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Failure Theories and Concrete Plasticity 
 

 Failure of concrete 

o Concrete is a brittle material which fails through brittle cleavage 

(splitting) at the interfaces and in mortar except for high triaxial 

compression where shear slippage occurs resulting in a ductile 

behavior. Failure occurs by tensile splitting with the fractured surface 

orthogonal to the direction of the maximum tensile stress or strain. 

 

 Prediction of multiaxial behavior 

o In general the material properties are known from simple tests such 

as uniaxial loadings giving '
cf  and tf . Prediction involves strength 

calculation in multiaxial situations given the data from the uniaxial 

tests. 

o In the field of concrete research attempts have been made to apply 

some of the classical failure theories to concrete. These theories were 

altered to overcome some disadvantages or otherwise improve their 

agreement with the phenomenological behavior of concrete. New 

failure theories were therefore formed. 

 

 Principal stresses: 
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 Some classical failure theories 

o Maximum principal stress theory 

o Maximum principal strain theory  

o Maximum shear stress theory 

o Internal friction theory 

o Maximum strain energy theory 

o Distortion energy theory 

o Fracture mechanics based theories – stress intensity, toughness – 

fracture energy release. 

 These introduce either limitations or contradictions when applied to 

concrete. Modifications to concrete have resulted: 

o Internal friction-maximum stress theory 

o Octahedral shear-normal stress theory 

o Newman’s two-part criterion 

o Local deformation theories, etc. 

 Extensive research has been conducted to develop better theories: 

Elastic-plastic, plastic-fracturing, endochronic, bounding surface etc. 

approaches.  

 

 Maximum principal stress theory (elastic behavior) 

o 1 2 3σ σ σ> >  

o Failure occurs when: 
max
1 tσ σ=  (Tensile strength)  

 max '
3 c cfσ σ= =  (Compressive strength)  

  It does not reflect splitting nature of failure. 

 

 Maximum principal strain theory (elastic behavior) 
o Failure occurs when:  

max
limit tε ε ε= =  
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 Maximum shear stress theory 

o 1 2 3σ σ σ> >  

o Failure occurs when:  

( )1 3 1 3 2 sσ σ λ σ σ σ− + + =  

where 1 3σ σ−  = shear stress, 

( 1 3 )λ σ σ+  = portion of the volumetric stress, 

sσ  = a critical shear stress value (e.g. under pure shear) 

o For metals, 0λ ≅ . For brittle materials, 0λ ≠ . 

o For 0λ = , the failure criterion becomes 

1 3

2 s
σ σ σ−

=  

o The theory gives equal uniaxial tensile and compressive strengths. It 

is also independent of intermediate stress 2σ . (pressure sensitivity) 

 

 Internal friction theory 
 

 

 

 

 

 

 

 φ   

 S   

 nσ   

o Consider the effect of normal stress on shear strength: 

tan nS K φσ= −  

where  = shear strength, S

K  = cohesive strength, 

φ  = angle of internal friction, and 

nσ  = normal stress. 

o Compression increases  and tension decreases .  S S
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 Mohr’s theory (generalization of internal friction theory) 
o ( )S fτ σ= =   

o 2σ  has no effect on strength.  

o ( )f σ  is the envelop of all the circles corresponding to the various 

states of stress at which failure takes place.  

 

 Octahedral shear and normal stress theory 
 

 

 

 

 

 

 

 3σ   

 n m octσ σ σ= =  

 octτ   
 1σ   

 2σ   

o 1 2 3σ σ σ> >  

o Failure occurs when the octahedral stress exceeds a limiting value. 

( ) ( ) ( )2 2
1 2 2 3 3 1

1
3octτ σ σ σ σ σ σ= − + − + − 2  

 In uniaxial tension and compression, i
2

3octτ σ= , i = 1, 2, 3 

o The failure criterion provided by octahedral shear stress theory:  

 ( ) ( )limit limit limitoct tension compression
τ τ τ τ= ⇒ =  

 This gives the same ultimate strength for uniaxial tension and 

compression.  It is not valid for concrete.  

 Inclusion of ( 1 2 3
1
3oct m )σ σ σ σ σ= = + +  improves the prediction. 

 

o Bresler, Pister tests 
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2

1 2 3' '
a a

c c

k k k '
a

cf f f
τ σ⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

σ  

where ( ) ( ) ( )2 2
1 2 2 3 3 1

1
15aτ σ σ σ σ σ= − + − + − 2σ  and 

( )1 2 3
1
3a octσ σ σ σ= = + +σ

3

 

 

 Invariant formulation 
o A failure criterion should be based upon an invariant function of the 

state of stress, i.e., independent of the choice of the coordinate 

systems.  

o Stress invariants 

1 1 2I σ σ σ= + + , (more suitable for applying to concrete)   

2 1 2 2 3 3I 1σ σ σ σ σ σ= + + ,     

3 1 2I 3σ σ σ=  

where 1 2,  ,  3σ σ σ  are principal stresses. 

 

 General stress state representation 

o 
11 12 13

21 22 23

31 32 33

 or 
x xy xz

yx y yz ij

zx zy z

σ τ τ σ σ σ
τ σ τ σ σ σ σ
τ τ σ σ σ σ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

,  ij jiσ σ=  ∀ i, j = 1, 2, 3 

  11 1σ σ= , 22 2σ σ= , 33 3σ σ=  

o ( )11 22 33 1
1 1
3 3m i

1
3i Iσ σ σ σ σ= + + = =   

o Average normal stress: 1
1
3a Iσ =  

o Average shear stress: 
1

2 2
1 2

2 3
15a I Iτ ⎡ ⎤= −⎣ ⎦  
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 Deviatoric stress 

o ij ij m ijS σ σ δ= − , ijδ  = Kronecker’s delta ⎜ ⎟
1,  
0,  ij

i j
i j

δ
⎛ ∀ =⎧

= ⎨
⎞

∀ ≠⎩⎝ ⎠
 

 
11 11

12 12

13 13

mS
S
S

σ σ
σ
σ

= −
=
=

,  
22 22

21 21

23 23

mS
S
S

σ σ
σ
σ

= −
=
=

, 
33 33

31 31

32 32

mS
S
S

σ σ
σ
σ

= −
=
=

 

where  are principal stresses. 11 22 33, ,S S S

o Discussion of physical meaning of deviatoric and hydrostatic stresses. 

 

 Deviatoric stress invariants 

o 1 11 22ij 33J S S S S= = + +  

( )

( )

2 2 2
2 11 22

3 3
3 11 2

1 1
2 2
1 1
3 3

ij ji

ij jk ki

J S S S S S

J S S S S S S

= = + +

= = + +

33

3
2 33

 

 

 Biaxial loading ( 22 0σ = ) 

o ( )11 11 33
1 2
3

S σ σ= −  

 ( )22 11 33
1 2
3

S σ σ= − +  

 ( )33 33 11
1 2
3

S σ σ= −  

o 1 11I 33σ σ= +  

 ( ) ( ) ( )2 2
2 11 33 11 33 33

1 1 2 2
2 9

J σ σ σ σ σ σ⎡ ⎤= ⋅ − + + + −⎣ ⎦
2

11  

 In general, stress invariants 1 2,I J  are used to characterize the 

behavior of concrete structures. 

 

σ33

σ11

 Invariant formulation of the concrete failure 
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o  ( )1 2, 0F I J =

o Failure criteria –  
22

1
2 3 13

5 9
cIJ I σσ+ + =   and   

2 2
2

2 1 1 1
1 1

3 36 2 3 u
K KJ I I A I uτ− ± + = ,  where ,u uA τ  are material constants. 

 

 Multiaxial failure criterion 
o Principal stresses based 

( )1 2 3, , 0F σ σ σ =  

o Stress invariants based 

( )1 2 3, , 0F I J J =  

o One model considering the effect of all the three stress invariants and 

possessing the observed features of the failure surface such as 

smoothness, symmetry, convexity, and curved meridians is provided. 

( )
( ) '

1, , 1 0
,

m
m m

cm

f
fr
τσ τ θ

σ θ
= − =  

where 2 2
2

3 2
5 5m oct Jτ τ= = ,  

1
1
3m Iσ = , 

( ) ( )'

1, ,
5m m

c

r r
f

σ θ σ= θ  

( )
( ) ( ) ( )

( ) ( )

2 2 2 2 2 2

22 2 2

2 cos 2 4 cos 5 4
,

4 cos 2

c c t c t c c t t t c
m

c t c t

r r r r r r r r r r r
r

r r r r

θ θ
σ θ

θ

− + − − + −
=

− + −
 

( ) ( ) ( )
1 2 3

2 2
1 2 2 3 3 1

2cos
2 2

σ σ σθ
σ σ σ σ σ σ

− −
=

⎡ ⎤− + − + −⎣ ⎦

 

2

0 1 2' ''5
t m m

c cc

r a a a
f ff
σ σ⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

0θat  = o
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2

0 1 2' ''5
c m

c cc

r b b b m

f ff
σ σ⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

 at  60θ = o

 

o In the tension-biaxial compression zone, the tensile strength is 

' 1 2
3 ' '

2 21 1
3 1.5 3c t

c c

f
f f

σ σσ
⎡ ⎤ ⎡

= − −⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦
 

o In the triaxial tension zone, the failure is defined as 
'

ic tfσ =   1, 2,3i∀ =

o In the compression-biaxial tension zone, the failure is defined as 
'

1c cfσ =  

' 1
2 3'

21
3c t

c

f
f
σ

cσ σ
⎡ ⎤

= − =⎢ ⎥
⎣ ⎦

 

 

 

 

 

 

 Damage model 
o Incremental damage 

( )
0

1,

pddK
F I

γ
θ

=  

where 0
pγ  =  plastic component of octahedral shear strain, 

1I  =  volumetric stress invariant, and 

( )max,ijF Kσ = 0   bounding surface. 

o rD
R

=  

where r = current stress vector (distance), and R = distance to 

bounding surface. 

When D = 1, the material is assumed to have failed. 
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 Constitutive modeling of concrete 
o Approaches for defining stress-strain behavior of concrete: 

 Linear and nonlinear elasticity theories 

 Elastic perfectly plastic models 

 Elastic strain hardening plasticity models 

 Plastic damage (fracturing)-type models 

 Endochronic theory of inelasticity 

 

o Isotropic stress model  

 The stress-strain law 

( )3oct S oct octKσ ε ε=  

( )oct S oct octGτ γ γ=  

where octσ  = octahedral normal stress,  

octε  = octahedral normal strain, 

SK  = secant bulk modulus,  

octτ  = octahedral shear stress,  

octγ  = octahedral shear strain, and 

SG  = secant shear modulus. 

 The nondimensional secant bulk and shear moduli are 

approximated by  

0

oct
S cK ab d

K

ε−
= +  

0

octS r
oct

G pq s t
G

γ
γ

−

= − +  

 The tangent bulk and shear moduli are   

( )
0

ln
1

octoctT c
bK a b

K c

εε −⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
d  
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( )
0

ln
1

octoctT r
qG p q t

G c

γγ −⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 

 The elastic material stiffness matrix: 

4 3 2 3 2 3 0 0 0
4 3 2 3 0 0 0

4 3 0 0 0
0 0

0
.

K G K G K G
K G K G

K G
D

G
G

sym G

+ − −⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥+

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(Young’s modulus: 9
3

KGE
K G

=
+

, Poisson’s ratio: 
( )
3 2

2 3
K G

K G
ν −
=

+
) 

 

o Isotropic strain model 

 Nonlinear isotropic elastic model 

 The nondimensional secant bulk and shear moduli: 

( )1.09'
0

1

1 0.52
S

oct c

K
K fσ

=
+

 

( )1.7'
0

2

1 3.57
S

oct c

G
G fτ

=
+

 

 The tangent bulk and shear moduli: 

( )1.09'
0

1

1 1.08
T

oct c

K
K fσ

=
+

 

( )1.7'
0

2

1 9.63
T

oct c

G
G fτ

=
+

 

 

o Orthotropic model 

 The concept of equivalent uniaxial strains  

 The constitutive law in terms of the material stiffness tensor  ijklD

ij ijkl kld D dσ ε=  
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where ijdσ  = the tensor of incremental stresses, and 

ijdε  = the tensor of incremental strains. 

 The matrix of the tangent stiffness tensor: 

( ) ( ) ( )
( ) ( )

( )

2
1 1 2 1 3

2
2 2 3

2
3

12

23

31

1 1 1 0 0

1 1 0 0

1 0 0

0 0
0

.

E E E E E

E E E

ED
G

G
sym G

ν ν ν ν ν

ν ν ν

ν

φ
φ

φ

⎡ ⎤− + +
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

0  

where , ,  = tangent Young’s moduli in directions 1, 2, and 3, 1E 2E 3E

2 31 3 2φ ν ν= − −  

12G , ,  = incremental shear moduli for planes parallel to 

coordinates 1-2, 2-3, and 3-1. 

23G 31G

12 1 2G Eα= E , 

23 2 3G Eα= E , 31 3 1G Eα= E . For uncracked 

concrete, ( )1 1
2

α ν= + .  

 The equivalent uniaxial strain iuε  

1

i
iu

j k

i

εε σ σ
ν

σ

=
+

−
 

where iε  = principal strain in direction i. 

 

o Elastic-hardening plasticity model 

 It is developed for short-term monotonic compressive loading of 

concrete. 

 The constitutive relationships feature such characteristics of 

concrete deformational behavior as inelastic dilatancy and 

frictional effect and inelastic shear caused by hydrostatic pressure 

(hydrostatic pressure sensitivity). 
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 Following the incremental theory of plasticity, the total strain 

increments are 

{ } { } { }e pd d dε ε ε= +  or e p
ij ij ijd d dε ε ε= +  

where e
ij ijkl kld C dε σ=  

1 1 1
2 9 6

e
ijkl ik jl ij klC

G K G
δ δ ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
δ δ  =  the elastic compliance tensor 

 The equation of plastic flow provides 

1
3

e
ij kl ij ii

kl

Fd d
R

1ε σ ξ ξ
σ

⎡ ⎤∂ ⎛= ⎢ ⎥ ⎜∂ ⎝ ⎠⎣ ⎦

⎞− ⎟  (as the incremental form of elastic 

strain) 

1p
ij kl ij

kl

Fd d
R

ε σ ξ
σ

⎡ ⎤∂
= ⎢∂⎣ ⎦

⎥  (as the incremental form of plastic strain) 

where R  and ijξ  depend on the loading history, and  

F  =  yield function. 

 

o Plasticity based model 

 
2

1
2 13 3

5
If J Iσ σ= + + = , where σ  = equivalent stress. 

' P
d H dσ ε= ⋅  

{ }f fd d dσ σ
σ σ
∂ ∂

+ =
∂ ∂

σ          

{ } 13
2

f Id d dσ σ σ
σ σ
∂

⇒ + =
∂

 

{ } '131
2

Pf Id H dσ ε
σ σ
∂ ⎛ ⎞⇒ = − ⋅ ⋅⎜ ⎟∂ ⎝ ⎠

 

 

o Hardening law (Flow rule) –  

{ } PP fd dε ε
σ
∂⎧ ⎫= ⋅⎨ ⎬∂⎩ ⎭
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 If the shape of the curve is assumed to expand uniformly in all 

directions, the flow rule is referred to as the isotropic hardening 

law. 

 

o Stress increment –  

{ } [ ] { }ed C dσ ε= ⋅  

{ } { } { }ed d d pε ε ε= + = incremental total strain 

[ ]C = elastic strain to stress transformation matrix 

{ } { } { }ed d d pε ε ε= − = elastic strain increment 

{ }pdε = plastic strain increment 

therefore, 

{ } [ ]
[ ] [ ]

[ ]
{ }

'131
2

f fC C
d C d

I f fH C

σ σσ ε

σ σσ

⎧ ∂ ∂⎧ ⎫ ⎡ ⎤⋅ ⋅ ⋅⎨ ⎬⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂⎩ ⎭ ⎣ ⎦= − ⋅⎨ ⎬∂ ∂⎛ ⎞ ⎡ ⎤ ⎧ ⎫⎪ ⎪− ⋅ + ⋅ ⋅ ⎨ ⎬⎜ ⎟ ⎢ ⎥⎪ ⎪∂ ∂⎝ ⎠ ⎣ ⎦ ⎩ ⎭⎩ ⎭

⎫

 

Note that for perfect plasticity, ' 0H = , this formulation, leading to a 

non-singular [ ]C , does not cause any numerical difficulty.  

 

 Nonlinear analysis of reinforced concrete 

o Early studies, by necessity, concentrated on the behavior of isolated 

elements such as beams, columns, joints, etc. As facilities developed 

and computing capability expanded the scope broadened to include 

entire systems such as slabs and beams, coupled shear walls, folded 

plates, and shells complete with supporting beams for example. This 

broadening stems both from 

 the desire for better understanding of the behavior of the complete 

system with the possibility of therefore achieving better structural 

efficiency, and 
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 the need because of increased complexity of the problems requiring 

solution coupled with more severe demands being placed on the 

structure. 

 

 Factors which complicate the analysis of reinforcement 

concrete structures 
o Analytical procedures which may accurately determine stress and 

deformation states in reinforced concrete members and structures are 

complicated due to many factors: 

1. Non-linear stress-strain relation 

2. Progressive cracking 

3. Consideration of steel reinforcement 

4. Creep and shrinkage (time-dependent behavior) 

5. Special problems (shear transfer, cyclic loading) 

 The development of finite element method permits realistic 

evaluation of internal stresses and displacements on which the 

limit requirements may be based for improved structural efficiency. 

Furthermore, such refined analytical solutions help in 

understanding and interpreting the observed behavior of structural 

elements from experiments.  
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