10036 120 MINUTES

1.	In Whe	eat and rice		
	A)	Pericarp is fused with seed co	oat	
	B)	Fruits are multi seeded		
	C)	Perisperm is fused with seed	coat	
	D)	Seed coat and pericarp are se		
	,		L	
2.	In gym	mosperms, the endosperm is		
	A)	Polyploid	B)	Haploid
	C)	Triploid	D)	Diploid
	,	1	,	1
3.	'Gamn	na garden' is used for		
	A)	Growing plantlets produced by	y tissue	e culture
	B)	Eradicating pathogen from in	fected p	olants
	C)	Growing genetically engineer		
	D)	Mutation breeding for crop in	nprover	ment.
4.	Which	one of the following is the bo	tanical	<u> </u>
	A)	Olea europea	B)	Carthamus tinctorius
	C)	Elaeis guineensis	D)	Cocos nucifera
5.		lute most abundant in phloem	_	
الم م	A)	Amino Acids	B)	Sugar
2 at	PC 3	Hormones ODSETV		Minerals / forum
(T1	-4-1		- :-
6.		etal component of Nitrogenase	-	
	A)	Manganese	B)	Molybdenum
	C)	Copper	D)	Zinc
7.	The roi	ndom changes in gene frequen	ON OCCI	arring by chance and the effect of
1.		is large in small populations is		
	A)	Hardy-Weinberg equilibrium		Pasteur effect
	C)	Genetic drift	D)	Haldane effect
	C)	Genetic diffe	D)	Transaction of the control of the co
8.	In mos	ses, primary protonema is		
·.	A)	Haploid and gametophytic	B)	Diploid and sporophytic
	C)	Haploid and sporophytic	D)	Diploid and gametophytic
	C)	Trapiora una sporoprific	2)	Diprota ana gametopny ne
9.	"Red re	ot" of sugarcane is caused by		
	A)	Fusarium	B)	Alternaria
	C)	Ustilago	D)	Colletorichum
	,		,	
10.	RNA n	nolecules that possess catalytic	c activit	ty are known as
	A)	Ribozymes	B)	Ribosomes
	C)	Polyribosomes	D)	Polysomes

11.	Glyco	lysis and TCA Cycle operate is	n	
	A)	Photorespiration	B)	β-oxidation
	C)	α-oxidation	D)	Dark respiration
12.	'Senna	a' is obtained from the plant		
	A)	Cassia fistula	B)	Cassia alata
	C)	Cassia angustifolia	D)	Cassia tora
13.	`Iris m	noss' is		
	A)	Chondrus	B)	Hydrodictyon
	C)	Funaria	D)	Sphagnum
14.	One of	f the following trees is endemi	c to Ind	lia
	A)	Tectona grandis	B)	Artocarpus integrifolia
	C)	Ficus religiosa	D)	Azadirachta indica
15.	Late b	light of potato is caused by		
	A)	Alternaria solani	B)	Phytophthora infestans
	C)	Pseudomonas solanacearum	D)	Albugo bliti
16.	The or	nly plant hormone that is not tr	ansloca	ated from the cells producing it
	A)	Auxin	B)	Ethylene
	C)	Cytokinin	Ď)	Gibberellic acid
adı	Nepen	thes thaliana, a rare endangere	Airch	com/fordalm
	A)	Madhya Pradesh	В)	Meghalaya
	C)	Himachal Pradesh	D)	Andhra Pradesh
18.	One cl	hambered dry dehiscent fruit tl	nat dehi	sees along both the sutures is
10.	A)	Siliqua	B)	Follicle
	C)	Capsule	D)	Legume
10	TPI		11 1	: 1
19.		ots of plant yielding Aswagan atism, inflammation and skin		ich are used in the treatment of
	A)	Curcuma amada	B)	Rauwolfia serpentina
	C)	Cinchona officinalis	D)	Withania somnifera
20.	The se	even volumes of the "Flora of l	British 1	India "was compiled by
	A)	William Hooker	B)	J. D. Hooker
	C)	Bentham	D)	Gamble
21.	The us	se of gamma rays from a cobal	t source	e for control of microorganisms in food
	A)	Radiation	B)	Radappertization
	C)	Radurzation	D)	Ionization
22.	Botani	ical name of finger millet is		
	A)	Poinsettum americanum	B)	Paspalum scorbiculatum
	C)	Setaria italica	D)	Eleucine coracana

23.	The pr	oduction of fruits without ferti	ilization	ı is
	A)	Parthenogenesis	B)	Apomixis
	C)	Parthenocarpy	D)	Pseudocarpy
24.	The far	mily Lamiaceae is characteriz	ed by the	he inflorescence
	A)	Scorpiod cyme	B) _	Helicoid cyme
	C)	Verticellaster	D)	Cyathium
25.	Which man	of the following trait shows n	nendelia	an inheritance as a dominant gene in
	A)	Presence of dimples	B)	Colour blindness
	C)	Both	D)	None
26.	Eletere	s and pseudoelators in the caps	ulas af	bryonhyta ara maant far
20.	A)	Nutrient absorption	B)	Water conduction
	C)	Spore dispersal	D)	Mechanical support
	C)	Spore dispersar	D)	Weenamear support
27.	In Smi	lax tendrils are		
	A)	Modified stipules	B)	Modified leaf
	C)	Modified petiole	D)	Modified leaflet
28.	Genes	with intervening sequences		
_0.	A)	Introns	B)	Split genes
مار	C)	Exons	D)	Pseudo genes
zal		Itionobserv	eı.	COM/TOTUM
29.		arch technique to modify a gen	-	
	A)	Site directed mutagensis	B)	Cloning Western blotting
	C)	rDNA technique	D)	Western blotting
30.	In euka	aryotes the ribosomal RNA ge	nes are	transcribed by
	A)	Reverse transcriptase	B)	RNA dependent RNA polymerase
	C)	RNA polymerase 1	D)	RNA polymerase 2
31.	Eloral :	formula of Hibicus rosasinens	10 10	
31.	A)	O \subsetneq Epi K_{6-8} $K_{(5)}C_5A_{(\infty)}G_{\underline{5}}$	B)	$O \subsetneq Epi_{(5)} K_{(5)} C_5 A_{(\infty)} G(\underline{5-\infty})$
	C)	O \subsetneq Epi $_3$ K ₍₅₎ C ₅ A _(∞) G ₅	D)	O \supseteq Epi K ₃ K ₍₅₎ C ₃ A _(∞) G _∞
	<i>C)</i>	$\circ + 2pr j r 2(j) \circ j r 2(\omega) \circ \underline{j}$	2)	+ = P1 113 11(3) = 31 1(w) = w
32.	_	tive propagating part of Sugar		
	A)	Suckers	B)	Setts
	C)	Scion	D)	All of the above
33.	Antibo	dy diversity is generated by		
	A)	Protein splicing	B)	Somatic recombination
	C)	Mutation	D)	Allelic exclusion
34.	Evens	ala of an aggregate fruit		
J 4 .	A)	ole of an aggregate fruit Pine apple	B)	Custard apple
	C)	Apple	D)	Orange
	- /			

35.	FASTA program was first described by										
	A)	Adach & Hasegawa	B)	Lipman & Pearson							
	C)	Kyte and Dolittle	D)	Fitch & Margoliash							
36.		An important feature of the genetic code which allows the expression of a protein in any host is its									
	A)	Degeneracy	B)	Universality							
	C)	Redundancy	D)	Triplet nature.							
37.	Mulle A) B) C) D)	er's CIB method was used to Sex linked mutation Sex linked lethal mutations Autosomal dominant mutat Autosomal recessive mutat	tion								
38.	Gynos A) B) C) D)	stegium relates to Fusion of stamens with gyr Fusion of stamens with stig Fusion of gynoecium with Fusion of gynoecium with	gmatic di anther								
39.	Venke A)	etraman Ramakrishnan has go Small subunit of ribosome		Prize for the detailed mapping of ermos thermophilus.							
edu	B) D)	Large ribosomal subunit of Large ribosomal subunit of Small subunit of ribosome	Pyroco								
40.	The tr	ransgenic plant which is deve	loped by	y anit-sense RNA technology.							
	A)	Golden rice	B)	Bt cotton							
	C)	Flavr Savr tomato	D)	Both A and C							
41.	The n		carried	to the female by means of water							
	A)	Fucus	B)	Polysiphonia							
	C)	Chara	D)	Vaucheria							
42.	-	scattering from an atom dep									
	A)	Electrons	B)	Protons							
	C)	Neutrons	D)	All of these							
43.		nost famous X-helix polypept		•							
	A)	Left handed	B)	Circular							
	C)	Right handed	D)	Branched							
44.	RNA	– DNA hybrid always adopt									
	A)	Steric hindrance of – OH g									
	B)	Steric hindrance of – OH g	roup in I	DNA							
	C)	Coiling of the molecule	D.) I :								
	D)	Presence of Uracil base in 1	KNA								

45.	Chlorella will fulfill the need of all vitamins except									
	A)	Ascorbic acid	B)	Biotin						
	C)	Plamitic acid	D)	Pathonic acid						
46.	Which of the experiment is suitable to detect linkage?									
	A)	aaBB x aaBB	B)	AaBb x aabb						
	C)	AABB x aabb	D)	AAbb x AaBB						
47.	According to Rodley & Sasi Sekharan model, DNA is									
	A)	Right handed								
		Left handed								
		Alternating right and left handed helix								
	D)	None of these.								
48.		n plant is efficient converter								
	A)	Wheat	B)	Sugarcane						
	C)	Rice	D)	Banana						
49.	The p	lant hormone used to induce	e partheno							
	A)	Gibberellins	B)	Cytokinins						
	C)	Auxins	D)	Ethylene						
50.		rnary structure of protein de								
مار	A)	Conformational organizat Amino acid sequence	ion B)	Functional organization						
zui		Amino acid sequence	V (D) I	None of these.						
51.	Who a	among the following is known	wn as fatl	ner of biostatistics						
	A)	Francis Galton	B)	Adolphe Queste						
	C)	Neyman	D)	William Gosset						
52.	Which	n one is used for comparison	n betweer	n two or more variables						
	A)	Pie chart	B)	Bar diagram						
	C)	Line diagram	D)	All of these						
53.	The feeding of avidin may result in a deficiency of									
	A)	Riboflavin	B)	Vitamin B12						
	C)	Vitamin A	D)	Biotin						
54.	A fatt	y acid not synthesized in m	an is							
	A)	Oleic acid	B)	Stearic acid						
	C)	Linoleic acid	D)	Palmitic acid						
55.	Genoi	mic imprinting is								
	A)	Expression of genes deper	nd on its j	paternal or maternal inheritance						
	B)	Expression of genes linke	d with X	chromosomes						
	C)	Expression of genes linke								
	D)	Expression of extrachromosomal genes								

56.		rogen is needed		nocots t					
	A)	Produce root of	cap		B)	Protec	t root tip		
	C)	Abosorb water	r		D)	None	of the above		
57.	Ribosy A)	witches are Short RNA se molecules	quences	s that ch	nange th	eir con	formation on b	inding v	vith small
	B)	Short RNA se	allanca	s that in	taract w	rith DN	Λ.		
	C)	Short RNA me	-						
	D)	Short RNA se				-			
58.	The O	2 dissociation c	ourse o	f hemog	globin is	s shifted	d to right by		
	A)	Decreased CC			B)		sed pH		
	C)	Increased CO2	tension	n	D)	Increa	sed N ₂ tension		
59.		nany genetically	-	ent gam	ietes cai	n be ma	de from an ind	lividual	of
	A)	8	B)	32		C)	10	D)	5
60.	What	component of the	he bacte	erial cel	l wall a	re attac	ked by pencilli	ns?	
	A)	Peptidoglycan			B)		oic acid		
	C)	Teichuronic a	cid		D)	Lipop	olysaccharide		
⁶¹ dı		ter of a colour he trait will exp 50 % sons and All sons only	ress an	ong the	eirchild	/ 7/ 1		lour blin	d person.
	C) D)	All daughters All sons and I	-	ers					
62.		nany triplet cod		n be mad	de from	four n	ucleotides A, U	, G and	C
	A)	27	B)	64		C)	37	D)	6
63.	Which	of the following	ng is no	t a meth	od of g	enetic 1	recombination	in bacte	ria?
	A)	Translocation			B)		formation		
	C)	Conjugation			D)	Trans	duction		
64.		sm is due to lac	ek of						
	A)	Tyrosinase			B)	-	lalanine hydro	xylase	
	C)	Kynureninase			D)	Homo	gentisicase		
65.		of these is a pe			_				
	A)	Verbascose	B)	Raffin	ose	C)	Stachyose	D)	Threose
66.		n, the lipoprotei		on with	_			S	
	A) C)	α- lipopreotein			B) D)	β- lipo Prealb	protein		
	(/ I	CHYROHIGIOUS			171	115011	/U111111		

67.	Which antiox	n of the followin	ng is the impo	rtant rea	ctive gr	roup of glutathi	one in it	s role as
	A)	Serine		B)	Sulfh	nvdrvl		
	C)	Acetyl CoA		D)	Carbo			
68.	Bell-s	haped normal di	istribution cui	ve inher	ritance i	is an example o	of	
	A)	Complementar	ry genes	B)	Quali	tative inheritan	ice	
	C)	Polygenic trait	ts	D)	Pleiot	tropy		
69.		istance between ments are meas			etermine	ed from interru	pted con	jugation
	A)	Recombination	n	B)	Micro	ometer		
	C)	Minutes		D)	Perce	ntage of genop	hgore	
70.		rst attempt to sh	_	-				
	A)	Oenothera lam		B)		n sativum		
	C)	Lathyrus odora	atus	D)	Zea n	nays		
71.	In prei	natal diagnosis,	the polymorp	hism us	ed to de	etermine geneti	c disorde	ers
	A)	SNPs	B) RFLI	P_{S}	C)	RAPDs	D)	SCARs
72.		g resistance ma						
edi	A)	ationol	B) SSP	er_	C)	m/for	D)	AFLP
73.		icine induces po						
,	A)	Inhibiting cell	• • •	B)	Prom	oting cell divis	ion	
	C)	Inhibiting spin		,		ling the Chrom		ize
74.	Which	n type DNA is fo	ound in M13 1	phages?				
	A)	Single strande	-					
	B)	Single strande	d and linear					
	C)	Double strande	ed and linear					
	D)	Double strande	ed and circula	ır				
75.	The re	egions of gene w	which do not f	orm part	of fund	ctional mRNA	are calle	ed
	A)	Transposons		B)	Cistro			
	C)	Introns		D)	Exons	S		
76.		apping genes						
	A)	Are characteri	•	•				
	B)	Code for over		o acid se	equence	es in Protein		
	C)	Are split genes		2				
	D)	Means that a g	gene can code	for mor	e than c	one polypeptide)	
77.		one of the follo	owing carries	dwarf g	ene wit	h high protein	and lysin	ne
	-	ntage in wheat.		D)	17 1			
	A)	Lerma safed		B)	Kalya			
	C)	Sharbati sonar	a	D)	Sonal	ika		

78.	Which A)	sRNA	short -liv B)	rRNA		C)	tRNA	D)	mRNA
79.	The I	ONA sequence GCAT/GC		Eco RI is	B)	GAA	TTC/GAATT	CC .	
	C)	GAATTC/0		3	D)	GAA	TTG/CTTTA	AC	
80.		DNA, helix pi		0			0		0
	A)	60 A^0	B)	$34 A^0$		C)	20 A^0	D)	$45A^0$
81.		ale has been e		oy hybrid					
	A)	Rice and M			B)		at and rice		
	C)	Wheat and	rye		D)	Ragı	and Maize		
82.	and te	ermination inv	olve				ess of initiation	_	ation
	A)	Protein fact			B)		in factors and	CAMP	
	C)	Protein fact	ors and	GTP	D)	Glyc	oxylation.		
83.		~ ~	rom one	location			ossible. Such	genes ar	e called
	A)	Mutons			B)	Reco			
	C)	Exons			D)	Trans	sposons		
84		lrew Fire and PCR					Medicine for		
Ca	C)	RNA interf		CIV	D)	GFP	in Sequencing	guiii	
85.	The h	olandric gene	s are loc	ated on					
	A)	Polytene			B)	Y- ch	romosome		
	C)	X- Chromo	some		D)	Mito	chondria		
86.	Muta	genic agents o	ausing f	rame shi	ft muta	ation are	e		
	A)	2-Amino pu	ırine		B)	EMS			
	C)	Bromouraci	i 1		D)	Acric	line dye		
87.	Kornl	oerg with Och							
	A)	Mechanism			thesis	of DNA	A and RNA		
	B)	Co linearity		esis					
	C)	Central Dog							
	D)	Artificial S	ynthesis	of protein	n				
88.				obtained l	by cro	ssing tw	o different str	rains of	
	-	pium hirsutu	m is						
	A)	Godhavari			B)		laxmi		
	C)	Savitri			D)	Jayal	axmı		
89.		s located at							
	A)	Lucknow	B)	Mysor	e	C)	Kolkatta	D)	Kerala

90.	-	ta required for a synthesis are	assimila	ation of	one mo	lecule (of CO ₂ /O ₂ lil	peration in	
	A)	2	B)	8		C)	6	D)	4
91.	Conti	nuous variation	is are at	tributed	to meio	osis thr	ough		
<i>)</i> 1.	A)	Polyploidy	is are at	uiiouicu	B)		sing over		
	C)	Mutation			D)		f these		
	,				,				
92.	Oligo	genes are							
	A)	Quantitative	genes		B)	Qual	itative genes		
	C)	Holandrinc g	enes		D)	Epist	atic genes		
93.		ommon bread v		3	D)	4 11 1	1 . 1		
	A)	Allotetraploid			B)		nexaploid		
	C)	Auto teraploi	a		D)	Diplo	010		
94.	RNA	Polymerase en	zyme is	,					
	A)	Monocistroni			B)	Poly	eistronic only	У	
	C)	Monocistroni	ic & Po	lycistroi	nic D)	Not a	protein		
95.		h sub unit of ril			hed to E		200		40.0
	A)	50S	B)	60S		C)	30S	D)	40S
96.	Unidi	rectional replic	ation ta	kes plac	ee in		10		
	A	1 1 1 / 1 / 7 / 7			B)	Esch	erichia fo	rum	
	C)	Pneumococci			D)		onella		
97.		h phrase is not				_			
	A)	It is a practic							
	B)	Backcross br	_	is repeat	ted until	the of	fspring has 9	99+% elite	genes and
	G	the transgene			. 41 : -	1	116	4: 11	
	C)	Backcross br	_	is a new	technic	que aev	eloped for g	enetically	
	D)	engineered pl Backcross br		is often	used to	reduce	vield drag		
	D)	Dackeross of	ccumg	is often	useu to	reduce	yicid drag		
98.	Which	h of the followi	ing occi	ars in the	e sporar	ngia of	mosses?		
	A)	Spores germi				J			
	B)	Sperm cells a		-		st bene	ath the surfa	ice of the	
		antheridiopho	ore						
	C)	Sporocytes u	ndergo	meiosis	to prod	uce spo	ores		
	D)	The zygote d	evelops	into a r	nulticel	lular ei	nbryo		
00	C		4 1	4_1	:1 1				
99.		ervation hotspo					iog that are 1	ligonn comi	~
	A)	Areas with la	nge nur	noeis oi	endem	ic spec	ies mai are 0	usappearin	ğ
	B)	rapidly Areas where	neonla	are narti	icularly	active	gunnartare a	f hiologica	d diversity
	C)	Islands that a						i bibliogica	ii uiveisity
	D)	Areas where						oduced sp	ecies
	~)	111000 1111010		room		5 . Jb.u	,, 1011 11111	caacea sp	

100.		n bacteria causes food poisonir	_							
	A)	Escherichia	B)	Penicillium						
	C)	Salmonella	D)	Candida						
101.	Which A)	Which of the following statements about Marchantia sporophytes is true? A) The capsule is attached directly to the foot without the development of a seta.								
	B)	An operculum forms on the a	apex of	the mature capsule						
	C)			e underside of the archegonium.						
	Ď)	None of the above		C						
102.	When	a specific epithet exactly repe	ats the	generic name it is known as						
	A)	Neotype	B)	Priority						
	C)	Taxa	D)	Tautonym						
103.	The se	eed known by the name 'Chilg	oza', th	at is used as a dry fruit						
	A)	Zamia	B) .	Pinus gerardiana						
	C)	Cedrus deodara	D)	Cycas racemosa						
104.	Ouant	itative PCR is								
	A)	Real time PCR	B)	RT PCR						
	C)	Inverse PCR	Ď)	Multiplex PCR						
105.	Percei	ntage frequency distribution is	represe	ented by /f - w						
2 aı		Frequency polygon C V								
	C)	Pie diagram	D)	Frequency table						
106.	Mode	can be located graphically wit	th the h	elp of						
	A)	Line diagram	B)	Bar						
	C)	Histogram	D)	Pie diagram						
107.	The fi	rst artificial plant hybrid was r	nade by	I						
	A)	Thomas Fairchild	B)	De Viries						
	C)	Borlaug	D)	M.S.Swaminathan						
108.	Somat	tic embryogenesis is:								
	A)	Germ line cells developing in	nto emb	oryos						
	B)	Non-germ line cells develop	ing into	embryos						
	C)	Embryos developing from zy	gotes							
	D)	Embryonic tissue becoming	somatic							
109.	A CsC	Cl gradient will separate DNA	molecu	les by						
	A)	Absorption	B)	Resorption						
	C)	Density	D)	Adhesion						
110.	Kleno	w fragment without free nucle	otides e	exhibits						
	A)	Exonuclease activity	B)	Endonuclease activity						
	C)	Nickase activity	D)	No activity						

111.		<u> </u>		prior to replication is carried out by
	A)	Topoisomerase	B)	Helicase
	C)	Restriction endoclease	D)	All of A, B and C
112.	The no		nd and	exchange segments with each other in
	A)	Leptotene	B)	Pachytene
	C)	Zygotene	D)	Diplotene
113.		Veaver – Burk plot helps to fir		
	A)	Rate of enzyme action	B)	Competitive inhibitor
	C)	Substrate composition	D)	Group specificity
114.	Amylo A)	pplastids are plastids which sto Proteins	ore B)	Lipids
	C)	Starch	D)	Ergastic substances
			D)	Ligastic substances
115.	When A)	lactose is present The regulator protein is unab	le to hi	nd the operator and transcription turned
		on		-
	B)	· ·	-	ator and transcription turned off
	C)	The regulator protein is unab off	le to bu	nd the operator and transcription turned
edu	JC 8		ne opera	ator and transcription turned on
116.		one of the following trees yie	_	
	A)	Pinus	B)	Acacia
	C)	Eucalyptus	D)	Phyllanthus
117.		amino acid is precursor of eth		
	A)	Alanine	B)	Threonine
	C)	Methionine	D)	Serine
118.	Jute is			
	A)	Corchorus capsularis	B)	Crotalaria juncea
	C)	Ceiba pentadra	D)	Calamus rotundus
119.	Rose v	wood belongs to the family		
	A)	Leguminosae	B)	Verbenaceae
	C)	Liliaceae	D)	Cruciferae
120.	_	nal placentation and monocarp		
	A)	Poaceae	B)	Asteraceae
	C)	Fabaceae	D)	Liliaceae