ELECTRICAL AND ELECTRONICS ENGINEERING INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:

(EEE)

- (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate :
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

1-B

Set Code : T2 **Booklet Code :** в

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

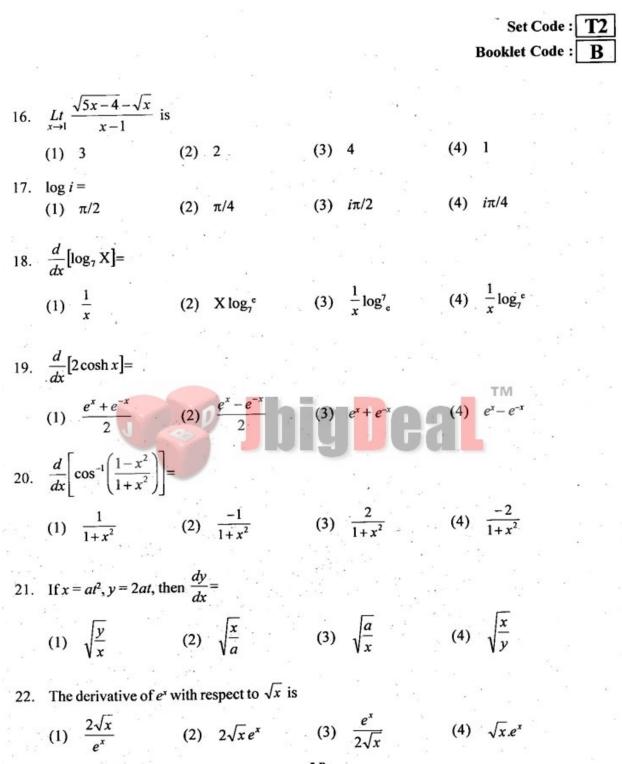
- If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$ 1. (2) 4 sinA cosB sinC (1) 4 cosA sinB cosC (4) 4 sinA sinB sinC (3) 4 cosA cosB cosC The principal solution of Tanx = 0 is 2. (2) x=0(1) $x = n\pi, n \in \mathbb{Z}$ (4) $x = n\pi + \alpha, n \in \mathbb{Z}$ TM (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$ The value of $\operatorname{Tan}^{-1}(2) + \operatorname{Tan}^{-1}(3)$ is 3. π π (3) (4)(2)3 (1)2 4 If the sides of a right angle triangle are in A.P., then the ratio of its sides is 4. (3) 3:4:5 (4) 4:5:6 (2) 2:3:4 (1) 1:2:3 5. The value of $r.r_1.r_2.r_3$ is (2) Δ⁻² (3) Δ⁻³. (4) Δ^4 (1) Δ^2 6. $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r_3}$
 - 45 -

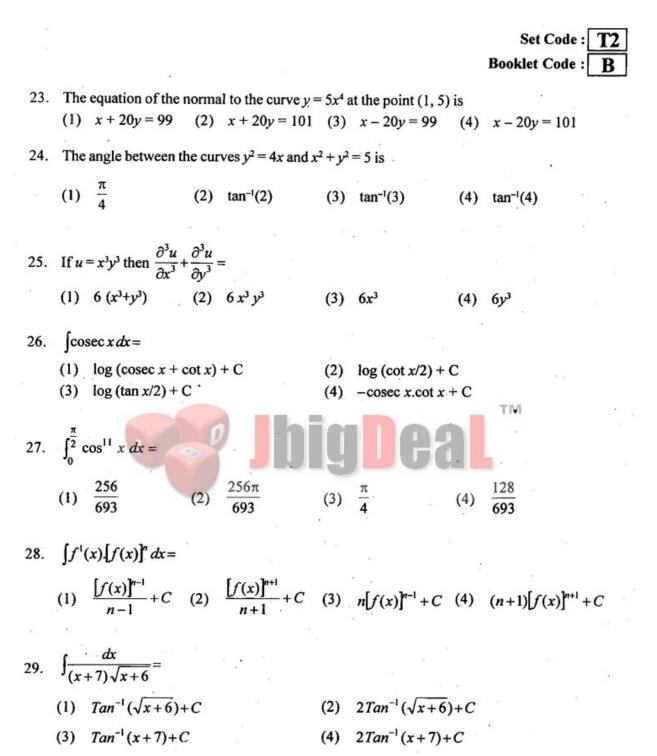
(2)

(1) $\frac{1}{r}$

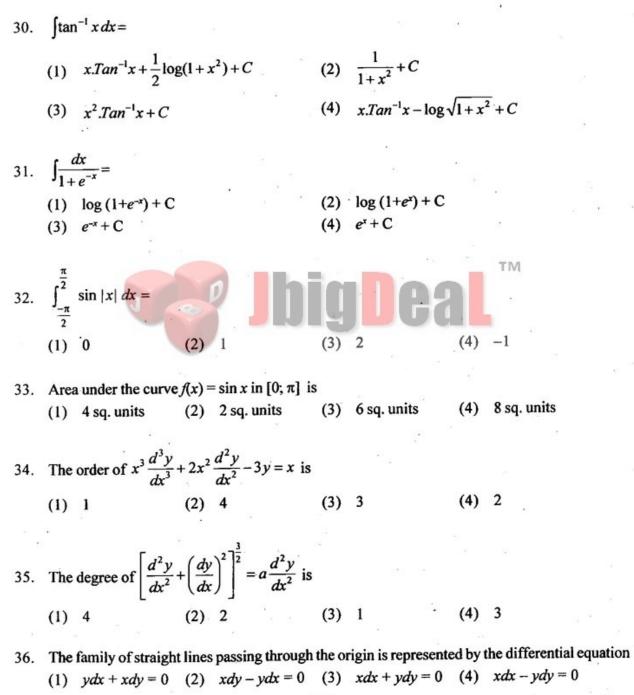
3-B

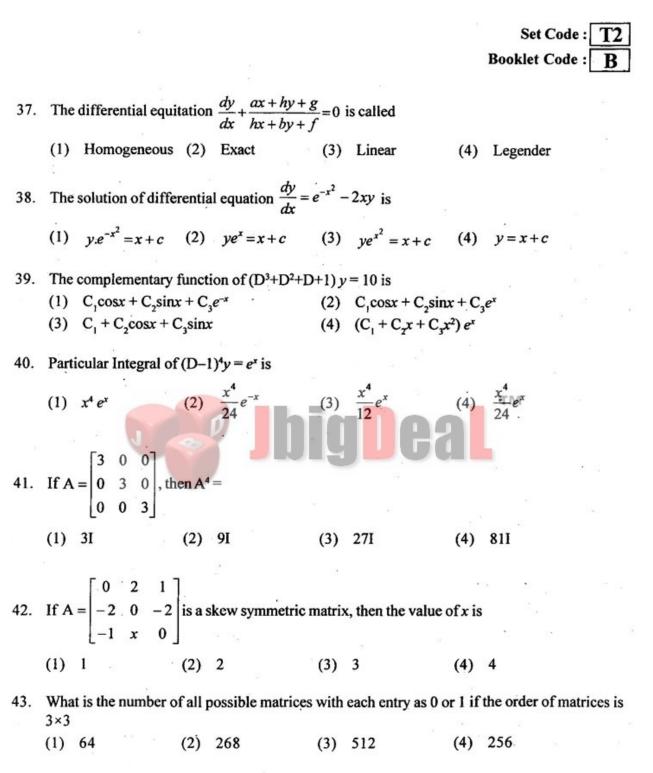
(3)


1


R


(4)


٨


Set Code : T2 Booklet Code : If a=6, b=5, c=9, then the value of angle A is 7. (2) $\cos^{-1}(2/5)$ (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$ (1) $\cos^{-1}(2/9)$ The polar form of complex number 1-i is 8. (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$ (1) $\sqrt{2} e^{-i\pi/4}$ (2) $\sqrt{2} e^{i\pi/4}$ If 1, ω , ω^2 be the cube roots of unity, then the value of $2^{\omega^3} \cdot 2^{\omega^5} \cdot 2^{\omega}$ is 9. (4) 0 (1) w (2) ω^2 (3) 1 10. The intercept made on X-axis by the circle $x^2+y^2+2gx+2fy+c=0$ is (2) $\sqrt{f^2 - c}$ (3) $2 \sqrt{g^2 - c}$ (4) $2 \sqrt{f^2 - c}$ (1) $\sqrt{g^2-c}$ 11. If one end of the diameter of the circle $x^2+y^2-5x-8y+13 = 0$ is (2, 7), then the other end of the diameter is (1) (3, 1) (2) (1, 3) (3) (-3, -1) 12. The radius of the circle $\sqrt{1 + m^2}(x^2 + y^2) - 2cx - 2mcy = 0$ is (4) (-1, -3) (3) c/2 (2) 4c (4) c (1) 2c 13. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are (2) $x = b \sin\theta, y = a \cos\theta$ (1) $x = a \sec\theta, y = b \tan\theta$ (4) $x = a \operatorname{cosec} \theta, y = b \operatorname{cot} \theta$ (3) $x = a \cos\theta, y = b \sin\theta$ 14. The equation of the directrix of the parabola $2x^2 = -7y$ is (3) 7y+8=0 (4) 8x-7=0(2) 8y-7=0(1) 8y+7=015. The condition for a straight line y = mx+c to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$ (1) c = a/m

Set Code : T2 Booklet Code : 44. If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then |A| =(1) 1 . (2) 2 (3) 3 (4) 4 45. The solution of a system of linear equations 2x - y + 3z = 9, x + y + z = 6, x - y + z = 2 is (1) x = -1, y = -2, z = -3(2) x = 3, y = 2, z = 1(4) x = 1, y = 2, z = 3(3) x = 2, y = 1, z = 346. If $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r - ai}$ then A = _____, B = _____ (1) $\frac{1}{2ai}, -\frac{1}{2ai}$ (2) $-\frac{1}{2ai}, \frac{1}{2ai}$ (3) $\frac{1}{ai}, -\frac{1}{ai}$ $-\frac{1}{ai},\frac{1}{ai}$ 47. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to (2) 2A, (3) 4A, (1) A, (4) 4A, 48. The period of the function $f(x) = |\sin x|$ is (4) 4π (2) 2π (3) 3π (1) π 49. If A+B=45°, then (1-cotA). (1-cotB) is (3) 2 (4) -1 (1) 1 (2) 0 50. The value of $\sin 78^\circ + \cos 132^\circ$ is (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

Set Code :	T2
Booklet Code :	B

PHYSICS

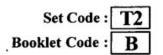
- 51. The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?
 - (1) Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t. .

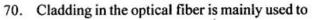
52. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v (2) 2v (3) 3v/4 (4) 4v/3
- 53. The velocity of a freely falling body after 2s is (1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}
- 54. A large number of bullets are fired in all directions with the same speed *u*. The maximum area on the ground on which these bullets will spread is

(1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

55. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be


(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$


- 56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts
 - (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
 - (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
 - (3) In the backward direction on both the front and the rear wheels
 - (4) In the forward direction on both the front and the rear wheels

Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

		18				1.1			Set	Code :	T2
	. ē								Booklet	Code :	B
57.	In a	perfectly inel	astic col	lision, the	two bodie	s		53	×.		
	(1)	strike and ex	plode		(2) exp	plode wi	ithout strik	ing		
	(3)	implode and	explode	5 * *	. (4) coi	mbine a	nd move to	ogether		
58.		er the action over is	of a cons	tant force,	a particle	is exp	eriencin	g a consta	nt acceler	ation, t	hen the
	(1)	zero			(2) po:	sitive				1
	(3)	negative			(4) inc	reasing	uniformly	with time	e	
		12			s., **						
59.	Con	sider the follo	wing two	o statemen	its:			a 6			
	A:	Linear mom	entum of	f a system	of particle	es is ze	ero.				
	B :	Kinetic ener	gy of a s	ystem of p	articles is	zero.					
	Ther	1	-		_	×			TM		
	(1)	A implies B	& B imp	lies A	hī	ha 🛛			14		
	(2)	A does not in	nply B &	B does no	ot imply A		l l r				
	(3)	A implies B	but B do	es not impl	lyA						
	(4)	A does not in	nply B b	ut B implie	es A						
	1 010 3					. e.					
60.		engine develop ht of 40 m? (C		•	. How mu	ich tim	ne will it	t take to li	ft a mass	of 200	kg to a
	(1)	4s	(2)	5s	(3) 8s		(4)	10s		
61.	Ifas	pring has tim	e period	T, and is c	ut into n e	qual pa	arts, the	n the time	period wi	ll be	
	(1)	- <i>Г</i>	(2)	<u>T</u>	12	т		(4)	т		
	(1)	$T\sqrt{n}$	(2)	\sqrt{n}	. (3) 11		(4)	1 .		
(2)							. .	6.3			
62.		n temperature	increase	es, the freq	uency of	a tunin	g fork		÷.,		
	(1)	increases decreases	5 20					3	÷ 3		
	(2)	remains same	e								
	(4)	increases or	4	s dependir	ng on the r	nateria	als				
					11-B						

													Set Code	
63.	lfa	simple	harmo	nic moti	on is r	epres	ented	by $\frac{a}{a}$	$\frac{d^2x}{dy^2} + \alpha d$	x=0, its	time p	eriod i	S	
	(1)	2π√	α	(2)	2πα	2		(3)	$\frac{2\pi}{\sqrt{\alpha}}$		(4)	$\frac{2\pi}{\alpha}$	2	
64.				volume on in the				requi	red to h	nave rev	erberat	ion tim	e of 1.5	seconds.
	(1)	850 v	v-m ²					(2)	82.50	w-m ²	1			
	(3)	8.250	w-m ²				- 8	(4)	0.825	w-m ²	8		1	
			× 1			2					2			5 m.*
65.	Toa	bsorb t	he sour	nd in a ha	ll whi	ch of	the fo	llowi	ing are	used				
	(1)	Glass	es, stor	res	8 - 6			(2)	Carpe	ts, curta	ins			
	(3)	Polish	ned sur	faces				(4)	Platfo	rms		TM		
66.	IfN (1)		ents ava	gadro's (2)		r, the		numt (3)		olecules		n of hy N/6	drogen a	t NTP is
67.	The	mean t	ranslati	onal kin	etic en	ergy	ofap	erfec	t gas m	olecule	at the te	empera	ture TK	is
3	20			(2)							3.5	2kT		
68.	The	mount	ofhea	t given to	ahor	ly wh	ich ra	icec i	te tomn	oratura	hv 1°C	•	·	a - ⁰
	(1)		equival	1000000	0000	.y ••11			-	al heat ca				
	(3)		ic heat	-						rature gr				2
69.	Durin absol	ng an a lute ten	diabati nperatu	c process re. The r	s, the pratio C	pressu p/Cv	ure of for ga	a gas is is	s is four	nd to be	propor	tional t	o the cul	be of its
	(1)	$\frac{3}{2}$	s 2.	(2)	$\frac{4}{3}$			(3)	2		(4)	$\frac{5}{3}$		•
						88 15	12-	-B		÷,:				

- (1) to protect the fiber from mechanical stresses
- (2) to protect the fiber from corrosion
- (3) to protect the fiber from mechanical strength
- (4) to protect the fiber from electromagnetic guidance

71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be

- (1) same as that of latent heat
- (2) same as that of pressure
- (3) same as that of work
- (4) same as that of momentum

72.	The dimensional for	ormula c	of capacitance in	1 terms	of M, L, T and	I is	
	(1) $[ML^2T^2I^2]$	(2)	$[ML^{-2}T^4I^2]$	(3)	[M ⁻¹ L ³ T ³ I]	(4)	$[M^{-1}L^{-2}T^{4}I^{2}]$
73.	If <i>l</i> , <i>m</i> and <i>n</i> are the	directio	on cosines of a	vector,	then		TM
	(1) $l+m+n=1$	(2)	$l^2 + m^2 + n^2 =$	1 (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1
74.	The angle between	i+i and	i+k is	-			1.4.1
	(1) 0°	(2)	90°	(3)	45°	(4)	60°

- 75. A particle is moving eastwards with a velocity of 5 ms⁻¹. In 10 seconds the velocity changes to 5 ms⁻¹ northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west (2) zero (3) $\frac{1}{2}$ ms⁻² towards north (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

Set Code :	T2	
Booklet Code :	B	

CHEMISTRY

6.	Pota	ssium metal an	d potas	sium ions						
	(1)	both react wit	h water	5	(2)	have the sar	ne numbe	er of proton	S	
	(3)	both react wit	h chlor	ine gas	(4)	have the sar	ne electro	onic configu	iration	
7.	stand	dard flask. 10 m	lofthis	ide were dissolve solution were pip on. The concentra	etted	out into anoth	er flask a	nd made up	with distil	in Ile
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M		
8.	Con	centration of a	1.0 M s	solution of phosp	horic	acid in water	is			
0.		0.33 N		1.0 N		2.0 N	(4)	3.0 N		
9.	Whi	ch of the follow	ving is	a Lewis acid?						
	(1)	Ammonia			(2)	Berylium cl	hloride			
	(3)	Boron trifluo	ride		(4)			тм		
	(3)	Doron unido		0	m				*	
0.	Whi	ch of the follow	ving co	nstitutes the com	pone	nts of a buffe	r solution	1?		
	(1)			nd potassium hyd						
	(2)	Sodium aceta						e:		
	(3)			and sulphuric aci	d				- 	
	(4)	-	-	d calcium acetate						
	W.L.:	ah af the fallo	ving is	an electrolyte?						
1.		Acetic acid		Glucose	(3)	Urea	(4)	Pyridine		
32.		culate the Stand $Cu/Cu^{+2} = (-) 0.$		nf of the cell, Cd	/Cd+2	//Cu ⁺² /Cu giv	en that E	Cd/Cd+2	= 0.44V a	an
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V		
3.	Aso	lution of nicke	l chlori	de was electroly	sed us	sing Platinum	electrod	es. After el	ectrolysis	5,
	(1)			ted on the anode						
				ed at the anode		nickel will				
	(3)	ri2 gas will be	noeral			mener will t	of apposi		anouv	
					4-B					

									Set Code : T2 Booklet Code : B
									Bookiet Code . D
84.	Whi	ch of the follow	ing me	tals will u	ndergo	oxid	ation fastest?		
	(1)	Cu	(2)	Li		(3)	Zinc	(4)	Iron
85.	W/L:	ch of the follow		anot ha use	d for	hacte	milization of dr	inking	water?
65.	(1)	Ozone	ing ca	intoi de use		(2)	Calcium Oxyo	-	
	(3)	Potassium Chl	oride			(4)	Chlorine wate		•
	(-)					. ,	· · ·		
86.						g/litro	e of magnesium	sulpha	ate. Then, its hardness in
.		s of calcium car		7.		(2)	0.40	~	2.40
	.(1)	1.0 ppm	(2)	1.20 ppm	l	(3)	0.60 ppm	(4)	2.40 ppm
87.	Sode	a used in the L-S	nroce	ess for soft	ening	ofwa	ter is. Chemica	llv.	÷.
07.	(1)	sodium bicarbo			enning.	(2)	sodium carbo		cahydrate
	(3)	sodium carbon				(4)	sodium hydro	xide (4	0%)
12							2		TM
88.	The	process of ceme			powd	100 million			
	(1)	sherardizing	(2)	zincing	1	(3)	metal cladding	g (4)	electroplating
80	Com	osion of a meta	l in fac	tout in					
89.					dwate	-(3)	distilled water	(4)	de-ionised water
	(I)	rain-water	(2)	acidulated	u wate	1(5)	uistilleu water	(4)	de-ionised water
90.	Whi	ch of the follow	ing is	a thermose	t poly	mer?	e *		
<u>.</u>	(1)	Polystyrene				(2)	PVC		
	(3)	Polythene			*	(4)	Urea-formald	ehyde r	resin
									20 D
91.	Che	mically, neoprer	ne is		90	58 100-00			17 a
5	(1)	polyvinyl benz	ene			(2)	polyacetylene		
	(3)	polychloropre	ne		1	(4)	poly-1,3-buta	diene	
92.	Vulc	anization involv	es hea	ting of raw	rubbe	r with			4
	(1)	selenium elem				(2)	elemental sulp	hur	
	(3)	a mixture of Se	· · · · · · · · · · · · · · · · · · ·	lemental su	lphur	• •			n and sulphur dioxide
						5-B			

Set Code :	T2
Booklet Code :	B

93.	Petrol largely contains	
	(1) a mixture of unsaturated hydrocarbons $C_5 - C_8$	
	(2) a mixture of benzene, toluene and xylene	
	(3) a mixture of saturated hydrocarbons $C_{12} - C_{14}$	
	(4) a mixture of saturated hydrocarbons $C_6 - C_8$	
94.	Which of the following gases is largely responsible for acid-rain?	
	(1) SO, & NO, (2) CO_2 & water vapour	
	(3) $CO_2 \& N_2$ (4) $N_2 \& CO_2$	-
95.	BOD stands for	
	(1) Biogenetic Oxygen Demand (2) Biometric Oxygen Demand	
	(3) Biological Oxygen Demand (4) Biospecific Oxygen Demand	
96.	The valency electronic configuration of Phosphorous atom (At.No. 15) is TM	
90.	(1) $3s^2 3p^3$ (2) $3s^1 3p^3 3d^1$ (3) $3s^2 3p^2 3d^1$ (4) $3s^1 3p^2 3d^2$	
	(1) $5s^{-}5p^{-}$ (2) $5s^{-}5p^{-}5q^{-}$ (3) $5s^{-}5p^{-}5q^{-}$	
97.	An element 'A' of At.No.12 combines with an element 'B' of At.No.17. The compound formed is	1
,,,,	(1) covalent AB (2) ionic AB ₂ (3) covalent AB ₂ (4) ionic AB	
÷		
98.	The number of neutrons present in the atom of 56 Ba ¹³⁷ is	2
	(1) 56 (2) 137 (3) 193 (4) 81	
99.	Hydrogen bonding in water molecule is responsible for	
	(1) decrease in its freezing point (2) increase in its degree of ionization	
	(3) increase in its boiling point (4) decrease in its boiling point	
100	Is the UCI melocule, the bonding between hydrogen and chlorine is	
100.	In the HCl molecule, the bonding between hydrogen and chlorine is (1) purely covalent (2) purely ionic (3) polar covalent (4) complex coordinate	
	(1) purely covalent (2) purely ionic (3) polar covalent (4) complex coordinate	

Set Code : T2 Booklet Code : B

ELECTRICAL AND ELECTRONICS ENGINEERING

101. In a given below circuit, at resonance I_R is equal to

- (1) 0A (2) 10A $SA(T) \leq N_1 + SO(SH)$
- (3) 5A T L 20NF
- (4) 0.5A

102. An alternating current has a peak value of 2A. If its Peak Factor is $\sqrt{2}$ and its form factor is

 $\frac{\pi}{2\sqrt{2}}$, then its average value is (1) $\frac{8}{\pi}A$ (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$ 103. The power factor of an incandescent bulb is (1) 0.8 lagging (2) 0.8 leading (3) unity (4) zero

104. The power factor of a circuit comprising resistance R and reactance X in series is

- (1) $\frac{R}{\sqrt{R^2 + X^2}}$ (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$
- 105. The working principle of a Transformer is
 - (1) Electromagnetism (2) Conduction
 - (3) Energy transfer (4) Mutual induction
- 106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1 Ω when referred to secondary is
 - (1) 150Ω (2) 0.02Ω (3) 0.004Ω (4) 2.5Ω
- 107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW
 - (1) 100 kVA (2) 70.7 kVA (3) 50.5 kVA (4) 25.2 kVA

17-B

						357		Set Code : T	2
								Booklet Code : B	
					· • •				
108.		gh frequency tra					(4)	Silica	
	(1)	Ferrite	(2)	Iron	(3)	Cast iron	. (4)	Sinca	
109.	Buc	hholz relay is use	d to						\$3
	(1)	identify faults							
	(2)	rectify the fault	í.						
	(3)	trip-off connect	ions	when fault e	exists				
	(4)	clears the fault						4-72	
					1247 12				
110.	relat	ively less import	ant be	ecause				and copper losses a	•
	(1)	The primary of s throughout the d	uch tr lay wł	ansformers a nile copper lo	are energize	d for all the 24 h ly when the seco	ours in ondary	a day and core loss occ is supplying the load	ur
	(2)	To ensure maxi				54 N.			
10	(3)							TM	
	(4)	Greater core lo	sses v	vill heat up	the oil of the	ne transformer i	rapidly	•	
	1000003-002	J	2					to minution of walts	~~
111.		ch one of the fol lation of an alter			gives more	e accurate resul	t for d	etermination of volta	ge
	(1)	MMF method			(2)	Synchronous i	mpeda	nce method	
	(3)	Potier triangle	netho	od	(4)	ASA method			
		· · ·		<i>e</i> 45		*			
112.	Hyd	rogen is used in l	arge	alternators r	nainly to				
	(1)	reduce distortic			(2)	cool the mach		•	•
	(3)	strengthen the r	nagne	etic field	(4)	reduce eddy c	urrent	losses	
113	The	frequency of em	fgene	erated in an	8-pole alte	rnator running	at 900 i	rpm is	
115.		50 Hz		120 Hz		90 Hz	(4)	60 Hz	
	(1)	50112	(2)	120 112	(5)	<i>y</i> v <i>i i i</i>			
114.		angle between sy ed angle		onously rota	ting stator	flux and rotor p	oles of	f a synchronous motor	is
		Synchronizing		Slip	(3)	Power factor	(4)	Torque	
		31 <u>5</u> 2				a.,			

18-B

Download from www.JbigDeaL.com Power JbiaDeal

Set Code :	T2
Booklet Code :	B

TM

- 115. If θ_e be the electrical angle and θ_m be the mechanical angle and P be the number of poles of a synchronous motor, then which one of the following relation is true?
 - (2) $\theta_e = (P/2) \times \theta_m$ (1) $\theta = P \times \theta_m$ (4) $\theta = P/\theta_{-}$ (3) $\theta = \theta_m/P$
- 116. The essential condition for parallel operation of two single phase transformers is that they should have same
 - (3) Voltage ratio (4) Percentage impedance (1) Polarity (2) KVA rating
- 117. The V-curve of a synchronous motor is a plot of
 - State current versus stator power factor
 - (2) Stator current versus rotor current at all loads
 - (3) Stator current versus rotor currents when power delivered is constant
 - (4) Stator current versus power delivered

118. A wound rotor induction motor runs with a slip of 0.03 when developing full load torque. Its rotor resistance is 0.25 ohm per phase. If an external resistance 0.50 ohm per phase is connected across the slip rings, what is the slip for full load torque?

(1) 0.03 (2) 0.06 (3) 0.09 (4) 0.1

119. The torque developed in a three phase induction motor depends on

- (1) Stator flux and rotor current
- (2) stator flux and stator current
- (3) stator current and rotor flux
- (4) rotor current and rotor flux

120. A single phase ac induction motor is not self starting because it has

- (1) No slip rotor is short circuited
- (3) high intertia (4) absence of rotating magnetic field

121. A single phase winding in a single phase motor produces

- (1) an alternating magnetic field (2) a stationary magnetic field
- (3) a rotating magnetic field
- (4) a steady magnetic field
- 19-B

									Se	t Code :	T2
			N						Bookle	t Code :	B
	122	Und	ler no load cond	litions	nower factor of	an in	duction motor is	abou			
	122.		0.2 lag		0.9 lag	(3)			0.5 lea	d	
		.,	0		0						
	123.	Ofa	all the plants, min	iimum	quantity of fuel	used i	s required in	. plar	nt.		
		(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclea	ſ	
	124	The	11 - 05 - 1		of a Thomas I Dec		intion in				
	124.				of a Thermal Por		$\eta_{generator} \times \eta_{turbine}$	(4)	n >	< n	
		(1)	, 'Iboiler	(2)	boiler	(5)	generator	(1)	turbine	boiler	1441
	125.	The	effect of water h	amme	er can be minimiz	ed by	using	×.	т. 		8
		(1)	Spill way	(2)	Anvil	(3)	Surge Tank	(4)	Draft to	ube	1
					1 -		1. 1 ²				
	126.		• •		pended impuritie		ne fuel are remove				
		(1)	Cyclone separa	ators		(2) (4)	Electrostatic se Strainer	para	lors		
		(3)	Fabric filters		- 9	(4)	Stranici				*
	127.	The	rupturing capac	ity of a	a circuit breaker i	s mea	sured in		TM		
			Ampere	-	Volt-Ampere	(3)	Watt	(4)	Volt	•	
2						E					
	128.	A ci	rcuit breaker is e	essenti	ally						
		(1)	An arc extingui	isher							
		(2)	A current intern	· · · ·				3 a			
		(3)	A power factor								
		(4)	A device for ne	utrali	zing the effect of	trans	ients				
	120	Mho	relay normally	is use	d for protection of	of					
	129.	(1)	Long transmiss			51					
		(2)	Medium Trans							÷.,	
		(3)	Short transmis		3						
	(a)	(4)	No length crite	rion	9. 1						
										2	
											(FFF)

20-B

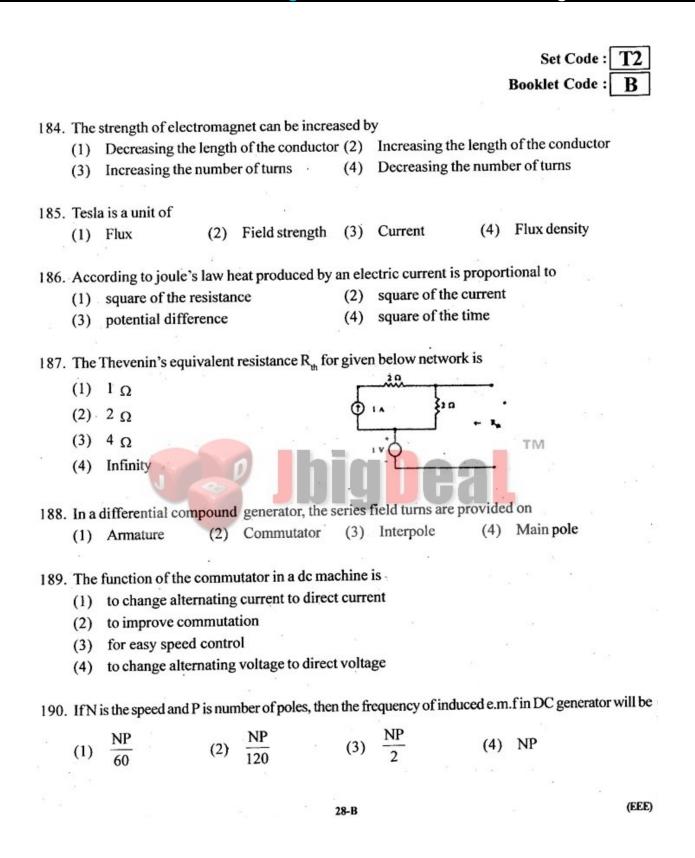
					÷.,		Set Code Booklet Code	
130. The	e scheme adopted	for bus-bar	protectio	n is				
(1)	•		•	(2)	differential p	orotecti	on	
(3)	over current pr	rotection		(4)	reverse powe			
	a				29 Mail 2007 200 200 - 200 200 200 200 200 200 200 2			
131. Du	e to the ferrari ef	fect on long	overhead	l lines				
(1)	receiving end v	oltage is less	s than sen	ding vo	oltage			
(2)	receiving end v	oltage is mo	re than se	nding	/oltage			
(3)	receiving end v	oltage is equ	al to send	ling vo	ltage			
• (4)	receiving end v	oltage is not	effected					
and all								
	ona occurs betwe	en two trans	mission l	lines w	hen they are		S 2	
	closely spaced			(2)	widely spaced	1	2	an es
(3)	having high pot	ential differe	ence	(4)	carrying DC I	ower		
11. C. 1997 S. C. 1997 S. 1998 S. 20	ge impedence of						TM	
(1)	$\sqrt{(L/C)}$	(2) (C)		(3)		(4)	1√ <i>LC</i>	
134. The	general distance	for short tra	nsmissio	n line i	s	-	•	
.(1)	less than 80 km			(2)	80 km-250 km	n	•	
(3)	more than 250 l	cm		(4)	150 km-300 k	m		
				 (i) 				
135. The	resistance of the	line			÷.			
(1)	increases with in	ncrease in fr	equency	(2)	decreases with	n increa	se in frequency	
(3)	is independent of	of frequency		(4)	increases with	decrea	se in frequency	
				2	535		18	
136. In H	VDC Transmissio	on System A	C is conve	erted to	DC using		2	
(1)	Rectifier	(2) Inverte	er	(3)	Chopper	(4)	Cycloconverter	
137. Susp	ension type insul	ators are use	d for volt	ages be	eyond			
*1 0.000 (2010)	220 V	(2) 400 V			IIKV	(4)	33 KV	
	*		2	1-B				(EEE)
								(DEE)

				•		a S		Set Booklet	Code : Code :	
138.	Pow	er Factor of I	ndustrial	loads is genera	ally					
	(1)	Unity	(2)	Leading	(3)	Lagging	(4)	Zero		
139.	Pole	mounted tra	nsformer	stations are me	eant for					
	(1)	Primary tran	nsmission	n ¹	(2)	Primary di	stribution			
	(3)	Secondary t	ransmissi	ion .	(4)	Secondary	distributio	n .		
140.	Trar	smission line	es are tran	sposed to			а 8 р			
	(1)	Reduce cop	per loss					<i></i>		
	(2)	Reduce skir	effect							
	(3)	Prevent inte	rference	with communi	cation l	ines				
	(4)	Present sho	rt circuit	between condu	ictors	8		1		
				1				•		
141.	The	units for spec	cific ener	gy consumptio	n relate	d to traction	n is	TM		2
	(1)	Watt - Hour Tonne - km	- (2)	Watt - Hour km	(3)	Joules/Sec	; ; ; ; ; ; ; ; ; ;	.TM Watt		
142.	In K	ando system	of track	electrification		is conv	erted into			
		single phase			(2)	dc, single	ohase	46)		
	(3)	single phase		ase	(4)	three phase	e, single pl	nase		
143.		ain has a sche	-	ed of 60 kmph luration of stor			hich are 6	km apart.	The act	ual run
1	(1)		(2)	360 sec	(3)	240 sec	. (4)	300 sec		
144.		• •		dependent on stops & run tin	ne	. 1				
52	(1)									
	(2)	Run time & Stop time &	•				52. j			
	(3) (4)	Acceleratio								
	(4)	Acceleratio	n ac acce	i auton						

					Set Code : T2 Booklet Code : B
145	. The	electric motor used for traction work s	should	d have	
		Low starting torque	(2)	High starting torque	
	(3)	Rise in speed with increase in load	(4)	No braking capability	4
146	. Tra	ctive effort of an electric locomotive ca	in be i	increased by	
	(1)	Increasing the supply voltage			
	(2)				
	(3)	Increasing the dead weight over the dr	iving	axles	
	(4)	Using high rating motors			
		· .			3
147	. Trac	tive effort required for a train going do	wn fro	om an upgradiant is	
	(1)	less than tractive effort on level track		÷.	
	(2)	more than tractive effort on level trac	k		TM
	(3)	equal to the tractive effort on level tra	ick		
	(4)	independent of mass of the train			
1.10					
148.		area under speed-time curve of a train r	-		
	(1)	average speed	(2)	average acceleration	
	(3)	distance travelled	(4)	average velocity	
140	A a ti	o numbor of mire succes in success the	-		
149.	(1)	ne number of wire guage increases the			
	(1) (3)	increases	(2)	remains same	
	(3)	becomes neglible	(4)	decreases	
150.	Whi	ch of the following wiring is not visible	outsi	de?	
	(1)	conduit wiring	(2)	cleat wiring	
	(3)	casing and capping wiring	(4)	concealed wiring	
151.	Resis	stance of earth system of power station	s sho	uld not exceed the limi	it of
tš					
	(1)	0.5 ohms (2) 2 ohms	(\mathbf{S})	1 ohms (4)	5 ohms

		· .							Code : T2
								Booklet	Code : B
152.	Ine	lectrical install	ations th	ne fuse is al	ways conne	ected in		wire.	
	(1)	earth	(2)	neutral	(3)	phase	(4)	ground	
153.	The	transistor used	in amp	lifier circuit	s operates	in			8
	(1)	Active region	l		(2)	Saturation re			
	(3)	Cut off region	n		(4)	Reverse regi	on		
			1990 P.	22 10 1000 10		а 11 г.			
154.		gain of an amp							
		G(dB) = 10 lo			10.00	G(dB) = 101	out		
	(3)	G(dB) = 10 lo	og (p _{out} /]	o _{in})	(4)	G(dB) = 10 I	og (p _{in})		
	T 1				-16		11	hridaa raa	tifior are
155.		number of dio							liller ale
	(1)	1,2	(2)	1,4	(3)	2,4	(4).	. 2,1 TM	
156	The	average voltage	ofaful	wave rectif	ier fed from	an ac source o	fpeak v		and frequency
150.	50H		- Of a lui	wave least				orage, 'm	
	(1)	V_m/π	(2)	$2V_m/\pi$	(3)	$V_m/\sqrt{2}$	(4)	V_m/2	
		2*		÷ 0				1	
157.	Ina	transistor whic	h of the	following l	ayer is ligh	tly doped			20
	(1)	Emitter	(2)	Collector	(3)	Drain	(4)	Base	
							2 ¹		
158.	Zen	er diode regula		11 10000000000000000000000000000000000				-	
	(1)	Voltage	(2)	Current	(3)	Resistance	(4)	Power	
		· · ·		c					
159.		frequency of o					(4)	R/C	5
	(1)	1/2 π RC	(2)	2 π RC	(3)	1/RC	(4)	NC	
160	VV	7. (7. 77)	V7. V	V7					
100.		$Z + (\overline{X} + YZ)X$			(2)	7	(4)	0	
	(1)	XÝZ	(2)	X	(3)	L	(4)	0	
		2			24-B				(EEE)

			2.0						
								Set Code Booklet Code	
161.	The	2's compleme	nt of the	e number 1001	1100 i	s			
		0110 0011		0110 0100			(4)	1001 1101	
162	The	holean express	sion for	NOR gate with	inputs	A and B is			
102.		A+B		AB		A+B	(4)		
	(1)	ATD	(2)	AD	(3)	A'D	(4)	$\overline{A+B}$	
163.	AD	AC with 8 inpu	it bits ha	asr	esoluti	on compared wi	th DA	C with 4 input bit	s.
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite	<u>:</u> *
				Ж	,	1			
164.		-		ce, Silicon Con	•				
		Two junction			(2)			-	- 4
	(3)	Three junctio	ns and f	four layers	(4)	Two junctions	and tw	vo layers	
165	1176:	ah ana af tha f	allowin	a ia a hidiraatia		ntrolled switch			
105.							(1)	Diac	
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac	
166.	Ifth	e gate current o	of an SC	R is increased,	its for	war <mark>d bre</mark> ak over	voltag	e V _{BO} will	
	(1)	Increase		Decrease		Not be affecte			
167.	În ar	UJT triggerin	g circui	t for SCR, pulse	es are	generated at		of UJT.	
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2	
			•	1111 IST (22)					
168.	In a	half wave cont						angle of thyristo	ris
	(1)	$0 \le \alpha \le 180^{\circ}$	(2)	$90 \le \alpha \le 180^{\circ}$	(3)	$0 \le \alpha \le 90^{\circ}$	(4)	$0 \le \alpha \le 360^{\circ}$	
169.	The		age, V _o	of a basic chop	per cir	cuit with input v	oltage	, V _{in} and duty cyc	cle, δ is
	-		(2)	$V_o = V_i / \delta$	(3)	$V_o = V_i / (1 - \delta)$	(4)	$V_o = V_{in}$	


Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

									Set Booklet	Code :] Code :]	2 B
170	An.	AC regulator pr	ovides								
	(1)	Variable frequ	uency, f	ixed mag	gnitudeA	C					
	(2)	Fixed frequer	ncy, var	iable mag	gnitude A	C					
	(3)	Fixed frequer	ncy, fixe	ed magni	tude AC						
	(4)	Variable frequ	uency, v	variable n	nagnitud	eAC					
171	. The	output voltage	ofasir	gle phas	e bridge	inver	ter is				
	(1)	Square wave				(2)	Sinusoi	dal wave			
	(3)	Constant dc			2 8	(4)	Triangu	ar wave			
172	. Two	quadrant oper	ation of	f dc moto	or can be	obtai	ned if it is	s fed from a	350		
	(1)	Uncontrolled	conver	tor		(2)	Halfcon	ntrolled conv	vertor		
	(3)	Half wave con	nvertor			(4)	Fully co	ntrolled con	vertor		
173	. For	controlling the	speed of	of a 3 ph	ase indu	ction 1	motor V/1	fratio is mai	ntained con	stant for	
	(1)	Constant air g	ap flux	2		(2)	Constan	t reactance			
	(3)	Varying the ai	r gap fl	ux		(4)	Variable	resistance			
							-			(#	
174.	805	microcontrol	ler has		data lin	es and	d b	address	lines.	a	
	(1)	16, 8	(2)	8, 8		(3)	8, 16	(4)	16, 20	1	
175.	Whi	ch of the follow	ving ins	struction	is not a d	data tr	ansfer in	struction?			
	(1)	XCH	(2)	PUSH		(3)	ADD	(4)	MOV		
176.	Inter	nal memory of	f 8051 i	micro co	ntroller	consis	sts of				
	(1)	128 bytes of R.	AM, 21	K bytes o	fROM						
	(2)	4 K bytes of R	AM, 1	28 bytes	ofROM	[
	(3)	2 K bytes of R.	AM, 12	8 bytes o	fROM						
	(4)	128 bytes of R				[
		••••••••••••••••••••••••••••••••••••••								a	£7

26-B

(EEE)

,												t Code : t Code :	
													D
177.		highest p	riority	interr	upt is								
	(1)	TF1		(2)	IE1		(3)	TF0		(4)	IE0		
14.1122/12-0	*												
178.	Perc	entage V	oltage	regula	tion of a	transm	ission	line is given the second s	ven by _		· · ·		
	(1)	$(E_{s}-E_{r})/$	E,*100	-			(2)	$(E_r - E_s)/$	'E,*100			1	8.08
	(3)	$(E_s - E_r)/$	E _s *100	222			(4)	(E,-E _s)/	'E _s *100				
179.	In a	main line	servic	e of e	electric t	raction s	system		1				
	(1)	Distance	e betwe	en tw	o stops i	s very s	mall						
	(2)	Acceler	ation a	nd reta	ardation	periods	are sn	all					
	(3)	Free run	ning ar	nd coa	sting per	riods are	e short						
	(4)	Accelera	ation ar	nd reta	ardation	periods	are loi	ng				÷	×
180.	For	SCR, dv/d	it prote	ction	is achiev	ved by c	onnec	ting					
	(1)	L in serie	es with	SCR			(2)	RL in se	ries wit	h SCI	K TM		
14	(3)	RC in se	ries wi	th SC	R	lh	(4)	RC in pa	arallel w	ith <mark>S</mark> C	CR	¥. 3	
181.	The	effective	resistar	ice be	tween te	rminals	Aand	B in the	below fi	gure	is	e	** - 10
	(1)	r		~									
	(2)	2r		4		v-rvv-	L	В					
	(3)	3r			r	L	N						
	(4)	4r				1						e 8	
182.	If I b unit o	e the curr of	ent, C b										ve the
	(1)	Time		(2)	Power		(3)	Frequen	су	(4)	Reactiv	e Power	
183.	Inas	eries R-C	circui	t exci	ted by a l	DC volt	age E,	the initia	l curren	t is		÷.1	
	(1)	$\frac{E}{R}$		(2)	0		(3)	$\frac{E}{C}$		(4)	$\frac{C}{E}$		•
						. 1	27-B		0				(EEE)

		83	Set Code : T2 Booklet Code : B
191. The	demagnetizing flux in dc generator		
(1)	Increases e.m.f	(2)	Decreases e.m.f
(3)	Increases speed	(4)	Decreases speed
	be the torque and I_a the armature current tion is valid before saturation	ent for	a dc series motor, then which of the following
(1)	$T_a \alpha I_a$ (2) $T_a \alpha (1/I_a)$	(3)	$T_a \alpha (I_a^2)$ (4) $T_a \alpha (1/I_a)^2$
193. Wh	at will happen if the back e.m.f of a DC	motor	vanishes suddenly
(1)	The motor will stop	(2)	
(3)	The armature may burn	(4)	The motor will run noisy
194. The	mechanical power developed by a DC	motor	
(1)	Power input + losses	(2)	
(3)	Power output × losses	(4)	Power output × efficiency
	lecting saturation, if current taken by entage increase in its torque is	a seri	ies motor is increased from 10A to 12A, the
(1)	20% (2) 44%	(3)	30.5% (4) 16.6%
196. Dyn	amometer type instrument have	-	at the second second
(1)	Cramped scale at the beginning	(2)	Cramped at the end
(3)	Cramped at the middle	(4)	Uniform scale
197. To r	neasure a signal of 10 mV at 75 Hz, wh	nich on	e of the following instrument can be used
(1)	cathode ray oscilloscope	(2)	VIVM
(3)	Moving Iron voltmeter	(4)	digital multimeter
198. Whi	ch one of the following a passive trans	ducer	
	piezolectric (2) thermocouple		photovoltaic cell (4) LVDT

Set Code :	T2
Booklet Code :	B

199. The voltage coil of a single phase house energy meter

- (1) is highly resistive
- (2) is highly inductive
- (3) is highly capacitive
- (4) has a phase angle equal to load power factor angle
- 200. The effective value of a triangular wave is

