II PUC - CHEMISTRY (34)

MODEL QUESTION PAPER - 1

Time: 3hours 15 minutes

Maximum marks: 70

Instructions:

- 1. *The question paper has four parts: A, B, C and D. All parts are compulsory.*
- 2. Write balanced chemical equations and draw labeled diagrams wherever required.
- 3. Use log tables and the simple calculator if necessary.

(Use of scientific calculators is not allowed)

PART-A

I. Answer ALL of the following. (Each question carries 1 mark) 10x1=10

(Answer each question in one word or in one sentence)

- 1. Name a colligative property.
- 2. What does the Van't Hoff factor 'i ' for a solute in a solvent account for?
- 3. What is a secondary cell?
- 4. By how many times does the $t_{\frac{1}{2}}$ of zero order reaction increase if the initial concentration of the reactant is doubled?
- 5. Name the catalyst that catalyzes the decomposition of $KClO_3$ into KCl and O_2 .
- 6. Give the composition of 'copper matte'.
- 7. What is the structure of XeF_2 ?
- 8. A racemic mixture is optically inactive. Why?
- 9. $\bigcirc \xrightarrow{\text{COCH}_3} \underset{I_2}{\overset{\text{NaOH}}{\longrightarrow}} \bigcirc \xrightarrow{\text{COONa}} + X. \text{ Give the IUPAC name of } X.$
- 10. What does the primary structure specify about the structure of a protein.

PART-B

II. Answer any FIVE of the following. (each question carries 2 marks) 5x2=10

- 11. Give two differences between Schottky and Frenkel defects in ionic solids.
- 12. Name the gases liberated at anode and cathode respectively when an aqueous solution of sodium chloride is electrolysed.
- 13. Given $2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$; rate = $k[NO]^2 [O_2]^1$. By how many times does the rate of the reaction change when the volume of the reaction vessel is reduced to $1/3^{rd}$ of its original volume? Will there be any change in the order of the reaction?
- 14. Give reasons: i) actinoids show variable oxidation states

ii) Zr and Hf have almost identical radii

- 15. What is Lucas reagent? Between primary and tertiary alcohols, which one of these will react faster with Lucas reagent?
- 16. A carboxylic acid is treated with alcohol in presence of conc. H₂SO₄. Name the reaction. Give its general equation.
- 17. What are food preservatives? Give an example.
- 18. Name any two types of synthetic detergents.

PART-C

III. Answer any FIVE of the following. (each question carries 3 marks) 5x3=15

- Describe the three steps involved in the leaching of bauxite to get pure alumina (equations not expected).
 3
- 20. White phosphorus is heated with excess of dry chlorine to get X. X on hydrolysis finally forms an oxyacid of phosphorous Y. What are X and Y? What is the basicity of acid Y?3
- 21. Describe the preparation of ozonised oxygen with an equation. Name the oxidized product obtained when ozone reacts with lead sulphide. 3
- 22. Complete the following equations:
 - i) $2F_2 + 2H_2O \longrightarrow$
 - ii) $H_2S + Cl_2 \longrightarrow$
 - iii) $8NH_3$ (excess) + $3Cl_2 \longrightarrow$
- 23. Name the metal of the 1st row transition series that
 i) has highest value for M²⁺ / M standard electrode potential
 ii) has zero spin only magnetic moment in its +2 oxidation state.
 iii) exhibit maximum number of oxidation states.
- 24. Write ionic equations for the reaction of dichromate ions with
 - i) hydroxyl ions ii) Fe^{+2} ions in acidic medium
 - In which one of the two reactions will the oxidation number of chromium remains same? 3

3

3

- 25. Using VBT account for the geometry and magnetic property of [Ni(CN)₄]²⁻.
 Given atomic number of Ni =28.
 3
- 26. Give the IUPAC name of [Co Cl₂ (NH₃)₄]Cl. Draw cis and trans isomers of [Co Cl₂ (NH₃)₄]⁺ ion.

PART-D

IV. Answer any THREE of the following. (each question carries 5 marks) 3x5=15

- 27. What is packing efficiency in a crystal? Draw the unit cell of a simple cubic lattice and calculate the packing efficiency in a simple cubic lattice. 5
- a) Vapour pressure of liquids A and B at 298 K is 300 mm of Hg and 450 mm of Hg respectively. If the total vapour pressure of a mixture of A and B is 405 mm of Hg, calculate the mole fraction of A in the mixture.
 - b) What happens to the solubility of a gas in a liquid with increase in temperature? Give reason. 3+2
- 29. a) Calculate the equilibrium constant of the reaction at 298 K. $Mg_{(s)} + 2Ag^{+}_{(aq)} \longrightarrow Mg^{+2}_{(aq)} + 2Ag_{(s)}; E^{0}_{cell} = +3.16 V$
 - b) How is molar conductivity related to the conductivity of a solution? Which one of these has higher molar conductivity:0.1 M KCl or 0.01 M KCl? 3+2
- 30. a) The rate of a reaction increases by 4 times when the temperature of the reaction is raised from 340 K to 360 K. Calculate the energy of activation of the reaction. Given R = 8.314 J/K/mol.
 - b) Draw a graph of potential energy versus reaction coordinate to show the effect of catalyst on activation energy. 3+2

- 31. a) What is coagulation of a sol? Name two methods by which a lyophobic sol can be coagulated.
 - b) What is the change in enthalpy and entropy during adsorption of gas in a solid? 3+2

V. Answer any FOUR of the following. (Each question carries 5 marks) 4x5=20

32. a) Mention the **major** product formed in the following reactions:

i) 2-bromopentane
$$\xrightarrow{\text{alc.KOH}, \Delta}$$

ii) $\bigcup_{C_2H_5Br}^{C_1}$ + CH₃-CO-Cl $\xrightarrow{\text{anhyd. AlCl}_3}$
iii) C₂H₅Br + AgCN $\xrightarrow{\Delta}$ 3+2

- b) Write the equations for the steps in S_N1 mechanism of the conversion of *tert*butyl bromide into *tert*-butyl alcohol.
- 33. a) Give equations for:
 - i) Kolbe's reaction ii) Williamson's ether synthesis
 - b) An organic compound (P) with the formula C₃H₆O reacts with CH₃MgX followed by hydrolysis forms an alcohol (Q), which does not undergo dehydrogenation? Name the compounds P and Q.
- 34. a) Write equations for:
 - i) Gattermann-Koch reaction to convert benzene into benzaldehyde.
 - ii) the formation of oxime from carbonyl compounds
 - iii) the reaction between carboxylic acid and PCl₅.
 - b) Give reasons:
 - i) α -hydrogen atoms of aldehydes and ketones are acidic.
 - ii) An electron donating group decreases the acid strength of carboxylic acid. 3+2
- 35. a) i) $C_6H_5CONH_2 \xrightarrow{Br_2/NaOH} X$. ii) $X \xrightarrow{NaNO_2,HCI} Y$. What are X and Y? Name the reaction occurring in step (i).
 - b) Arrange the following in the increasing order of their basic strengths in the aqueous medium: (CH₃)₃N, NH₃, CH₃NH₂, (CH₃)₂NH. Give one reason for the trend observed.
 3+2
- 36. a) Mention two differences in the structure of starch and cellulose. Write the Haworth's structure of the monomer in cellulose.
 - b) Give an example each for i) acidic α -amino acid ii) fibrous protein. 3+2
- 37. a) How are condensation polymers formed? Give an example with an equation.
 - b) With respect to natural rubber:i) name its monomer
 - ii) name the element used for vulcanization. 3+2

Scheme of valuation for model question paper-1

Note: Any other correct alternate answer can be honoured wherever applicable.

Q.N	Value Points		Marks
I.	PART-A	PART-A	
1	Any one out of the four		1
2	Extent of association OR dissociation of	a solute	1
3	A cell that can be recharged again		1
4	$t_{\frac{1}{2}}$ gets doubled OR becomes 2 times the	original	1
5	Manganese dioxide or MnO ₂		1
6	$Cu_2S + FeS$		1
7	Linear		1
8	Rotation by an enantiomer is cancelled b	by the other	1
9	triiodomethane	~	1
10	Sequence of α -amino acids in a polypeptide chain		1
II.	PART-1		
11	Schottky defect	Frenkel defect	
	i. Density decreases	i. No change in density.	
	ii. Observed when cations and anions	ii. Observed when cations and	
	have similar size.	anions differ in their size.	
	iii. Equal number of cations and	iii. The smaller ion gets	
	anions are missing from lattice	dislocated from its lattice	
	points	point	
	Any two		2
12	Anode – Chlorine ; Cathode – Hydrogen	(1+1)	2
13	27 times		1
	No change in the order		1
14	i) Due to comparable energies of 5f, 6d a	nd 7s levels.	1
	ii) It is due to Lanthanoid contraction.		1
15	Conc. HCl + ZnCl ₂		1
	tertiary alcohol		1
16	Esterification		1
	$R-COOH + R^{1}OH \longrightarrow RCOOR^{1} + H_{2}O$		1
17	They prevent spoilage of food.		1
	Table salt or sugar or sodium benzoate (any one)	1
18	Anionic, cationic, non-ionic (any two)	(1+1)	2
III.	PART-	2	
19	i) Bauxite is concentrated by digesting the powdered ore in a concentrated solution of sodium hydroxide at 473-573 K and 35 bar pressure. Al ₂ O ₃ is leached as sodium aluminate.		1
	ii) Aluminate solution is neutralised by passing CO ₂ . Hydrated Al ₂ O ₃ is precipitated by seeding.		1
			1

	iii) Hydrated Al ₂ O ₃ is filtered, dried and heated to get pure Al ₂ O ₃ .	
20	X is PCl ₅	1
	Y is H_3PO_4	
	Basicity of Y is 3.	1
21	A slow dry stream of oxygen is passed through a silent electrical discharge. Some oxygen gets converted into ozone. $3O_2 \longrightarrow 2O_3$	
	Lead sulphate	1
22	i) $\longrightarrow 4HF + O_2$	1
	ii) $\longrightarrow 2HC1 + S$	1
	iii) $\longrightarrow 6NH_4Cl + N_2$	1
23	i) Copper	1
	ii) Zinc	1
	iii) Manganese	1
24	i) $\operatorname{Cr}_2 \operatorname{O}_7^{2^-} + 2\operatorname{OH}^- \longrightarrow 2\operatorname{Cr}\operatorname{O}_4^{2^-} + \operatorname{H}_2\operatorname{O}$	1
	ii) $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$	1
	In reaction (i)	1
25	E.C. Ni^{2+} : [Ar] $3d^8$ or 1, 1, 1, 1, 1	1
	3d $4s$ $4p$	
	dsp ² hybridised orbitals of Ni ²⁺ $3d$ dsp ² hybrida $4p$	
	orbitals of Ni^{2^*} 3d dsp ² hybrids 4p	1
	$\begin{bmatrix} Ni(CN)_4 \end{bmatrix}^2 \qquad \boxed{11111}_{3d} \qquad \boxed{11111}_{four pairs of} \qquad 4p$	
	electrons from 4 CN ⁻	1
26	tetraamminedichloridocobalt(III) chloride	1
20	-+ $-+$	-
	$\left \begin{array}{ccc} \mathrm{NH}_{3} \\ \mathrm{Cl} \end{array} \right \left \begin{array}{ccc} \mathrm{NH}_{3} \\ \mathrm{Cl} \end{array} \right \left \begin{array}{ccc} \mathrm{NH}_{3} \\ \mathrm{Cl} \end{array} \right $	_
	$NH_{3} \stackrel{Co}{ } NH_{3} \qquad NH_{3} \stackrel{Co}{ } NH_{3}$	2
	NH ₃ Cl	
	cis trans	
IV.	PART-D	
27	It is a percentage of total space filled by the particles in a crystal.	1
		1
	Edge length or side of a cube = a, radius of a particle = r	
	Particles touch each other along the edge	
	\therefore a = 2r, volume of the cell = a ³ = 8r ³	1

	Simple cubic unit cell contains only 1 atom	
	Volume occupied = $\frac{4}{3} \pi r^3$	
	5	
	Packing efficiency = $\frac{\text{volume of one atom}}{\text{volume of the unit cell}} \times 100\%$	
	$= \frac{4/3\pi r^3}{8r^3} \times 100 = 52.4\%$	1
28a.	Let mole fraction of A be x_A ; mole fraction B; x_B = (1 – x_A)	
	From Raoult's law	
	$p_{A}^{0} x_{A} + p_{B}^{0} x_{B} = P_{total}$ OR $p_{A}^{0} x_{A} + p_{B}^{0} (1 - x_{A}) = P_{total}$	1
	$300 x_A + 450 (1 - x_A) = 405$	1
	x _A = 0.3	1
b.	It decreases.	1
	Dissolution of a gas in a liquid is an exothermic process .	1
29a.	$E_{cell}^{0} = \frac{0.059}{100} \log K_{C}$	1
	11	1
	$3.16 = \frac{0.059}{2} \log K_{\rm C}$	
	$K_{\rm C} = 1.314 \times 10^{107}$	1
b.	$\Lambda_{\rm m} = \frac{\kappa}{C}$	1
	C	1
	0.01 M KCl	
30a.	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
	$\log 4 = \frac{\text{Ea}}{2.303 \times 8.314} \left[\frac{360 - 340}{360 \times 340} \right]$	1
	$E_a = 70554 \text{ J}$ or 70.554 kJ	
	(Answer without unit, deduct 1 mark)	
b.	Construction Co	
		2
0.1	Reaction coordinate	1
31a.	The process of settling of colloidal particles is called coagulation of the sol.	1
	By electrophoresis OR by boiling OR by adding an electrolyte OR by mixing two oppositely charged sols. (Any two)	2
b.		1
D.	Enthalpy decreases OR ΔH is negative.	1
	Entropy decreases OR Δ S is negative.	-
V.		1
32a.	i) $CH_3 - CH = CH - CH_2 - CH_3$ or pent-2-ene	1

	ii) An electron donating group destabilises the carboxylate anion or the conjugate base.		
	$\overrightarrow{EDG} \longrightarrow C \overbrace{-}^{O}$		
35a.	X is C ₆ H ₅ NH ₂		1
	Y is $C_6H_5N_2Cl$.		1
	Hoffmann's bromamide degradation reaction		1
b.	$(CH_3)_2 \text{ NH } > CH_3 \text{NH}_2 > (CH_3)_3 \text{ N } > \text{NH}_3$		1
	Inductive effect or solvation effect or steric hindrance		1
36a.	Starch	Cellulose	
	1. Made up of α -D(+) glucose units	1. Made up of β -D(+) glucose	
	2. Has α–glycosidic linkage.	units	
	3. Has C_1 – C_4 and C_1 – C_6 linkages.	2. Has β -glycosidic linkage.	
	4. Has linear and branched	3. Has only C_1 - C_4 linkages.	
	polymeric chains.	4. It is a linear polymer.	2
	Any two CH_2OH H H H H H H H		1
b.	i) Aspartic acid OR glutamic acid.		1
	ii) Keratin OR myosin		1
37a.	Condensation polymers are formed by repeated condensation reaction between two different bifunctional monomeric units.		1
	E.g.: Nylon 6, 6		1
	$nH_2N(CH_2)_6NH_2 + nHOOC (CH_2)_4 COOH \longrightarrow$		
	$+ NH(CH_2)_6NHCO(CH_2)_4CO +_n + (n - 1) H_2O$		1
	Any other suitable example with equation.		
b.	i) Isoprene OR 2-methyl – 1, 3 –butadiene		1
	, <u> </u>		1