M.Sc. Chemistry Entrance Test for M.Sc. Chemistry Programmes 2011

Name	Enrolment No.
Total No. of Questions : 150	Time · 180 Minutes

- All questions are *compulsory*.
- Use of calculator is *not* allowed. Rough work may be done in the space provided at the end of the Test Booklet.
- Read the instructions given on the OMR Response Sheet carefully before you start.

How to fill up the information on the OMR Response Sheet

(Examination Answer Sheet)

- 1. Write your complete enrolment no. in 9 digits. This should correspond to the enrolment number indicated by you on the OMR Response Sheet. Also write your correct name, address with pin code in the space provided. Put your signature on the OMR Response Sheet with date. Ensure that the Invigilator in your examination hall also puts his signature with date on the OMR Response Sheet at the space provided.
- 2. On the OMR Response Sheet student's particulars are to be filled in by pen. However use HB pencil for writing the Enrolment No. and Examination Centre Code as well as for blackening the circle bearing the correct answer number against the serial number of the question.
- 3. Do not make any stray remarks on this sheet.
- **4.** Write correct information in numerical digit in Enrolment No. and Examination Centre Code Columns. The corresponding circle should be dark enough and should be filled in completely.
- 5. Each question is followed by four probable answers which are numbered 1, 2, 3 and 4. You should select and show only one answer to each question considered by you as the most appropriate or the correct answer. Select the most appropriate answer. Then by using HB pencil, blacken the circle bearing the correct answer number against the serial number of the question. If you find that answer to any question is none of the four alternatives given under the question, you should darken the circle with '0'.
- 6. If you wish to change your answer, ERASE completely the already darkened circle by using a good quality eraser and then blacken the circle bearing your revised answer number. If incorrect answer is not erased completely, smudges will be left on the erased circle and the question will be read as having two answers and will be ignored for giving any credit.
- 7. No credit will be given if more than one answer is given for one question. Therefore, you should select the most appropriate answer.
- 8. You should not spend too much time on any one question. If you find any particular question difficult, leave it and go to the next. If you have time left after answering all the questions, you may go back to the unanswered ones. There is no negative marking for wrong answers.

GENERAL INSTRUCTIONS

- 1. No cell Phones, calculators, books, slide-rules, note-books or written notes, etc. will be allowed inside the examination hall.
- 2. You should follow the instructions given by the Centre Superintendent and by the Invigilator at the examination venue. If you violate the instructions, you will be disqualified.
- 3. Any candidate found copying or receiving or giving assistance in the examination will be disqualified.
- 4. The Test Booklet and the OMR Response Sheet (Answer Sheet) would be supplied to you by the Invigilators. After the examination is over, you should hand over the OMR Response Sheet to the Invigilator before leaving the examination hall. Any candidate who does not return the OMR Response Sheet will be disqualified and the University may take further action against him/her.
- 5. All rough work is to be done on the test booklet itself and not on any other paper. Scrap paper is not permitted. For arriving at answers you may work in the margins, make some markings or underline in the test booklet itself.
- 6. The University reserves the right to cancel scores of any candidate who impersonates or uses/adopts other malpractices or uses any unfair means. The examination is conducted under uniform conditions. The University would also follow a procedure to verify the validity of scores of all examinees uniformly. If there is substantial indication that your performance is not genuine, the University may cancel your score.
- 7. In the event of your qualifying the Entrance Test, the hall ticket should be enclosed with your admission form while submitting it to the University for seeking admission in M.Sc. (Chemistry) Programme along with your testimonials and programme fee. Admission forms received without hall ticket in original will be summarily rejected.

1.		electromagnetic ra a will have the ma			red with which of the following transitions in a hydrogength?				
	(1)	From $n=1$ to $n=1$	= 3		(2)	Fron	n = 2 to $n = 3$		
	(3)	From $n=3$ to $n=3$	= 4		(4)	Fron	$n = 1$ to $n = \alpha$		
2.	Whi								n less than 710 nm. m with maximum
	(1)	Blue	(2)	Green		(3)	Violet	(4)	Yellow
3.		minimum value o s energy in the ne					one dimensiona	l box is	x units. The value
	(1)	$\frac{1}{2}x$	(2)	2 <i>x</i>		(3)	3 <i>x</i>	(4)	4 <i>x</i>
4.	The	probability of find	ding t	he dz ² elect	ron is	zero :	in :		
	(1)	xy plane	(2)	xz plane		(3)	yz plane	(4)	none of the above
5.		Born Haber cycle tive standard ent First and second	halpy	of formation	on of l	MgO(s), a stable ionic		unting for the high ound ?
	(2)	Dissociation ene			,				
	(3)	Lattice energy							
	(4)	Electron affinity	of O	(g)					
_		() F		NOT 1 1					
6.		of XeF ₂ , CO ₂ , SO ₂	₂ and						
	(1)	XeF ₂ and CO ₂		(2)	CO_2	and !	SO ₂		
	(3)	XeF_2 and NO_2^-		(4)	SO_2	and l	NO_2^-		
7.	A m		sp ² ł	ybrid orbit	als ar	e emp	oloyed for bond	forma	tion by the central
	(1)	NH_3	(2)	CO_2		(3)	SCl ₂	(4)	H ₂ CO
8.	Carl	oon-Carbon bond	orde	rin C is					
•					•		_		
	(1)	1	(2)	2.		(3)	3	(4)	4

9.	In wh	nich of the following ionizations the respective bond order decreases?
	(1)	$O_2(g) \longrightarrow O_2^+(g) + e$

$$(2) N_2(g) \longrightarrow N_2^+(g) + e$$

(3)
$$NO(g) \longrightarrow NO^+(g) + e$$

(4)
$$He_2 \longrightarrow He_2^+(g) + e$$

10. Amongst PF₃, CS₂, SF₄ and SF₆ the polar molecules are :

(1)
$$PF_3$$
 and SF_6 (2) CS_2 and SF_4 (3) PF_3 and SF_4 (4) CS_2 and SF_6

11. After one hour the amount of a certain radioactive substance disintegrated was $\frac{15}{16}^{th}$ of the original amount. The half life of the radioactive substance is:

12. The outermost electron configuration of an element is $5s^2$ $5p^3$. The atomic number of this element is:

13. Which of the following has the highest electronegativity?

14. The correct order of ionization energies of F^- , Cl^- , F and Cl is:

(1)
$$F^- < Cl^- < F < Cl$$
 (2) $F^- < Cl < Cl^- < F$ (3) $F^- < Cl^- < Cl < F$ (4) $Cl^- < F^- < Cl < F$

15. The correct order of the sizes of the species Ca^{2+} , Cl^- , S^{2-} and K^+ is:

(1)
$$Ca^{2+} < K^+ < Cl^- < S^{2-}$$
 (2) $K^+ < Cl^- < Ca^{2+} < S^{2-}$ (3) $S^{2-} < Cl^- < K^+ < Ca^{2+}$ (4) $Cl^- < S^{2-} < K^+ < Ca^{2+}$

16. The correct order of decreasing boiling points of NH₃, PH₃ and AsH₃ is:

(1)
$$NH_3 > PH_3 > AsH_3$$
 (2) $AsH_3 > PH_3 > NH_3$
(3) $NH_3 > AsH_3 > PH_3$ (4) $PH_3 > NH_3 > AsH_3$

17.	Whi	ch of the follow	ing eler	nents will f	form t	he lea	st stable sup	peroxide ?	
	(1)	Na	(2)	K		(3)	Rb	(4)	Cs
18.	The	ionic conductar	nce of al	kali metal	cation	s in ac	queous solu	tion decreas	ses in the order :
	(1)	$Cs^+ > Rb^+ >$	$K^+ > N$	la ⁺	(2)	Na+	> K + > Rb	$s^+ > Cs^+$	
	(3)	$K^+ > Na^+ > 0$	$Cs^+ > R$.b+	(4)	Rb+	$> Cs^+ > K$	+ > Na +	
19.		ong Mg(OH) ₂ , C luct ?	a(OH) ₂ ,	Sr(OH) ₂ ar	nd Ba(ОН) ₂	which has th	ne largest va	lue of the solubility
	(1)	$Mg(OH)_2$	(2)	Ca(OH) ₂		(3)	Sr(OH) ₂	(4)	Ba(OH) ₂
20.	The	rmal stability of	peroxic	les of alkal	ine ea:	rth me	etals decreas	se in the ord	der :
	(1)	$CaO_2 > SrO_2$	> BaO ₂		(2)	ВаО	$O_2 > SrO_2 > O_3$	CaO ₂	
	(3)	$SrO_2 > CaO_2$	> BaO ₂	•	(4)	SrO	$_2 > BaO_2 >$	CaO ₂	
21.	Whi	ch of the follow	ing stat	ements reg	garding	g dibc	orane is <i>NO</i> ?	Γ correct ?	
	(1)	It is an electro	n defici	ent molecu	le				
	(2)	There is free r	otation	about B-B	bond				
	(3)	The bonding of different ty		ydrogens i	s of or	ne typ	e whereas tl	he bonding	of the other four is
	(4)	Its final hydro	olysis pr	oducts are	hydro	gen a	nd boric aci	d	
22.	Whi	ch of the follow	ving stat	ements abo	out an	hydro	us aluminiu	ım chloride	is correct?
	(1)	It exists as Ale	Cl_3 mole	ecules	(2)	It is	not easily h	ydrolysed	
	(3)	It is a volatile	compou	ınd	(4)	It is	a moderate	ly strong Le	ewis base
23.	Whi	ch of the follow	ving stat	ements is I	VOT c	orrect	about freor	ns?	
	(1)	They are gase	s at roo	m tempera	ture				
	(2)	They are hyd	rolysed	by water					
	(3)	They are then	mally st	able					
	(4)	They are chlo	rofluoro	ecarbons					
24.	Whi	ch is the strong	est oxid	izing agen	t amoi	ng the	following?	,	
	(1)	CO ₂	(2)	SiO ₂		(3)	SnO_2	(4)	PbO ₂

2 5.	Whi	ch of the foll	owing stat	ements reg	garding	halid	les of N and	P is NOT	correct?
	(1)	PF ₅ exists I	NF ₅ does n	ot					
	(2)	PF ₃ hydrol	yses but N	F ₃ does not	ŧ				
	(3)	PCl ₃ hydro	lyses in the	e same wa	y as NO	Cl_3			
	(4)	PCl_3 is stat	ole but NCl	3 is not					
26.	Whi	ch of the foll	owing is th	ne most ba	sic?				
	(1)	P_4O_6	(2)	P_4O_{10}		(3)	As_4O_6	(4)	Sb_2O_3
27.	Whi	ch of the fol	lowing stat	tements is	NOT co	orrect	?		
	(1)	Ionic azide	s are more	stable tha	n cova	lent a	zides		
	(2)	Azide ion	has an ang	ular shape	2				
	(3)	Hydrazine	is thermal	ly unstable	<u>.</u>				
	(4)	Hydrazine	forms com	nplexes wit	th trans	sition	metal ions		
28.	Whi	ch of the fol	lowing is n	nost acidic	?				
	(1)	H_2O	(2)	H_2S		(3)	H ₂ Se	(4)	H ₂ Te
29.	Whi	ch of the fol	lowing sta	tements is	NOT c	orrect	regarding th	niosulphat	e ion ?
	(1)	It has tetra	hedral sha	pe	(2)	It ha	as no sulphu	r-sulphur	bond
	(3)	It can act a	as reducing	g agent	(4)	It ca	ın form comp	olex with s	ilver ion
30.	HBr	and HI red	uce H ₂ SO ₄ ,	HCl can 1	reduce	KMn0	O_4 and HF ca	an reduce	:
	(1)	H_2SO_4			(2)	KM	nO_4		
	(3)	$K_2Cr_2O_7$			(4)	Nor	ne of the abov	ve	
31.	Whi	ich of the fol	lowing is <i>l</i>	VOT true a	bout fl	uorin	e ?		
	(1)	It forms po	olyhalide id	ons					
	(2)	It forms in	iterhalogen	compoun	ds				
	(3)	It forms in	J	-					
	(4)	It forms O	₂ F ₂						
32.	Whi	ich of the fol	lowing sta	tements is	NOT c	orrect	regarding X	leF ₂ ?	
	(1)		ır molecule				0 0	~	
	(2)	It reacts vi	olently wit	th water					
	(3)		bromate to		ate				
	(4)		fluoride id	•					

 33. Among the following which is the least basic? (1) Cr₂O₃ (2) CrO₃ (3) CaO (4) K₂O 34. Which of the following cations has the maximum number of unpaired electrons? (1) Fe³⁺ (2) Mn³⁺ (3) Fe²⁺ (4) Mn⁴⁺ (at. no. of Mn = 25, Fe = 26) 35. Of the following elements one that is <i>NOT</i> expected to display an oxidation state any of its compounds is: (1) Ti (2) V (3) Cr (4) Mn 36. Chloride of which of the following will be coloured? (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4f⁵ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is <i>NOT</i> a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a square planar complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion (5) It is 0 in a square planar complex of d⁸ ion (6) It is 0 in a square planar complex of d⁸ ion (7) It is 160 (2) 12240 (3) 16320 (4) 20400 40. Malachite is a mineral of: (1) Malachite is a mineral of: (1) manganese (2) magnesium (3) tin (4) copper 									
 34. Which of the following cations has the maximum number of unpaired electrons? (1) Fe³⁺ (2) Mn³⁺ (3) Fe²⁺ (4) Mn⁴⁺ (at. no. of Mn = 25, Fe = 26) 35. Of the following elements one that is NOT expected to display an oxidation state any of its compounds is: Ti Ti V Tg (I) Tg (I) Tg (II) Tg (33.	Am	ong the following	, whic	h is the least basi	c ?			
(1) Fe³+ (2) Mn³+ (3) Fe²+ (4) Mn⁴+ (at. no. of Mn ≈ 25, Fe ≈ 26) 35. Of the following elements one that is NOT expected to display an oxidation state any of its compounds is: (1) Ti (2) V (3) Cr (4) Mn 36. Chloride of which of the following will be coloured? (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4/5 5d² 6s² (2) 4/6 5d¹ 6s² (3) 4/7 6s² (4) 4/7 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O₂)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a square planar complex of d⁶ ion (4) It is 0 in a square planar complex of d⁶ ion (5) The crystal field stabilization energy of [Ti(H₂O)₆]³+ (at. no. of Ti = 22) is −8: What is the value of crystal field splitting energy, Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of:		(1)	Cr_2O_3	(2)	CrO_3	(3)	CaO	(4)	K ₂ O
(1) Fe³+ (2) Mn³+ (3) Fe²+ (4) Mn⁴+ (at. no. of Mn ≈ 25, Fe ≈ 26) 35. Of the following elements one that is NOT expected to display an oxidation state any of its compounds is: (1) Ti (2) V (3) Cr (4) Mn 36. Chloride of which of the following will be coloured? (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4/5 5d² 6s² (2) 4/6 5d¹ 6s² (3) 4/7 6s² (4) 4/7 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O₂)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a square planar complex of d⁶ ion (4) It is 0 in a square planar complex of d⁶ ion (5) The crystal field stabilization energy of [Ti(H₂O)₆]³+ (at. no. of Ti = 22) is −8: What is the value of crystal field splitting energy, Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of:									
 (at. no. of Mn = 25, Fe = 26) 35. Of the following elements one that is NOT expected to display an oxidation state any of its compounds is: (1) Ti (2) V (3) Cr (4) Mn 36. Chloride of which of the following will be coloured? (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4f⁵ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy, Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 	34.	Whi					•		
 35. Of the following elements one that is NOT expected to display an oxidation state any of its compounds is: Ti V Chloride of which of the following will be coloured? Ag (I) Hg (II) Co(II) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? 4f⁶ 5d² 6s² 4f⁶ 5d¹ 6s² 4f⁶ 5d² 6s² 4f⁶ 5d¹ 6s² 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: 2 3 3 4 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? It is 4 in a high spin octahedral complex of d⁶ ion It is 0 in a low spin octahedral complex of d⁶ ion It is 0 in a square planar complex of d⁸ ion It is 0 in a square planar complex of d⁸ ion It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? 8160 12240 16320 20400 41. Malachite is a mineral of: 		` ′		, .		(3)	Fe ²⁺	(4)	Mn ⁴⁺
any of its compounds is: (1) Ti (2) V (3) Cr (4) Mn 36. Chloride of which of the following will be coloured? (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4f ⁵ 5d ² 6s ² (2) 4f ⁶ 5d ¹ 6s ² (3) 4f ⁷ 6s ² (4) 4f ⁷ 5d ¹ 38. The number of possible isomers of K[Cr(C ₂ O ₄) ₂ (H ₂ O) ₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is <i>NOT</i> a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d ⁶ ion (2) It is 0 in a low spin octahedral complex of d ⁶ ion (3) It is 0 in a tetrahedral complex of d ⁸ ion (4) It is 0 in a square planar complex of d ⁸ ion 40. The crystal field stabilization energy of [Ti(H ₂ O) ₆] ³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy, Δ ₀ of this complex (in cm ⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400		(at.	no. of $Mn = 25$,	Fe =	26)				
 36. Chloride of which of the following will be coloured? (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4f⁵ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy, Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 	35.		<u> </u>		one that is NOT	expect	ted to display an	oxida	tion state of +5 in
 (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4f⁶ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of:		(1)	Ti	(2)	V	(3)	Cr	(4)	Mn
 (1) Ag (I) (2) Hg (II) (3) Co(II) (4) Zn(II) 37. For europium (at.no. = 63) which of the following outermost electron config correct? (1) 4f⁶ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of:	36.	Chlo	oride of which of	the fo	ollowing will be co	oloure	ed ?		
 correct? (1) 4f⁵ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 					•			(4)	Zn(II)
 correct? (1) 4f⁵ 5d² 6s² (2) 4f⁶ 5d¹ 6s² (3) 4f⁷ 6s² (4) 4f⁷ 5d¹ 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8: What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 									
 38. The number of possible isomers of K[Cr(C₂O₄)₂(H₂O)₂] is: (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti=22) is -8. What is the value of crystal field splitting energy, Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 	37.		1 '	o. = 63) which of the f	ollow	ing outermost e	lectro	n configuration is
 (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 		(1)	$4f^5 \ 5d^2 \ 6s^2$	(2)	$4f^6 \ 5d^1 \ 6s^2$	(3)	$4f^7 6s^2$	(4)	$4f^7 \ 5d^1 \ 6s^1$
 (1) 2 (2) 3 (3) 4 (4) 6 39. Which is NOT a correct statement regarding the number of unpaired electrons? (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of: 	38.	The	number of possil	ole iso	mers of K[Cr(C ₂ (O ₄) ₂ (H	[₂ O) ₂] is :		
 (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti (H₂O)₆]³⁺ (at. no. of Ti = 22) is -87. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of : 					_			(4)	6
 (1) It is 4 in a high spin octahedral complex of d⁶ ion (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti (H₂O)₆]³⁺ (at. no. of Ti = 22) is -87. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of : 									
 (2) It is 0 in a low spin octahedral complex of d⁶ ion (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -87. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of : 	39.	Whi	ch is NOT a corr	ect sta	itement regarding	g the r	number of unpair	ed ele	ctrons?
 (3) It is 0 in a tetrahedral complex of d⁸ ion (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of : 		(1)	It is 4 in a high	spin o	octahedral comple	ex of o	d ⁶ ion		
 (4) It is 0 in a square planar complex of d⁸ ion 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -8. What is the value of crystal field splitting energy , Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of : 		(2)	It is 0 in a low s	spin o	ctahedral comple	x of d	⁶ ion		
 40. The crystal field stabilization energy of [Ti(H₂O)₆]³⁺ (at. no. of Ti = 22) is -85. What is the value of crystal field splitting energy, Δ₀ of this complex (in cm⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of : 		(3)	It is 0 in a tetra	hedral	l complex of d ⁸ ic	n			
What is the value of crystal field splitting energy , Δ_0 of this complex (in cm ⁻¹)? (1) 8160 (2) 12240 (3) 16320 (4) 20400 41. Malachite is a mineral of :		(4)	It is 0 in a squa	re pla	nar complex of d ⁸	3 ion			
41. Malachite is a mineral of :	40.	The Wha	crystal field stab at is the value of o	oilizati crystal	ion energy of [Ti l field splitting en	i (H ₂ O ergy ,	$(a_6)_6^{3+}$ (at. no. of $(a_0)_6$ of this comple	Ti = 22 ex (in •	2) is -8160 cm ⁻¹ . cm ⁻¹) ?
		(1)	8160	(2)	12240	(3)	16320	(4)	20400
(1) manganese (2) magnesium (3) tin (4) copper	41.	Mal	achite is a minera	al of:					
		(1)	manganese	(2)	magnesium	(3)	tin	(4)	copper

42.	2. Which of the following statements is correct regarding the slag obtained during the extraction of a metal like Cu or Fe?										
	(1)	The slag is lighte		l lower melti	ng th	an th	e metai				
	(2)	The slag is heav			-						
	(3)	The slag is lighte			-						
	(4)	The slag is heav		•	_						
43.	Elect	rorefining cannot	be us	sed for whicl	h of tl	he fol	lowing ?				
	(1)	Cu	(2)	Sn		(3)	Pb	(4)	Al		
44.		which of the fol Cl+NH ₄ OH ?	lowir	ng pairs of	ions	the	constituents ca	nnot	be separated by		
	2.	Al^{3+} , Fe^{3+}	(2)	Al^{3+} , Zn^{2+}		(3)	Fe ³⁺ , Co ²⁺	(4)	Fe ³⁺ , Zn ²⁺		
4 5.	Whi	ch among the foll	owing	g is the most	solub	le sul	lphide ?				
	(1)	CuS	(2)	CdS		(3)	PbS	(4)	NiS		
46.	Whi	ch of the followin	g doe	s not dissolv	e in h	ot ni	tric acid ?				
	(1)	HgS	(2)	CuS		(3)	CdS	(4)	SnS		
47.	Whi	ch of the followin	ıg cati	ons imparts	violet	colo		ame ?			
	(1)	Sodium	(2)	Potassium		(3)	Calcium	(4)	Barium		
48.	On 1	reatment with di	l.H ₂ SC	D_4 which of	the fo	llowi	ng anions would	NOT	produce a gas ?		
٠	(1)	sulphide	(2)	thiosulpha	te	(3)	bromide	(4)	sulphite		
49.		adding BaCl ₂ solu precipitate could			n of a	a sodi	um salt a white	precip	itate was obtained.		
	(1)	BaSO ₄	(2)	BaSO ₃		(3)	BaF ₂	(4)	${ m BaCrO_4}$		
50.	The	brown ring obtai	ned ir	n the test for	nitra	te ion	s contains the ca	tion :			
	(1)	[Fe(H ₂ O) ₅ NO]	+		(2)	[Fe	$(H_2O)_5NO_2]^{2+}$				
	(3)	[Fe(H ₂ O) ₅ NO]	2+		(4)	[Fe	$(H_2O)_4(NO_2)_2$] ⁺				
51.									eric bromohexenes,		
		of which is 3-bro		-hexene. Wi			=	other	isomer ?		
	(1)	1-bromo-2-hex			(2)		omo-1-hexene				
	(3)	1-bromo-1-hex	ene		(4)	2-br	romo-1-hexene				

- 52. The cannizaro reaction of benzaldehyde involves:
 - (1) intramolecular shift of proton
- (2) intramolecular shift of hydride
- (3) intermolecular shift of proton
- (4) intermolecular shift of hydride
- 53. The reaction of m-bromoanisole with NaNH₂ in liquid ammonia yields:
 - (1) *o*-amino anisole

(2) m-amino anisole

(3) p-amino anisole

- (4) 1, 3-diaminobenzene
- 54. A compound whose substituents are superimposable on their own mirror image even though they contain asymmetric carbon atoms is called:
 - (1) a threo isomer

(2) an erythro isomer

(3) syn-anti isomer

- (4) a meso-compound
- **55.** Spin spin splitting occurs in the NMR spectrum of ethanol (I), ethane(II), ethyl methyl ether(III) , *t*-butyl methyl ether(IV) :
 - (1) I and II only
- (2) I and III only
- (3) I and IV only
- (4) II and IV only
- The UV spectrum of acetone shows maximum absorption peak at 279 nm besides other peaks at 166 and 189. The peak at 279 nm is because of which transition?
 - (1) $n \rightarrow \sigma^*$
- $(2) \quad \pi \rightarrow \pi^*$
- $(3) \quad n \to \pi^*$
- $(4) \quad \sigma \rightarrow \sigma^*$
- 57. o-Nitrophenol is steam volatile whereas p-nitrophenol is not. This is due to:
 - (1) the presence of intramolecular hydrogen bonding in p-nitrophenol
 - (2) higher dipole moment of o-nitrophenol
 - (3) the presence of intramolecular hydrogen bonding in o-nitrophenol
 - (4) the presence of intermolecular hydrogen bonding in o-nitrophenol
- 58. The configuration of asymmetric centre and the geometry of the double bond in the following molecule can be described by :

- (1) R and E
- (2) S and E
- (3) R and Z
- (4) S and Z

59. Which of the following statements about A and B are true?

- (1) A and B are identical
- (2) A and B are diastereomers
- (3) A and B are meso-compounds
- (4) A and B are enantiomers

60. Which of the following reactions does not proceed through a nitrene intermediate?

- (1) Curtius rearrangement
- (2) Lossen rearrangement
- (3) Beckmann rearrangement
- (4) Hofmann bromamide reaction

61. Pyridine undergoes electrophilic substitution reaction preferentially at:

(1) Position 2

(2) Position 3

(3) Position 4

(4) Position 2 and Position 4

62. Addition of bromine to maleic acid gives :

- (1) d*l*-2,3-Dibromosuccinic acid
- (2) meso-2,3-Dibromosuccinic acid
- (3) d-2,3-Dibromosuccinic acid
- (4) *l*-2,3-Dibromosuccinic acid

63. The order of reactivity of S_N 1 reaction in the following bromides is:

- (1) I > II > III
- $(2) \quad III > II > I$
- (3) II > I > III
- $(4) \quad III > I > II$

64. The following molecule can be synthesized from :

- (1) 1,3-Butadiene and dimethyl maleate
- (2) 1,2-Butadiene and dimethyl maleate
- (3) 1,3-Butadiene and dimethyl fumarate
- (4) 1,2-Butadiene and dimethyl fumarate

65. Oppenauer oxidation is the reverse of :

- (1) Wolff-Kishner reduction
- (2) Birch reduction
- (3) Clemmensen reduction
- (4) Meerwein-Ponndorf-Verley reduction

66. The best reagent for the conversion of an ester to alcohol is :

- (1) $LiAlH_4$
- (2) $H_2/Pd-C$
- (3) NaBH₄
- (4) $\operatorname{Li-NH}_3(\operatorname{liq})$

67. β-keto esters are best generated via?

(1) Aldol reaction

(2) Oxidation of an ester

(3) Claisen reaction

(4) Hoffman rearrangement

68. Which of the following statements is **NOT** true about enzymes?

- (1) They speed up reactions several times compared to uncatalyzed reactions
- (2) They are very specific in their action on substrates
- (3) They are active at moderate temperature and physiological pH
- (4) Each enzyme catalyses a variety of reactions

69. The mechanism of the reaction given below is called

$$C_6H_5Br + liq. NH_3 + NaNH_2 \rightarrow C_6H_5NH_2$$

(1) $S_N 1$

- (2) S_N^2
- (3) Addition-Elimination
- (4) Elimination-Addition

70. Which of the following is **NOT** a suitable alkylating agent for active methylene compounds?

 $(1) \quad C_6H_5CH_2Cl$

(2) $CH_2 = CHCH_2Cl$

(3) $CH_3CH = CHBr$

(4) $(CH_3)_2SO_4$

	(1)	C ₆ H ₅ Br	(2)	$CH_2 = CH$	Cl	(3)	CH ₂ CIC	\equiv CCH ₃ (4)	CH ₂ BrC≡CH	
72.	A hy	droxy acid on he	ating	gives a 5-n	nembe	ered la	ctone. Th	e acid is :		
	(1)	CH ₂ OHCH ₂ CH	2COC	DН	(2)	CH_3	СНОНСН	1 ₂ COOH		
	(3)	CH ₃ CH ₂ CHOH	COO	Н	(4)	CH ₃	СНОНСН	OHCOOH		
73.	The	most stable confo	rmati	ion of 2,3-d	ichlor	obutai	ne is :			
	(1)	Eclipsed form			(2)	Stag	gered forn	n		
	(3)	Skew form			(4)	Gau	che form			
74.		ch of the following	g org	anic halides	will t	ınderg	go an E2 el	imination or	n heating with KO	Η
	(1)	2,2-dimethyl-1-	-bron	nopropane	(2)	2,2-	dimethyl-	1-bromocyc	lohexane	
	(3)	benzyl chloride			(4)	2,5-	dimethyl-	1-bromoben	zene	
75.		ipeptide is compo i). How many iso					•		ne (one molecule o	of
	(1)	three	(2)	four		(3)	six	(4)	eight	
76.	Whi	ch of the followin	ng iso:	meric diene	s is ch	iral ?				
	(1)	2,3-pentadiene			(2)	3-m	ethyl-1,2-	butadiene		
	(3)	2-methyl-1,3-b	utadi	ene	(4)	3-m	ethyl-1-p	entene		
77.	Whi	ch of the followir	ng ald	lehydes, use	ed alo	ne, wi	ll unde r go	an aldol rea	action ?	
	(1)	formaldehyde,	CH ₂ C)	(2)	buta	anal, CH ₃ (CH ₂) ₂ CHO		
	(3)	benzaldehyde,	C ₆ H ₅	CHO	(4)	2-p	ropenal, C	H ₂ =CHCH	O	
78.	Whi	ich of the followir	ng rea	ictions is mo	ost lik	ely to	produce e	thyl propane	oate ?	
	(1)	sodium ethoxid	e + j	propanoic a	cid					
	(2)	propanol + ace	etyl cl	nloride						
	(3)	sodium propan	oate	+ acetic an	hydrio	de				
	(4)	potassium prop	anoa	te + ethyl i	odide					

71. Which of the following halides CANNOT be used for the preparation of Grignard reagent?

79.		nyl butyrate is rea queous NaOH. V					*	then tr	eated with bromine		
	(1)	butylamine			(2)	pent	tylamine				
	(3)	propylamine			(4)	N-b	romobutyramid	e			
80.	Whi	ch one of the foll	owing	compound	s wo	ald rea	act with C ₂ H ₅ M	gBr to	make 3-pentanol ?		
	(1)	ethanal	(2)	ethyl form		(3)	acetic acid	(4)	acetone		
81.		₃ H ₁₀ hydrocarbon ₉ NO ₂ are obtaine						furic ac	id. Two isomers of		
	(1)	ethylbenzene	(2)	ortho-xyle	ene	(3)	meta-xylene	(4)	para-xylene		
82.	If tw	vo isomers have b	een cl	assified cor	rectly	as an	omers, they ma	v also b	pe called ?		
	(1)	conformers	(2)	enantiome	_	(3)	tautomers	(4)	diastereomers		
83.	Whi	ch C = O function	has t	he lowest s	tretch	ing fr	equency in the	infrarec	d spectrum ?		
	(1)	acyl chloride	(2)	aldehyde		(3)	amide	(4)	ester		
84.	The	reaction of toluer	ne wit]	n chlorine ir	n pres	ence (of heat or light g	gives :			
	(1)	o-chlorotoluene	:		(2)	p-ch	lorotoluene				
	(3)	<i>m</i> -chlorotoluen	e		(4)	benz	zyl chloride				
85.	Iden	itify the product i	in the	reaction :							
		$=$ CMe $\frac{\text{H}_3\text{O}}{}$									
	PhC	≡ CMe − 3	,0	→ ?							
	(1)	PhCH ₂ CH ₂ CH()		(2)	PhC	CH(OH)CH ₂ CH ₃	3			
	(3)	PhCH ₂ COCH ₃			(4)	PhC	OCOMe				
86.	Wha	it is the best syntl	hesis f	or CH ₃ CON	NHCH	I ₃ ?					
	(1)	CH ₃ COOH + CI	H_3NH	2 →							
	(2)	$CH_3CONH_2 + C$:H ₃ Br	→							
	(3)	CH ₃ COCl + Cl	.,								
	(4)	$CH_3CN + CH_3MgI$ followed by treatment with $H_3O^+ \rightarrow$									

87. Which of the functional groups on the following molecule are susceptible to nucleophilic attack?

- "a" and "b" (1)
- (2)
- "a" and "c" (3) "b" and "c" (4) "a", "b" and "c"

88. 2-Butyne can be converted to Z-2 - butene by :

- (1)Rosenmund reduction
- (2)Birch reduction

(3) Lindlar catalyst

Sodium borohydride (4)

Which one of the following compounds gives colour reaction with FeCl₃? 89.

- (1)Acetyl salicylic acid
- Methyl salicylate (2)

(3) Nitrobenzene (4) Benzoic acid

90. Which of the following reactions is a good method for preparing an aldehyde?

- Jones' reagent and a 3°-alcohol
- (2) Jones' reagent and a 2°-alcohol
- (3)PCC and a 1°-alcohol
- (4)H₂SO₄, a 1°-alcohol and heat

91. The reaction Ketene of with acetic acid will give:

> Oxalic acid (1)

(2) Acetic anhydride

(3)Propanoic acid (4) Malonic acid

92. A C_6H_{12} compound reacts with ozone to yield a single C_3H_6O product. Gas phase free radical bromination of the hydrocarbon gives only C₆H₁₁Br. Compound A is:

(1) cyclohexane

cyclohexene (2)

(3)3-hexene (4)2,3-dimethyl-2-butene

93. The ¹H-NMR of 1,1-dibromoethane consists of two well-separated signals, one large and the other small. Which of the following descriptions is correct?

- the large signal is a quartet and the small signal is a doublet
- (2) the large signal is a triplet and the small signal is a singlet
- (3) the large signal is a singlet and the small signal is a triplet
- (4)the large signal is a doublet and the small signal is a quartet

94. The conjugated dienes are different from alkenes by :

- (1) Being less stable, less reactive and undergoing 1,3-addition
- (2) Being less stable, more reactive and undergoing 1,3-addition
- (3) Being more stable, less reactive and undergoing 1,2-addition
- (4) Being more stable, more reactive and undergoing 1,4-addition

95. Dehydrobromination of a trans-2-methylcyclohexyl bromide results in:

- (1) 1-methyl-1-cyclohexene
- (2) 1,3-dimethylcyclopentene
- (3) 1,2-dimethylcyclopentene
- (4) 3-methyl-1-cyclohexene

96. The major product of nitration of 1-nitronaphthalene is:

- (1) 1,3-dimethylnaphthalene
- (2) 1,2-dimethylnaphthalene
- (3) 1,8-dimethylnaphthalene
- (4) 1,6-dimethylnaphthalene

97. Which one of the following amines will give carbylamine reaction?

(1) tert-butyl amine

(2) trimethyl amine

(3) N-methyl aniline

(4) Dimethyl amine

98. The secondary structure of proteins is derived from :

(1) Peptide linkages

- (2) Hydrogen bonding
- (3) Disulfide linkages

(4) Folding of chains

99. An aromatic compound (X) of molecular formula C_7H_7NO liberates ammonia on heating with alkali. When 'X' is treated with bromine and alkali, the product will be:

- (1) benzonitrile
- (2) benzamide
- (3) aniline
- (4) benzoic acid

100. Which of the following is a pair of geometric isomers:

- (1) (i) and (ii)
- (2) (i) and (iii)
- (3) (i) and (iv) (4)
- (ii) and (iii)

101.	The o	energy of an idea	l gas (depends on	ly on i	its:					
	(1)	pressure			(2)	volu	me				
	(3)	number of mole	s		(4)	tem	perature				
102.							a gas is u. If then atoms, the rms		erature is doubled ty becomes :		
	(1)	u/2	(2)	2u		(3)	4u	(4)	u		
103.	How	ever great the pr	essure	e, a gas can'	t be li	quefie	ed above its :				
	(1)	critical tempera	ture		(2)	inve	rsion temperatur	e			
	(3)	Boyle's tempera	ture		(4)	room temperature					
104.	Whic	ch type of crystals	s cont	ain the max	kimun	num	aber of Bravais la	ttices ?	?		
	(1)	Cubic	(2)	Triclinic		(3)	Orthorhombic	(4)	Tetragonal		
105.	The	property which is	inter	nsive among	g the f	ollow	ing is :				
	(1)	Free energy	(2)	Entropy		(3)	EMF	(4)	Volume		
106.	and		e syste	em along th	ese pa	aths is	Q_1 and Q_2 and		The heat absorbed M_2 respectively.		
		$Q_1 = Q_2$	J			•	$W_1 = Q_2 + W_2$				
		$W_1 = W_2$					$-W_1 = Q_2 - W_2$				
107.		n <i>l</i> n k is plotted a e equal to :	igains	t 1/T using	Arrhe	enius	equation, a straig	ht line	is expected with a		
	(1)	E_a/RT	(2)	RT/E_a		(3)	E_a/R	(4)	R/E_a		
108.	Of th (1) (3)	ne following mixt sodium chloride heptane-water			ely m (2) (4)	etha	near to ideal solution nol-benzene tane-octane	ution i	is:		
109.	The (1)	ionic strength of 0.3	0.1 M (2)	BaCl ₂ is : 0.2		(3)	0.4	(4)	0.1		
110.	The (1) (3)	triple point of wa 273.16 K 273.16 K and 4.			(2) (4)	273. 760	16 K and 760 tor torr	r			

111.	The horizontal plane is present in one of the following molecules:										
	(1)	SO ₂	(2)	NH ₃	(3)	CH_4	(4)	CO ₂			
112.	The	molecule which g	ives r	otational spectr	rum is :						
	(1)	N_2	(2)	CH_4	(3)	SF ₆	(4)	CO			
113.	The	selection rule for	rotati	onal Raman spe	ectra is	:					
	(1)	$\Delta J = \pm 1$	(2)	$\Delta J = \pm 2$	(3)	$\Delta J = \pm 0$	(4)	$\Delta J = \pm 3$			
114.	Whi	ch of the followin	g mol	ecules have lov	vest vib	rational frequency	7?				
	(1)	¹ H ³⁵ Cl	(2)	² H ³⁵ Cl	(3)	¹ H ³⁶ Cl	(4)	¹ H ³⁷ Cl			
115.		ne IR spectrum of ations are :	ICl ₂	ion the numb	per of e	xperimentally obs	erved	normal modes of			
	(1)	4	(2)	3	(3)	2	(4)	6			
116.	The	parallel band has	no Q	-branch in whi	ch of th	e following molec	cules ?				
	(1)	COS	(2)	H ₂ O	(3)	NH ₃	(4)	NOCl			
117.	Whi	ch of the followin	g mol	ecule is both IF	R and R	aman active ?					
	(1)	D_2	(2)	CH_4	(3)	DHO	(4)	C_2H_2			
118.			-					.0 cm cell. For the absorbance would			
	(1)	0.5	(2)	1.0	(3)	0.25	(4)	0.75			
119.	Whi	ch of the followin	g nuc	lei will show N	IMR spe	ectrum ?					
	(1)	¹² C	(2)	15 _N	(3)	¹⁶ O	(4)	32 _S			
120.	The	unit of the rate of	react	ion is same as	that of t	he rate constant f	or a:				
	(1)	zero-order reac	tion	(2)	first	order reaction					
	(3)	second-order re	action	(4)) half	-order reaction					

121. Consider the reaction mechanism

$$A_2 \leftarrow \xrightarrow{K_1} 2A \text{ (fast)}$$

$$A + B \stackrel{K_2}{\longleftrightarrow} P \text{ (slow)}$$

where A is the intermediate. The rate law for the reaction is:

(1) $k_2 [A][B]$

(2) $k_2 k_1^{\frac{1}{2}} [A_2]^{\frac{1}{2}} [B]$

(3) $k_2 k_1^{\frac{1}{2}} [A][B]$

(4) $k_2 k_1^{\frac{1}{2}} [A]^2 [B]$

122. For the electrochemical cell

$$Ag(s) \mid AgCl(s)$$
, $KCl(aq) \parallel AgNO_3(aq) \mid Ag(s)$

The overall cell reaction is:

(1)
$$Ag^+ + KCl(aq) \rightarrow AgCl(s) + K^+$$

(2)
$$Ag(s) + AgCl(s) \rightarrow 2Ag(s) + \frac{1}{2}Cl_2(g)$$

(3)
$$AgCl(s) \rightarrow Ag^+ + Cl^-$$

(4)
$$Ag^+ + Cl^- \rightarrow AgCl(s)$$

123. The standard reduction potentials of three metallic cations X, Y and Z are 0.52 V, -3.03 Vand -1.18 V respectively. The order of reducing power of the corresponding metals is:

- (1) Y > Z > X
- (2) X > Y > Z (3) Z > Y > X
- (4) Z > X > Y

124. A gaseous mixture contains $CO_2(g)$ and $N_2O(g)$ in a 2 : 5 ratio by mass. The ratio of the number of molecules of $CO_2(g)$ and $N_2O(g)$ is :

- (1) 5:2
- (2) 2:5
- (3) 1:2
- (4) 5:4

125. Given that $E^0_{Ag^+/Ag} = +0.80 \text{ V}$ and $E^0_{Zn^{2+}/Zn} = -0.76 \text{ V}$, which of the following is correct?

- (1) Ag $^+$ can be reduced by H_2 (2) Ag can oxidize H_2 into H^+
- (3) Zn^{2+} can be reduced by H_2 (4) Ag can reduce Zn^{2+}

126. The unit of energy is:

- (1) $kg m^2 s^{-2}$ (2) $kg m s^{-2}$ (3) $kg m^{-1} s^{-2}$ (4) $N m^2 kg^{-2}$

		uensity of a gas as B is thrice tha							e molecular w will be :	eigiu
	_	1:6		7:8			2:5		1:4	
128.		e corrections matractive forces i		~			or real gases, th	ne reducti	ion in pressure	e due
	(1)	n/V	(2)	nb		(3)	n^2/V^2b	(4)	n^2/V^2	
129.		c cell contains ei e empirical forn				ers of t	he cell and six	Y atoms	at the faces.	What
	(1)	X_3Y_4	(2)	X_3Y		(3)	XY_3	(4)	X_4Y_3	
130.	In a	reversible adial	atic ch	ange ΔS is	:					
	(1)	infinity			(2)	zero				
	• ,	equal to C _v dT			(4)	equa	al to nRlnV ₂ /V	V_1		
131.	In w	hich of the follo	owing 1	eactions is	$\Delta H = A$	ΔU				
	(1)	$H_2(g) + I_2(g)$	•							
	(2)	$KI(aq) + I_2(s)$	\rightarrow K	$(I_3(aq))$						
	(3)	6NaOH(aq) +	3Cl ₂ (g	$(5) \rightarrow 51$	NaCl(ad	q) +5	$NaClO_3(aq) + 3$	3H ₂ O(<i>l</i>)		
	(4)	$N_2O_4(g) \rightarrow$	$2NO_2$	(g)						
132.	A pl	ot of the Gibb's	energy	of a react	ion -m	ixture	against the ex	ctent of th	ne reaction is :	:
	(1)	minimum at e	quilibri	um			_			
	(2)	zero at equilib	rium							
	(3)	equal to (ΔH	- TΔS)	at equilib	rium					
	(4)	maximum at e	quilibr	ium						
133.	An i	deal liquid solu	ation h	as equal n	nole fra	actions	s of two volat	ile comp	onents A and	B of
		erent vapour pr						===		
				,	•	ne va	pour phase at	oove the	solution, the	moie
		ions of A and E				(2)	V \ V	(4)	V ZV	
	(1)	$X_A = X_B = 0.5$	(2)	$\lambda_A - \lambda_B$	≠0.5	(3)	$\Lambda_{A} - \Lambda_{B}$	(4)	$\lambda_A \setminus \lambda_B$	
134.		n the temperati	ıre is iı	ncreased, s	surface	tensio	n of water :			
	(1)	increases			(2)		reases			
	(3)	remains const	ant		(4)	shov	vs irregular be	ehaviour		

135.	Whic	ch of the following	g can	act as a Bröi	nsted	acid	but not as a Lewi	is acid	?
	(1)	OH	(2)	$AlCl_3$		(3)	FeCl ₃	(4)	NH ₃
136.	Amo	ng the following,	the s	trongest con	jugate	e base	e is :		
	(1)	NO_3^-	(2)	Cl-		(3)	SO ₄ ²⁻	(4)	CH ₃ COO-
137.	The :	zero point energy	of a l	harmonic oso	cillato	r is :			
	(1)	h <i>v</i>	(2)	zero		(3)	$\frac{1}{2}$ h v	(4)	$\frac{3}{2}$ h v
138.	Whic	ch of the followin	g tran	sitions has t	he hi	ghest	energy ?		
	(1)	$n \rightarrow \sigma^*$	(2)	$n\rightarrow\pi^*$		(3)	$\sigma \rightarrow \sigma^*$	(4)	$\pi \to \pi^*$
139.	The	m/z value for M	+ frag	ment in but	anal is	s :			
	(1)	70	(2)	72		(3)	56	(4)	75
140.	Which of the following molecular species will show ESR spectrum ?								
	(1)	N ₂	(2)	F_2		(3)	O_2^-	(4)	O_2^{2-}
141.	The	number of lines t	he ES	R spectrum (of ber	ızene	cation will show	:	
	(1)	1	(2)	2		(3)	6	(4)	7
142.	Amo	ong the following	trans	itions which	one i	s fluc	prescence ?		
•	(1)	$T_1 \rightarrow S_0 + hv$	(2)	$S_1 \rightarrow T_1$		(3)	$T_1 \rightarrow T_0 + hv$	(4)	$T_1 \rightarrow T_0 + heat$
143.	A reaction $2A \rightarrow P$ follows II order kinetics. A straight line is obtained by plotting time against :							by plotting time t	
	(1)	$[A]^2$	(2)	[A]		(3)	log[A]	(4)	1/[A]
144.	At c	onstant pressure,	upon	the addition	of he	elium	at the equilibriu	m poi	nt in the reaction
	$PCl_5(g) \leftrightarrow PCl_3 + Cl_2(g)$, the degree of dissociation of :								
	(1)	PCl ₅ will decrea	ise		(2)	PCl ₅	will increase		
	(3)	PCl ₃ will increase	se		(4)	Cl ₂ v	will increase		

145.	Which of the following equation	s is valid for a	reversible process	in a state of equilibrium?
------	---------------------------------	------------------	--------------------	----------------------------

(1)
$$\Delta G = -RT \ln K_p$$
 (2) $\Delta G = RT \ln K_p$ (3) $\Delta G^0 = -RT \ln K_p$ (4) $\Delta G^0 = RT \ln K_p$

- 146. Equal weights of ethane and hydrogen are mixed in an empty vessel at 25°C. The fraction of total pressure exerted by hydrogen is:
 - (1) $\frac{1}{2}$
- (2) $\frac{1}{4}$ (3) $\frac{1}{16}$
 - $(4) \quad \frac{15}{16}$
- 147. The H⁺ ion concentration in a solution prepared by mixing 50 mL of 0.20 M NaCl, 25 mL of 0.10 M NaOH and 25 mL of 0.30 M HCl will be:
 - (1) 0.5 M
- 0.05 M (2)
- 0.02 M
- (4)0.0 M
- 148. X and Y are two elements which form X_2Y_3 and X_3Y_4 . If 0.20 mol of X_2Y_3 weighs 32.0 g and 0.4 mol of X_3Y_4 weighs 92.8 g, the atomic weights of X and Y are respectively :
 - (1) 16.0 and 56.0
- (2) 8.0 and 28.0
- (3) 56.0 and 16.0
- 28.0 and 8.0 (4)
- **149.** If the voltage across the electrode is 1 V, then $c(\lambda_0^+ + \lambda_0^-)$ represents the :
 - (1) current

(2)molar conductance

(3)conductance

- (4)ionic mobility
- 150. If a solute undergoes dimerization and trimerization, the minimum values of the van't Hoff factors is:
 - (1) 0.50 and 1.50
- (2) 1.50 and 1.33
- 0.50 and 0.33 (3)
- 0.25 and 0.67 (4)