3
1510-III

MATHEMATICAL SCIENCES

Paper - III

SECTION - I

Note: i) Answer both the questions.
ii) Each question carries twenty marks. $2 \times 20=40$

1. (a) Discuss the cubic spline interpolation by using Hermite cubic interpolant and apply it to find $\cos (3.14159)$ for free boundary conditions by using the following data :

$\boldsymbol{x}:$	0	1	3	3.5	5
$\cos \boldsymbol{x}:$	1	0.54030	-0.98999	-0.93646	0.28366

(b) Deduce the minimizing property of cubic splines.

OR
Show that a set $M \subset C[a, b]$ is compact in $C[a, b]$ if and only if the aggregate of functions $x(t) \in M$ are uniformly bounded and equi-continuous.

OR
Derive the steady-state equation of the multiserver Merkovian model ($M / M / C$) and obtain its solution.
2. A homogeneous solid sphere of radius R has the initial temperature distribution $f(r), 0 \leq r \leq R$, where r is the distance measured from the centre. The surface temperature is maintained at 0°. Show that the temperature $T(r, t)$ in the sphere is the solution of

$$
T_{t}=c^{2}\left(T_{r r}+\frac{2}{r} T_{r}\right)
$$

where c^{2} is a constant. Show that the temperature in the sphere for $t>0$ is given by
$T(r, t)=\frac{1}{r} \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{R} r\right) \exp \left(-\lambda_{n}^{2} t\right), \lambda_{n}=\frac{c n \pi}{R}$.
OR
A rigid body is set rotating under no forces (moment of finite forces about the principal axes being zero) about its one point with angular velocity components $\omega_{J}=n, \omega_{2}=0, \omega_{3}=n \sqrt{2}$ about the principal axes, respectively. If the respective principal moments are $4 A, 3 A$ and A, respectively then discuss the ultimate motion.

OR

What is sampling distribution? Derive non-central t-distribution.

SECTION - II

Note: i) Answer all questions.
ii) Each question carries fifteen marks.
3. (a) Suppose the function $f(z)$ is analytic everywhere in a closed domain D, except at a finite number of isolated singularities $z_{k}(k=1,2, \ldots, n)$ lying inside the domain D. Then show that

$$
\int_{\Gamma+} f(\rho) \mathrm{d} \rho=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left[f(z), z_{k}\right]
$$

where Γ^{+}is the complete boundary of domain D traversed in the positive direction and hence evaluate the integral

$$
I=\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{1+a \cos \theta},|a|<1
$$

(b) Construct a function that maps the strip $0<\operatorname{Rez}<a$ conformally onto the upper half-plane $\operatorname{Im} \omega>0$.

OR

Find the Hamilton's canonical equations of motion of a particle of mass m moving in a force field of potential $V(\rho, \phi, z)$ in cylindrical polar co-ordinates (ρ, ϕ, z).

OR
Show that every Bernoulli sequence of r.v.s. obeys the weak law of large numbers.
4. Prove that the family M of Lebesgue measurable sets is an algebra.

OR
Give two examples of non-parametric tests. Discuss the exact and the limiting null distributions of the corresponding test statistics.

OR
Find the rate of convergence of Newton-Raphson method to find the root of an equation $f(x)=0$.

1510-III

5. Show that the integral equation

$$
y(x)=\int_{0}^{x}(x+t) y(t) \mathrm{d} t+1
$$

is equivalent to the differential equation

$$
\begin{aligned}
& y^{\prime \prime}(x)-2 x y^{\prime}(x)-3 y(x)=0 \\
& y(0)=1, \quad y^{\prime}(0)=0
\end{aligned}
$$

OR
Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from Poisson distribution with parameter θ. The natural conjugate prior for θ is $\operatorname{Gamma}(\alpha, \beta)$. Then obain the posterior density of θ.

OR
Using Ritz method based on the variational principle, show that the approximate solution of the boundary value problem

$$
\begin{aligned}
& \quad y^{\prime \prime}+y=x, y(0)=y(1)=0 \\
& \text { is } y=\frac{5}{18}\left(-x+x^{2}\right)
\end{aligned}
$$

SECTION - III

Note: i) Answer all questions.

ii) Each question carries ten marks.

$$
9 \times 10=90
$$

6. Show that a finite integral domain is a field.
7. In a plane triangle, find the maximum value of $\cos A \cos B \cos C$.
8. Find the shortest distance between the parabola $y=x^{2}$ and the straight line $x-y=5$, using calculus of variation.
9. Define conformal mapping. What are essential conditions for conformal transformation? Examine that following transformations are everywhere conformal or not and determine critical points :
(i) $f(z)=(z-1)^{2}$
(ii) $f(z)=\frac{z-i}{z+i}$.
10. Use Cayley-Hamilton theorem to find A^{-1}, where

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right)
$$

11. Find the eigenvalue and eigenfunctions of the following homogeneous integral equation with degenerate kernels

$$
y(x)=\lambda \int_{0}^{1}\left(2 x t-4 x^{2}\right) y(t) \mathrm{d} t .
$$

12. Explain the principle of likelihood ratio test.
13. Define a BIBD and state the situations in which such designs are used.
14. Give the circumstances under which systematic sampling is to be preferred to simple random sampling.

SECTION - IV

Note: i) Answer all questions.
ii) Each question carries five marks.
15. If the vectors ($0,1, a),(1, a, 1),(a, 1,0)$ of the vector space $R^{3}(R)$ be linearly dependent, then find the value of a.
16. If the function $f(z)=\frac{i z}{2}$ is defined on the open disk $|z|<1$, show that $\lim _{z \rightarrow 1} f(z)=\frac{i}{2}$, the point $z=1$ being on the boundary of definition.
17. Find the general solution of

$$
\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=6\left(x^{2}+1\right)^{2}
$$

given that $y=x$ and $y=x^{2}-1$ are linearly independent solutions of corresponding homogeneous equation.
18. Find the curve for which the surface of revolution is minimum.
19. There are two identical urns containing respectively 4 white, 3 red balls and 3 white, 7 red balls. An urn is chosen at random and a ball is drawn from it. Find the probability that the ball is white. If the ball drawn is white, what is the probability that it is from the first urn ?

