ˆ3(. ≠=++−=+−−+−= kjikjica

∴ a is not perpendicular to c. 

Also    08109)ˆˆ3(.)ˆˆ2ˆ3(. ≠−=++−=+−+−= kikjida

∴    a is not perpendicular to d. 

Now,   0246)ˆ2ˆ2ˆ2(.)ˆˆ2ˆ3(. =−−=−++−= kjikjica

∴ a in not perpendicular to c. 
SAQ 5 

(a) Torque = r × F 

          )ˆ5ˆˆ3()ˆˆ3ˆ7( kjikji ++−×++=

         
513
137

ˆˆˆ

−
=

kji
 

          )97(ˆ)353(ˆ)115(ˆ ++−−+−= kji

          kji ˆ16ˆ38ˆ14 +−=

(b) L. H. S. = (a – b) × (a + b) 
           = a × a + a × b – b × a – b × b 
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Vector Algebra           = 0 + a × b + a × b – 0 

           = 2 (a × b) 
Interpretation 

Let the diagonals AC and BC of the parallelogram ABCD 
intersect at O. 

 
 
 
 
 
 

Figure 

Let  AO = a and OD = b 

∴  OB = – b 

Now  AB = AO + OB = a – b 

and  AD = AO + OD = a + b 

Now (a − b) × (a + b) = AB × AD = area of parallelogram 
ABCD. 

Again a × b = area of parallelogram whose sides are a and b. 

            = area of parallelogram with sides as semi-diagonals 
     of parallelogram ABCD. 

Hence the area of the parallelogram ABCD is equal to twice the 
area of the  parallelogram whose adjacent sides are semi-
diagonals of the first parallelogram. 

(c) (i) If the given vectors are perpendicular, then 

0)ˆ3ˆˆ(.)ˆ9ˆ2ˆ3( =++++ kjikji a  

⇒          02723 =++ a  

⇒        302 −=a

⇒         15−=a

(ii) If the given vectors are parallel, then 

0)ˆ3ˆˆ()ˆ9ˆ2ˆ3( =++×++ kjikji a  

⇒  0==
31
923

ˆˆˆ

a

kji
 

⇒   kjikji ˆ0ˆ0ˆ0)23(ˆ)99(ˆ)96(ˆ ++=−+−−−= aa

⇒  023and0)96( =−=−= aa  

⇒          
3
2

=a  
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(d) Let A be the point  and B the point  )ˆ2ˆˆ9( kji +− )ˆˆ2ˆ3( kji ++Algebra and Probability 

Then  kjikjikjirBA ˆˆ3ˆ6)ˆˆ2ˆ3()ˆ2ˆˆ9( +−=++−+−==

Also the force   kiF ˆˆ5 +==

∴ The required moment = r × F     

             )ˆˆ5()ˆˆ3ˆ6( kikji +×+−=

            
105
136

ˆˆˆ

−=
kji

 

             kji ˆ15ˆˆ3 +−−=

SAQ 6 

(a) L. H. S. = (a + b) . [(b + c) × (c × a)] 

          = (a + b) . [b × c + b × a + c × c + c × a] 

          = (a + b) . [b × c + b × a + c × a]  )0( =× ccΘ  

          = a . (b × c) + a . (b × a) + a . (c × a) 

                   + b . (b × c) + b . (b × a) + b . (c × a) 

          = [a, b, c] + [b, c, a] 

 (Θ  a scalar triple products is zero when the vectors are equal). 

          = [a, b, c] + [a, b, c]  ]),,[],,[( cbaacb =Θ  

          = 2 [a, b, c] 

          = R. H. S. 

(b) Let   kia ˆˆ12 α+−=

    kib ˆˆ3 −=

    kjic ˆ15ˆˆ2 −+=

∴ Volume = a . (b × c) 

   
1512
130

012

−
−
α−

=  

   )60()145(12 −α++−−=  

   α−= 6528  

But given volume = 546 

∴  5466528 =α−  

⇒  185285466 +=−=α−  
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Vector Algebra⇒   3−=α

(c) Here  )ˆˆ2ˆ3()ˆ4ˆ3ˆ2( kjikjiOAOBAB −−−−+=−=

                       kji ˆ3ˆ5ˆ −+−=

)ˆˆ2ˆ3()ˆ2ˆˆ( kjikjiOAOCAC −−−++−=−=  

      kji ˆ3ˆ3ˆ4 ++−=

)ˆˆ2ˆ3()ˆˆ5ˆ4( kjikjiOAODAD −−−λ++=−=  

      kji ˆ)1(ˆ7ˆ +λ++=

Since A, B, C, D are coplanar, therefore AB, AC and AD lie in the 
same plane. 
Thus   0)(. =× ADACAB

⇒  0
171

334
351

=
+λ

−
−−

 

⇒      0)328(3)344(5)2133(1 =−−−−−λ−−−+λ−=  

⇒      0933520183 =++λ++λ−=  

⇒       014617 =+λ=

⇒   
17
146

−=λ  

SAQ 7 
(a) Here  kjickjibkjia ˆˆ3ˆ,ˆˆˆ2,ˆ3ˆ2ˆ −+=−+=−−=

(i) Now )16(ˆ)12(ˆ)31(ˆ

131
112

ˆˆˆ

−++−−+−=
−
−=× kj i
kji

cb  

          kji ˆ5ˆˆ2 ++=

 ∴ )41(ˆ)65(ˆ)310(ˆ

512
321

ˆˆˆ

)( +++−+−=−−=×× kj i
kji

cba  

          kji ˆ5ˆ11ˆ7 +−−=

(ii) Also )41(ˆ)61(ˆ)32(ˆ

112
321

ˆˆˆ

+++−−+=
−
−−=× kj i
kji

ba  

                   kji ˆ5ˆ5ˆ5 +−=

∴ )515(ˆ)55(ˆ)155(ˆ

131
555

ˆˆˆ

)( ++−−−−=
−

−=×× kj i
kji

cba  

                    kji ˆ20ˆ10ˆ10 ++−=

(b) L. H. S.  )ˆ(ˆ)ˆ(ˆ)ˆ(ˆ kakjajiai ×+××+××=
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        ]ˆ).ˆ()ˆ.ˆ[(]ˆ).ˆ()ˆ.ˆ[(]ˆ).ˆ()ˆ.ˆ[( kakakkjajajjiaiaii −+−+−=Algebra and Probability 

        kakajajaiaia ˆ).ˆ(ˆ).ˆ(ˆ).ˆ( −+−+−=

        ]ˆ).ˆ(ˆ).ˆ(ˆ).ˆ[(3 kakjajiaia ++−=

Let    kjia ˆˆˆ
321 aaa ++=

∴  321 .ˆ,.ˆ,.ˆ aaa === akajai

∴ L. H. S 
          )ˆˆˆ(3 321 kjia aaa ++−=

         aa −= 3  
         a2=   

         = R. H. S. 
(c) We have 

  bcba
2
1)( =××  

⇒  bcbabca
2
1).().( =−  

⇒  0).(
2
1. =−⎟
⎠
⎞

⎜
⎝
⎛ − cbabca  

⇒  0
2
1. =−ca   and   a . b = 0 

⇒  
2
1. =ca    and   a . b = 0 

(Since b and c are non-parallel, hence coefficients of b and c must 
vanish separately.) 
If θ1 and θ2 are the angles between a and c and a and b respectively, 
then 

     )vectorsunitare,,(
32

1cos 11 cbaΘ
π

=θ⇒=θ   

     
2

0cos 22
π

=θ⇒=θ  

(d) Given (a × b) × c = a × (b × c),  
we have to prove that a and c are collinear 
Now   (a × b) × c = a × (b × c) 
⇒  (a . c) b – (b . c) a = (a . c) b – (a . b) c 
⇒  (a . b) c – (b . c) a = 0 
⇒  (a × c) × b = 0 

⇒  Either a × c = 0   or  b = 0 

But     b ≠ 0 

∴  a × c = 0 

⇒  a and c are collinear 
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Vector Algebra(∴ Cross product of collinear vectors is zero.) 

Conversely, given a and c are collinear, we have to prove that  

  (a × b) c = a × (b × c) 

Since a and c are collinear, 

let  c = t a, where t is some scalar 

Now (a × b) × c = (a × b) × t a 

       = t [(a . a) b – (a . b) a]     . . . (1) 

and            a × (b × c) = a × (b × t a) 

       =  t [(a . a) b – (a . b) a]    . . . (2) 

From Eqs. (1) and (2) 

  a × (b × c) = (a × b) × c 

SAQ 8 

Let  a × b = r 

∴ (a × b) × (a × c) = r × (a × c) 

     = (r . c) a – (r . a) c 

     = [(a × b) . c] a – [(a × b) . a] c 

     = [a, b, c] a – [a, b, a] c 

     = [a, b, c] a – (Θ  [a, b, a] = 0) 

∴     [(a × b) × (a × c)] . d = {[a, b, c] a} . d 

     = [a, b, c] (a . d) 

     = (a . d) [a, b, c] 

Hence the result. 
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