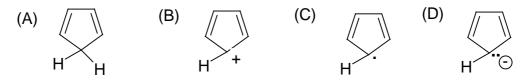
UNIVERSITY OF HYDERABAD ENTRANCE EXAMINATION – 200X M. Sc. Chemistry

TIME: 2 HOURS

MAXIMUM MARKS: 100


HALL TICKET NUMBER

INSTRUCTIONS

- 1. Write your HALL TICKET NUMBER in the space provided above and also in the OMR ANSWER SHEET given to you.
- 2. Make sure that pages numbered from 1 13 are present (excluding pages assigned for rough work).
- 3. There are 100 questions in this paper. All questions carry equal marks.
- 4. There is negative marking. Each wrong answer carries -¹/₄ mark.
- 5. Answers are to be marked on the OMR answer sheet following the instructions provided there upon.
- 6. Hand over both the question paper booklet and OMR answer sheet at the end of the examination.
- 7. In case of a tie, the marks obtained in the first 25 questions (PART A) will be used to determine the order of merit.
- 8. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 9. Calculators (non-programmable) are allowed.

PART A

- 1. Which of the following compounds has pyramidal geometry? (A) $B(CH_3)_3$ (B) $(CH_3)_3C^+$ (C) $(CH_3)_3N$ (D) BF_3
- 2. Which of the following compounds exhibits optical isomerism?
 - (A) 1-Chloropentane (B) 1,5-Dichloropentane
 - (C) 3-Chloropentane (D) 2-Chloropentane
- 3. Identify the atom-economy reaction from the following.
 - (A) Grignard reaction (B) Wittig reaction
 - (C) Diels-Alder reaction (D) Friedel-Crafts reaction
- 4. Chiral molecule B has $[\alpha]_D^{20} = +24$ for 40% optical purity with (R)-configuration. What will be $[\alpha]_D^{20}$ of the molecule B with (S)-configuration having 100% optical purity?
 - (A) -30 (B) +30 (C) +60 (D) -60
- 5. The correct order of stability of carbocations is:
 - (A) $CH_3^+ > (CH_3)_2 CH^+ > CH_3 CH_2^+ > (CH_3)_3 C^+$
 - (B) $(CH_3)_3C^+ > (CH_3)_2CH^+ > CH_3CH_2^+ > CH_3^+$
 - (C) $(CH_3)_3C^+ > (CH_3)_2CH^+ > CH_3^+ > CH_3CH_2^+$
 - (D) $CH_3CH_2^+ > CH_3^+ > (CH_3)_3C^+ > (CH_3)_2CH^+$
- 6. The IUPAC name of OH is:
 - (A) Vinylethyl alcohol (B) 3-Ethylbut-3-en-1-ol
 - (C) 2- Ethylbut-3-en-1-ol (D) 2-Ethenylbutanol
- 7. Which of the following is aromatic?

- 8. The coordination number of a metal ion situated at the center of a square antiprism of ligand atoms is:
 - (A) 2 (B) 4 (C) 6 (D) 8
- 9. The strongest base among the following is:
 - $(A) AsH_3 \qquad (B) PH_3 \qquad (C) NH_3 \qquad (D) SbH_3$

10.	The qualitative	e test of "phosph	nate" is perfor	med in the	presence	of an acid and	L
	(A) Vanadate	(B) Arsenat	te (C) I	Permangana	ate	(D) Molybdate	e
11.	Which of the following is associated with the "layer type" structure?						
	(A) Graphite	(B) Diamond		5 51	D) None		
				Ň			
12.							
		d hydrochloric a		Sodium and			
	(C) Iron and su	Ilfuric acid	(D) I	ron and ste	am		
13.	Which of the fo	ollowing elemen	nts is associate	ed with nitr	ogen fixi	ng enzyme?	
	(A) Calcium	(B) Nickel	(C) Molybd	enum (D) Coba	lt	
14.	-	of India and in a start of the	-	• • •	e are affeo	cted (skin sym	ptom)
	(A) Hg	(B) Sb	(C) As	(D) Se			
15.	5. For which of the following sets of values of ΔH and ΔS will a reaction spontaneous at 50° C?			on be			
		<u>ΔH (kJ)</u>	<u>ΔS (</u>	<u>J/K)</u>			
	(A)	+10	+3	0			
	(B)	+10	- 3	0			
	(C)	- 10	+3	0			
	(D)	- 10	-3	0			
16.	$\mathrm{Hg}^{2^+} + 2\mathrm{e}^- \rightarrow \mathrm{Hg}^-$	Hg	$E^0 = 0.85 V$				
	$Zn^{2+} + 2e^- \rightarrow Z$	Zn	$E^0 = -0.76$ V	V			
	Given the cell potentials shown above, the overall cell potential for the follow reaction is				owing		
	Zn +	$Hg^{2+} \Longrightarrow Z$	$Zn^{2+} + Hg$				
	(A) 0.09 V	(B) 1.61 V	(C) (0.80 V	(E	0) 0.18 V	
17.		$(t_{1/2})$ of a second reaction of reactant		ion is prop	oortional	to (where A ₀	is the
	$(A) A_0$	(B) A_0^2	(C) 1	$/A_0$	(D) l	Independent of	A_0
18.	-	conductance (c	-	,			acid

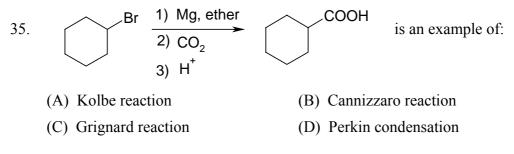
 18. The equivalent conductance (only chi eqv.) at minine diducion (Λ_0) of acetic act (HAc) will be [Given Λ_0 (HCl) = 420, Λ_0 (NaCl) = 126 and Λ_0 (NaAc) = 91]:

 (A) 385
 (B) 637
 (C) 455
 (D) 203

19. 20 ml of 0.2 M NaOH and 40 ml of 0.1 M H₂SO₄ are mixed together in a standard flask and made up to 250 ml. The pH of the resultant solution is closest to:

20. Copper crystallizes in an *fcc* lattice with sides 3.61 Å. Atomic weight of copper is 63.54. The density of copper can be estimated as:

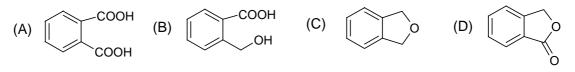
(A) 3.25 (B) 7.80 (C) 8.97 (D) 9.20


- 21. A shell leaves the gun barrel with a speed of 25 ms⁻¹ at an angle of 45° from the horizon. Its trajectory (height vs horizontal distance travelled) is
 - (A) Straight line (B) Circle (C) Parabola (D) Hyperbola
- 22. The unit vector perpendicular to the plane defined by the two vectors (i + j + k) and (i j k) is

(A)
$$(i - j) / \sqrt{2}$$
 (B) $(j - k) / \sqrt{2}$ (C) $(k - i) / \sqrt{2}$ (D) $(i - j + k) / \sqrt{3}$

- 23. If $x^2 + y^2 + 4x 6y + k = 0$ represents a circle of radius 5 the value of k is (A) 12 (B) -12 (C) 10 (D) -10
- 24. In the binary scale the number 55 is represented by (A) 111001 (B) 110111 (C) 010101 (D) 101010
- 25. $\int_{0}^{\pi} \sin^{2} \theta \, d\theta =$ (A) 0 (B) $\pi/4$ (C) $\pi/2$ (D) π

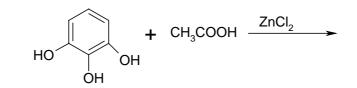
PART B

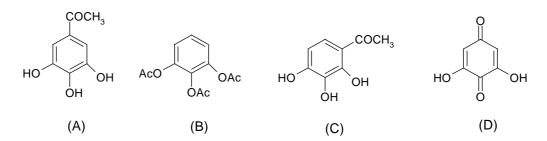

26.	The strongest acid among the following is:		
	(A) CH ₃ OH (B)	CH ₃ NH ₂	
	(C) CH_3SH (D)	CH ₃ CH ₂ NH ₂	
27.	The compound with lowest boiling p	point is	
	(A) 2-Methylhexane (B)	3,3-Dimethylpentane	
	(C) n-Heptane (D)	Cycloheptane	
28.	Identify the fastest reacting compour	nd in an S_N^2 reaction with OH ⁻ .	
	(A) tert. Butyl chloride	(B) Ethyl chloride	
	(C) 2,2-Dimethyl-1-propyl chloride	(D) Isopropyl chloride	
29.	A compound that will give two isom	eric olefins on reaction with NaOMe will be:	
	(A) 1-Bromohexane	(B) 3-Bromopentane	
	(C) Bromocyclohexane	(D) 1-Phenyl-1-bromoethane	
30.	Identify the most appropriate re benzylamine.	agent for the conversion of benzamide to	
	(A) NaBH ₄ (B) LiAlH ₄	(C) $Pd/C/H_2$ (D) KH	
31.	Identify the most appropriate C-C b intermediate.	ond forming reaction involving the carbocation	
	(A) Cannizzaro reaction	(B) Favorskii rearrangement	
	(D) Friedel-Crafts reaction	(D) Benzoin condensation	
32.	Identify the achiral molecule from the	ne following.	
	(A) 2-Amino-2-carboxypropane	(B) Alanine	
	(C) 2-Phenylpentane	(D) Lactic acid	
33.	Identify the most appropriate p diazomethane.	product in the reaction of RCOOH with	
	(A) RCH ₂ COOH	(B) RCH ₂ OH	
	(C) RCOOCH ₃	(D) RCOCH ₃	
34.	$CH_3CH_2I \xrightarrow{N_3^-} CH_3CH_2N_3 +$	is an example of following reaction type:	
	(A) S_N^{1} (B) S_N^{2} (C)	S_{E}^{1} (D) S_{E}^{2}	

36. Identify the alcohol which would be most easily dehydrated among the choices given.

(A)
$$CH_3CH_2CH_2CH_2OH$$
(B) $CH_3CH_2CH(OH)CH_3$ (C) $(CH_3)_2C(OH)CH_2CH_3$ (D) $(CH_3)_2CHCH(OH)CH_3$

- 37. The stability of formation of free radicals is in the following order:
 - (A) Tertiary > Secondary > Primary > Methyl
 - (B) Tertiary > Primary > Secondary > Methyl
 - (C) Methyl > Tertiary > Secondary > Primary
 - (D) Methyl > Primary > Secondary > Tertiary
- 38. Identify the products that would be formed when acetophenone is reacted with I_2 and NaOH.
 - (A) $CH_3COOH + PhI$ (B) $PhCOONa + CH_3I$
 - (C) $PhCOONa + CHI_3$ (D) $PhCOONa + CH_3COONa$
- 39. The product of the following reaction is:
 OH
 + CHCl₃ aq. NaOH
 (A) *o*-Hydroxybenzaldehyde
 (B) *o*-Chlorophenol
 (C) Benzoquinone
 (D)*p*-Hydroxyphenol
- 40. The product formed when phthalic anhydride is treated with Zn/acetic acid is:




41. What is the reagent used for the conversion of $RCOCH_2R'$ to RCOCOR'? (A) H_2O_2 (B) SeO_2 (C) OsO_4 (D) HNO_3/H_2SO_4 42. Sucrose on hydrolysis with diluted acids gives

(A) D(+)-Glucose and D(-)-Fructose(C) D(+)-Glucose and L(-)-Fructose

(B) D(-)-Glucose and D(-)-Fructose(D) 2 molecules of D(+)-Glucose

43. Predict the product of the following reaction.

44. The degree of unsaturation of the fatty acid is determined by:

(A) Acid value	(B) Iodine value

(C) Acetyl value (D) Reichert-Meissl value

45. The conversion of silver salt of the carboxylic acid to alkyl halide is called:

(A) Hunsdiecker reaction	(B) Stephen reaction
(C) Ritter reaction	(D) Vilsmeier reaction

46. Complete the following nuclear reaction by identifying the missing product. ${}^{14}_{7}N + \alpha \rightarrow ? + {}^{1}_{1}H$

(A) ${}^{17}_{8}O$ (B) β^{-} (C) β^{+} (D) ${}^{16}_{8}O$

47. Select the group of ions corresponding to the larger ion from each pair. [Co²⁺, Co³⁺], [Fe²⁺, Zn²⁺], [Na⁺, F⁻], [O²⁻, S²⁻]
(A) Co²⁺, Zn²⁺, F⁻, S²⁻
(B) Co³⁺, Fe²⁺, Na⁺, S²⁻
(C) Co²⁺, Fe²⁺, F⁻, S²⁻
(D) Co³⁺, Zn²⁺, Na⁺, O²⁻

- 49. Which two of the following molecules/ions have planar structures?
 (i) XeF₄ (ii) ClO₄⁻ (iii) PtCl₄⁻ (iv) MnO₄⁻
 (A) i and iii (B) i and ii (C) ii and iii (D) ii and iv

50 When ammonium hydroxide is added to an aqueous solution of copper sulfate, the color of the solution becomes a deeper blue. The reaction taking place is best described as:

(A) Redox (B) Rearrangement (C) Addition (D) Substitution

51. In acid medium one mole of Fe^{2+} will be equivalent to how many moles of $MnO_4^{-?}$

(A) 5 moles (B) 1/5 moles (C) 2 moles (D) 1/2 moles

52. The products obtained when chlorine reacts with cold and dilute solution of sodium hydroxide are:

$(A) Cl^- + ClO_2^-$	$(B) Cl^- + ClO^-$
$(C) Cl^{-} + ClO_{3}^{-}$	(D) $Cl^{-} + ClO_{4}^{-}$

53. The oxidation states of **boron** in B_2Cl_4 and **oxygen** in hydrogen peroxide are, respectively,

(A) $+2$ and -2	(B) $+3$ and -1
(C) +2 and -1	(D) $+3$ and -2

54. 25.4 g of iodine and 14.2 g of chlorine are made to react completely to form a mixture of ICl and ICl₃. The masses of ICl and ICl₃ produced are:

(A) 16.25 g and 7.1 g respectively	(B) 32.5 g and 7.1 g respectively
(C) 16.25 g and 23.35 g respectively	(D) 25.4 g and 23.35 g respectively

55. Arrange the following in the order of decreasing size: Ca^{2+} , S^{2-} , Ar, Cl^{-}

(A) $Cl^{-} < S^{2-} < Ar < Ca^{2+}$	(B) $Ca^{2+} < Cl^{-} < S^{2-} < Ar$
(C) $Ca^{2+} < S^{2-} < Ar < Cl^{-}$	(D) $Ca^{2+} < Ar < Cl^{-} < S^{2-}$

56. Arrange the following in the order of increasing covalent character: NaF, NaCl, LiCl, LiBr, LiI

(A) NaF, LiCl, NaCl, LiBr, LiI	(B) LiI, LiBr, LiCl, NaCl, NaF
(C) NaF, NaCl, LiCl, LiBr, LiI	(D) NaCl, NaF, LiI, LiBr, LiCl

57. Arrange the following in the order of increasing boiling points: HF, HCl, HBr, HI

(A) HI < HCl < HBr < HF	(B) $HF < HBr < HCl < HI$
(C) HCl < HBr < HI < HF	(D) HCl < HF < HBr < HI

58. Among the following, which two do not contain sulfur?
Galena, Cassiterite, Stibnite, Rutile, Realgar, Cinnabar
(A) Stibnite and Rutile
(B) Realgar and Cassiterite
(C) Galena and Cinnabar
(D) Rutile and Cassiterite

59.	Which of the following is called the third allotrope of carbon ?				
	(A) Graphite	(B) Fullerene	. (0	C) Diamond	(D) Carbon nanotube
60.	The Cubic uni	t cell is defined	by:		
	(A) $a \neq b \neq c$,	$\alpha = \beta = \gamma = 90^\circ$	0	(B) a = 1	$b = c, \alpha = \beta = \gamma = 90^{\circ}$
	(C) $a = b \neq c$,	$\alpha = \beta = 90^{\circ}, \gamma =$	= 120 [°]	(D) a = 1	$b = c, \alpha \neq \beta \neq \gamma$
61.	In the compound	nd $[S_2Mo_5O_{23}]^4$	⁻ , the oxida	ation state of s	ulfur is:
	(A) 0	(B) +2	(C) +4	(D) +6	
62.		-		•	reacting 0.20 moles of 1g and S are 24 and 32,
	(A) 13.0	(B) 11.2	(C) 12.8	(D) 17.6	
63.	Which of the fe	ollowing eleme	nts can exis	st in dry air w	thout reacting?
	(A) White P	(B) R	b (C	C) Ca (D) Ag
64.					ahedral $[CoF_6]^{3-}$ is:
	(A) $t_{2g eg}^{3}$	(B) $t_{2g eg}^{4 2}$	(C) $t_{2g eg}^{5}$	(D) $t_{2g}^{6} e^{-6}$	0 g
65.		that has zero ma	-		
	(A) Cu^{2+}	(B) Cr^{3+}	(C) V^{5+}	$(D) Mo^{2}$	+
66.		e following con Which solution	-		molality, were prepared in a point?
	(A)KBr	(B) $Al(NO_3)_3$. (0	C) NaNO ₂	(D) MgCl ₂
67.					f 0 °C contains a mixture of able to the system is:
	(A) 0	(B) 1		(C) 2	(D) 3
68.	Units of the va	n der Waals' ga	as constants	s, a and b, are	respectively:
		le ⁻² and lit mole			le ² and lit ⁻¹ mole
	(C) atm ⁻¹ lit ² m	ole ⁻¹ and lit mo	le^{-1} (I	D) atm lit ⁻¹ mo	le ² and lit ⁻¹ mole
69.	The Maxwell r	relation $\left(\frac{\partial S}{\partial V}\right)_T$	$=\left(\frac{\partial P}{\partial T}\right)_{V}$ in	nplies that for	a perfect gas
	(A) $S \propto R \ln V$		(B) $S \propto J$	$RT \ln V$	
	(C) $S \propto \frac{RT}{V^2}$		(D) $S \propto 1$	RT ln P	

70. A 0.5 molal aqueous solution of glucose melts at 272.22 K. The melting point of a 1 molal solution of sucrose will be (Clue: melting point of ice is: 273.15 K):

(A) 271.29 K (B) 272.22 K (C) 269.43 K (D) 272.68 K

71. The charge of 0.4 mol of electron is equal to:

$(A) - 5.79 \times 10^4 \text{ C}$	$(B) - 1.00 \times 10^4 C$
$(C) - 0.4 \times 10^4 C$	$(D) - 3.86 \times 10^4 C$

72. 6.5 mg of a hydrocarbon on combustion gives 11.2 ml of CO₂ and 4.5 ml of water vapour at STP. The empirical formula of the hydrocarbon is:

(A) C_5H_8	(B) C_5H_6	(C) C_5H_4	(D)	C_5H_2
()-50	() = 3 0	(-) - 3 +		/ - 5 2

73. The latent heat of melting of a solid is 330 J gm⁻¹ at its melting point (300 K). The change in the entropy of a 2.0 gm sample when it melts at 300 K is:

(A) 0.55 JK^{-1} (B) 2.2 JK^{-1} (C) 0.45 JK^{-1} (D) 0.9 JK^{-1}

74. The rate law for the single-step reaction, $A + 2B \rightarrow C$ is: (A) k [C] (B) k [C]/{[A] [B]²}

	$(\mathbf{D}) = [\mathbf{C}]^{\prime} ([\mathbf{D}] = \mathbf{D}]^{\prime}$
(C) k [A] $[B]^2 / [C]$	(D) k [A] $[B]^2$

75. The heats of formation of CO and CO₂ are -110.5 and -393.5 kJ/mol, respectively. The heat of reaction of CO + $\frac{1}{2}$ O₂ \rightarrow CO₂ is

(A) -283 kJ/mole (B) -141.5 kJ/mole (C) + 141.5 kJ/mole (D) +283 kJ/mole

- 76. Boron doped silicon is:
 - (A) An intrinsic semiconductor
 (B) A p type semiconductor
 (C) An n type semiconductor
 (D) A superconductor
- 77. The entropy change in an isolated system for a reversible process is:

(A) High (B) Low (C) Zero (D) Indeterminable

- 78. The product of the melting point and the entropy of fusion at constant pressure is called:
 - (A) Gibbs free energy (B) Enthalpy of fusion
 - (C) Helmholtz free energy (D) Specific heat

79. The bond dissociation energy is in the following order:

- $(A) \quad O-H \ge H-H \ge N-H \ge C-C$
- $(B) \quad C-C \ge N-H \ge H-H \ge O-H$
- $(C) \quad O-H > H-H > C-C > N-H$
- (D) C C > O H > H H > N H

80. Several metal oxides exist in nonstoichiometric state. In a sample having the formula $TiO_{1,1}$, the ratio of Ti^{3+} / Ti^{2+} is:

(A) 0.10 (B) 0.25 (C) 0.33 (D) 0.67

81. If the 1st and 2nd Balmer lines of the hydrogen atom appear at 1.523×10^4 and 2.056×10^4 cm⁻¹. The 3rd line should appear at:

(A) $2.216 \times 10^4 \text{ cm}^{-1}$	(B) $2.303 \times 10^4 \text{ cm}^{-1}$
(C) 2.504×10^4 cm ⁻¹	(D) $2.775 \times 10^4 \text{ cm}^{-1}$

82. The de Broglie wavelength of an electron ($m_e = 9.109 \times 10^{-31}$ Kg) traveling at a speed of 2.998×10^6 ms⁻¹ is (given $h = 6.626 \times 10^{-34}$ Js):

(A) 1.215×10^{-10} m	(B) 3.645×10^{-10} m
(C) 2.43×10^{-10} m	(D) 4.86×10^{-10} m

83. The process of dispersion of a precipitate into colloidal state is called:

(A) Coagulation	(B) Tyndall Effect
(C) Flocculation	(D) Peptisation

84. A 0.001 M solution of a substance has an absorbance of 0.1 at a given wavelength with a 1 cm pathlength cuvette. The molar extinction coefficient at this wavelength is:

(A) $10 \text{ M}^{-1}\text{cm}^{-1}$ (B) $100 \text{ M}^{-1}\text{cm}^{-1}$ (C) $1 \text{ M}^{-1}\text{cm}^{-1}$ (D) $1000 \text{ M}^{-1}\text{cm}^{-1}$

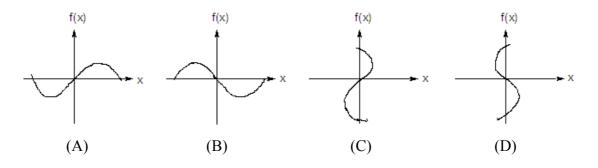
85. Two compounds A and B, which interact reversibly to form a complex AB were mixed in a vessel at equal ratio. If the resultant concentration of each compound at the time of mixing is 0.21 M and after equilibrium is established the complex concentration is 0.2 M, the association constant K_a is:

(A) $2.0 \times 10^{0} \text{ M}^{-1}$	(B) $2.0 \times 10^1 \text{ M}^{-1}$
(C) $2.0 \times 10^2 \text{ M}^{-1}$	(D) $2.0 \times 10^3 \text{ M}^{-1}$

86. $\int_{-2}^{2} dx/(16 - x^{2}) =$ (A) ln ³/₄ (B) 3 ln ¹/₄ (C) ¹/₄ ln 3 (D) 4 ln 1/3

87. The area of the triangle with vertices P(2, -3, 1), Q(1, -1, 2), R(-1, 2, 3) is: (A) $\sqrt{2}/3$ (B) $2\sqrt{3}$ (C) $3\sqrt{2}$ (D) $\sqrt{3}/2$

88. The complex number $(1 - \sqrt{3}i)$ in polar form reads


(A) $2 \operatorname{cis} 5\pi/3$ ((B) 2 cis 0	(C) 2 cis $3\pi/3$	(D) 2 cis $\pi/3$
-------------------------------------	-------------	--------------------	-------------------

89. If two distinct numbers are chosen randomly from the first 50 natural numbers, the probability that both numbers are divisible by 6 is:

(A) 4/175 (B) 4/25 (C) 16/625 (D) 16/1175

The value of the sum $\sum_{r=0}^{4} {}^{4}C_{r} 2^{-r}$ is: 90. (A) 16/81 (B) 4/9 (C) 9/4 (D) 81/16 91. Lim $x \to 0$ $x \to 0$ (A) 0 (B) ∞ (C) 1 (D) Does not exist The rank of the matrix $\begin{vmatrix} 3 & 1 & 4 \\ 0 & 5 & 8 \\ -3 & 4 & 4 \end{vmatrix}$ is: 92. (A) 0 **(B)** 1 (C) 2 (D) 3

93. The graph of
$$f(x) = \sin x/(2 - \cos x)$$
 ($-\pi \le x \le \pi$) is

94. $\int \cos \sqrt{x} / \sqrt{x} \, dx =$ (A) $2 \cos \sqrt{x} + c$ (B) $2 \sin \sqrt{x} + c$ (C) $2 \sec \sqrt{x} + c$ (D) $2 \operatorname{cosec} \sqrt{x} + c$

95. The inverse of the matrix $\begin{vmatrix} 0 & i \\ i & 0 \end{vmatrix}$ is:

(A)
$$\begin{vmatrix} 0 & i \\ i & 0 \end{vmatrix}$$
 (B) $\begin{vmatrix} 0 & i \\ -i & 0 \end{vmatrix}$ (C) $\begin{vmatrix} 0 & -i \\ i & 0 \end{vmatrix}$ (D) $\begin{vmatrix} 0 & -i \\ -i & 0 \end{vmatrix}$

96. The number of real roots of the equation $x^3 - 2x^2 + 2x = 0$ is: (A) 0 (B) 1 (C) 2 (D) 3

97. The function with at least one local minimum among the following is: (A) e^{-x^2} (B) e^{-x} (C) e^x (D) e^{x^2} 98. A discontinuous function among the following is:

(A) Sin x (B) Cos x (C) Tan x (D) e^x

99. Consider a sphere and a cube of maximum volume that can be cut out of the sphere. The ratio of the volume of the sphere to that of the cube is:

(A)
$$1/2$$
 (B) $\pi/2$ (C) $1/3$ (D) $\pi/3$

100. If
$$A = \begin{vmatrix} 1 & -i \\ -i & -1 \end{vmatrix}$$
, $AA^{T} =$
(A) 1 (B) i (C) -1 (D) 0