Board question paper (Maths) : March 2013

Note:
i. All questions are compulsory
ii. Figures to the right indicate full marks.
iii. Solution of L.P.P. should be written on graph paper only.
iv. Answers to both the sections should be written in the same answer book.
vi. Answer to every new question must be written on a new page.

SECTION - II

Q.4. (A) Select and write the correct answer from the given alternatives in each of the following:
(6) [12]
i. Function $\mathrm{f}(x)=x^{2}-3 x+4$ has minimum value at $x=$ \qquad
(A) 0
(B) $-\frac{3}{2}$
(C) 1
(D) $\frac{3}{2}$
ii. $\quad \int \frac{1}{x} \cdot \log x \mathrm{~d} x=$ \qquad
(A) $\log (\log x)+c$
(B) $\frac{1}{2}(\log x)^{2}+\mathrm{c}$
(C) $2 \log x+c$
(D) $\log x+c$
iii. Order and degree of the differential equation $\left[1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{3}\right]^{\frac{7}{3}}=7 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ are respectively -
(A) 2,3
(B) 3,2
(C) 7,2
(D) 3,7
(B) Attempt any THREE of the following:
i. If $x=\mathrm{at}^{2}, y=2 \mathrm{at}$, then find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
ii. Find the approximate value of $\sqrt{8.95}$.
iii. Find the area of the region bounded by the parabola $y^{2}=16 x$ and the line $x=3$.
iv. For the bivariate data $\mathrm{r}=0.3, \operatorname{cov}(\mathrm{X}, \mathrm{Y})=18, \sigma_{x}=3$, find σ_{y}.
v. A triangle bounded by the lines $y=0, y=x$ and $x=4$ is revolved about the X -axis.

Find the volume of the solid of revolution.

Q.5. (A) Attempt any TWO of the following:

i. A function $\mathrm{f}(x)$ is defined as

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =x+\mathrm{a} & , & x<0 \\
& =x, & 0 \leq x<1 \\
& =\mathrm{b}-x & , & x \geq 1
\end{array}
$$

is continuous in its domain. Find $\mathrm{a}+\mathrm{b}$.
ii. If $x=\mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right), y=\mathrm{a}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$, then show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}$
iii. Evaluate : $\int \frac{1}{3+5 \cos x} \mathrm{~d} x$
(B) Attempt any TWO of the following:
i. An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be $\frac{2}{3}$. Find the probability that in the next 30 years at most 3 men will survive.
ii. The surface area of a spherical balloon is increasing at the rate of $2 \mathrm{~cm}^{2} / \mathrm{sec}$. At what rate is the volume of the balloon is increasing when the radius of the balloon is 6 cm ?
iii. The slope of the tangent to the curve at any point is equal to $y+2 x$. Find the equation of the curve passing through the origin.
Q.6. (A) Attempt any TWO of the following:
(6) [14]
i. If u and v are two functions of x, then prove that

$$
\int \mathrm{uv} \mathrm{~d} x=\mathrm{u} \int \mathrm{vd} x-\int\left[\frac{\mathrm{du}}{\mathrm{~d} x} \int \mathrm{vd} x\right] \mathrm{d} x
$$

ii. The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable X taking values between 25 and 35 minutes with p. d. f.
$\mathrm{f}(x)=\frac{1}{10}, 25 \leq x \leq 35$
$=0$, otherwise.
What is the probability that preparation time exceeds 33 minutes? Also find the c. d. f. of X.
iii. The probability that a certain kind of component will survive a check test is 0.6 . Find the probability that exactly 2 of the next 4 tested components survive.

(B) Attempt any TWO of the following:

i. If ax ${ }^{2}+2 h x y+\mathrm{by}^{2}=0$, show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$.
ii. Find the area of the region common to the circle
$x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$.
iii. For 10 pairs of observations on two variables X and Y , the following data are available:
$\sum(x-2)=30, \sum(y-5)=40, \sum(x-2)^{2}=900$,
$\sum(y-5)^{2}=800, \sum(x-2)(y-5)=480$.
Find the correlation coefficient between X and Y .

