Bioinformatics 1-- Lecture 2

Experimental origins of sequence data

The Sanger dideoxynucleotide method

Each color is one lane of an electrophoresis gel.

base calling

- In Ugene: open data/samples/ABIF/A01.abi Or download A01.abi from the link on the course web page (UGENE files)
- Look at the trace. Find beginning and ending of high-confidence sequence region.
- When should you tolerate uncertainty, and when does it matter?

New technology: Pyrosequencing

- http://www.youtube.com/watch? $\mathrm{v}=\mathrm{nFfgWGFe} 0 \mathrm{aA} \& \mathrm{NR}=1$
- ..or search youtube for "pyrosequencing"
- Whole genome sequencing in <1 day!!

454 sequencing

(Hoffman La Roche)

zooming in...

picoliter chambers

CCD image showing chemoluminescence from chambers after adding dCTP. Brighter dots added more C.

1 sequencing bead per chamber

Pyrosequencing

- DNA is sheared or cut. Poly-A tag added.
- Individual DNA strands are attached to poly-T linked beads. 1 strand/bead.
- Beads are added tohonoeycomb matrix. 1 bead/chamber. (piculter size).
- DNA is amplified in place. New copies bind to the bead. +strand only. -strand washed away.
- Add enzymes: DNA polymerase, ATP sulfurylase, apyrase, luciferase. Adding dNTP releases PPi. Apyrase chews up left-over dNTP. ATP sulfurylase catalyzes PPi + APS --> ATP. Luciferase emits light in proportion to ATP.
- Light emission detected by CCD. Each pixel produces a "pyrogram" (see fig).

Whole genome shotgun sequencing protocol

Transform bacteria, grow, isolate vector DNA

Sequence the library

Whole genome shotgun strategy

- Sequence at least 10 times as much DNA as contained in the genome. i.e. If the genome has 4.6 Mb (mega-bases) then sequence 46 Mb . This is called " 10 -fold redundancy".
-Find all overlapping sequences. (sometimes the overlap is ambiguous)
-If the overlap is ambiguous on one end of the BAC or YAC, the ambiguity can be resolved using the other end.
-Errors in assembly can still occur in highly repetitive regions of the genome (such as near the centromeres).

Assembly

assembled ATCCGCGCGCGCTCTCAGAGAGARCCATCCAGTA
sequence: CATCACGATTAAAAATCCGGGGGTTGGTACCAGG

Sequence reads are assembled by aligning the overlap regions. This is easy if all reads are unique. But they are not.

Assembly

Genomes contain repeats and duplications, making the assembly ambiguous.

"Scaffolding" for disambiguity

-Large fragments are cloned into yeast artificial chromosomes (YAC) or bacterial artificial chromosomes (BAC).
-These are grown up, and just the ends are sequenced.

-The size of the insert is known. So the sequence separation of the two reads is known.
-Largest fragment insertable into $\mathrm{BAC}=700 \mathrm{kbp}, \mathrm{YAC}=3000 \mathrm{kbp}$.

...is like solving a puzzle with linked pieces.

Assembly algorithm w/scaffolds
 First used for the drosophila genome, 2000

Sequence placement order:

1. "Unitigs" = contiguous confidently assembled reads
2. "Scaffold" $=2$ or more Unitigs connected by bundles of re-enforcing BAC-ends
3. "Rocks" = unitigs connected by 2 or more BAC-ends
4. "Stones" = unitigs linked by one BAC-end to a Scaffold.
5. "Pebbles" = un-linked Unitigs.

Warehouses of sequence data

NCBI Washington,DC
EMBL Heidelberg, Germany
DDBJ Shizuoka-ken, Japan www.ddbj.nig.ac.jp

Members of International Nucleotide Sequence Database Collaboration

Assembly viewer in UGENE

Download http://www.bioinfo.rpi.edu/bystrc/courses/biol4540/ugene/ chrM.sorted.bam.ugenedb

On course web page, click "UGENE files", Click chrM.sorted.bam.ugenedb

Open in UGENE.
Follow along.
-Locate high confidence, low-confidence regions.
-Identify possible polymorphisms.
-Find beginning and end of a contig.

Flat files are machine readable

Properties that aid parsing of "machine readable" files...

-generally keyworded
-space delimited fields
-contain special characters like /, :,=,\{\}, etc (/product)
-contain database identifiers, accession number (gi:123456789)
-sometimes have a checksum, to guard against corruption.
-Not easily human readable...

Exact pattern matching

- DNA
- Identity matching, uses only A, T, C, G
- Degenerate base matching, uses IUPAC codes
- Protein
- Identity matching, 20 aa's
- Prosite pattern matching. May be variable in length.

Exact matching algorithms provide a yes/no answer, no scoring.

Useful reference tables

The Genetic Code

		U		C	A	G	
U	$\begin{array}{\|l\|l\|} \hline \text { UUU } \\ \text { UUC } \\ \hline \text { UUG } \\ \text { UUA } \\ \hline \end{array}$	Phenyl alanine Leucine	$\begin{array}{\|l\|} \hline \text { UCU } \\ \text { UCC } \\ \text { UCA } \\ \text { UCG } \end{array}$	Serine	$\begin{aligned} & \text { UAU } \\ & \text { UAC } \\ & \text { Uyrosine } \\ & \text { UAA } \\ & \text { UAG Stop } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { UGU } & \text { Cysteine } \\ \text { UGC } & \\ \text { UGA Stop } \\ \hline \text { UGG Iryptophar } \end{array}$	C
C	$\begin{array}{\|l\|} \mathrm{CUO} \\ \mathrm{CUC} \\ \mathrm{CUA} \\ \mathrm{CuG} \end{array}$	Leucine	$\begin{aligned} & \mathrm{CcU} \\ & \mathrm{Ccc} \\ & \mathrm{CcA} \\ & \mathrm{CCG} \end{aligned}$	Proline	$\begin{aligned} & \text { CAU } \\ & \text { CAC } \\ & \text { CAA } \\ & \text { CAG } \\ & \text { Glutamine } \\ & \hline \end{aligned}$		U
A	$\begin{array}{\|l} \hline A U U \\ A U C \\ A U A \\ A U G \end{array}$	so ucine Methionin	$\begin{aligned} & A C U \\ & A C C \\ & A C A \\ & A C G \end{aligned}$	Threonine	$\begin{aligned} & \text { AAU } \\ & \text { AAC } \\ & \text { Asparagine } \\ & \text { AAA } \\ & \text { AAG } \end{aligned}$	$\begin{aligned} & \mathrm{AGU} \\ & \mathrm{AGC} \\ & \text { SGA } \\ & \text { AGA } \\ & \mathrm{AGG} \end{aligned}$	U
G	$\left\lvert\, \begin{aligned} & \mathrm{GUU} \\ & \mathrm{GUC} \\ & \mathrm{GUA} \\ & \mathrm{GUG} \end{aligned}\right.$	Valine	$\begin{aligned} & \text { GCU } \\ & \text { GCC } \\ & \text { GCA } \\ & \text { GCG } \end{aligned}$	Alanine	GAU Aspartic GAC acid GAA Glutamic GAG acid	$\begin{aligned} & \text { GGU } \\ & \text { GGC } \\ & \text { GGA } \\ & \text { GGG cine } \end{aligned}$	U

IUPAC nucleotide codes

IUPAC nucleotide code	Base
A	Adenine
C	Cytosine
G	Guanine
T (or U)	Thymine (or Uracil)
R	A or G
Y	C or T
S	G or C
W	A or T
K	G or T
M	A or C
B	C or G or T
D	A or G or T
H	A or C or T
V	A or C or G
N	any base
or -	gap

Exercise: Can you write the IUPAC expression for the set of all STOP codons

Pattern matching in DNA: Write a single IUPAC expression for
...the set of all STOP codons

IUPAC nucleotide codes

IUPAC nucleotide code	Base
A	Adenine
C	Cytosine
G	Guanine
T (or U)	Thymine (or Uracil)
R puRine	A or G
Y pYrimidine	C or T Or U
S strong	G or C
w weak	A or T or U
K Keto	G or T or U
M alMino	A or C
B not A	C or G or T Or U
D not C	A or G or T or U
H not G	A or C or T Or U
v not T, U	A or C or G
N aNything	any base
. or -	gap

Functional motifs -- ProSite

ProSite motifs are created by using experimental data, then extending it using sequence data. Example: A conserved histidine is required for function.

$$
\begin{aligned}
& \text { ALRDFATHDDF } \\
& \text { SMTAEATHDSI } \\
& \text { ECDQAATHEAS }
\end{aligned}
$$

Based on the homolog sequences, starting with the His, a pattern of conservation is found.
If it is too specific, the pattern is selective but not sensitive.
If it is too vague, the pattern is not selective.

Motifs exist due to selective pressure

Selective pressure on proteins for:
folding -- some proteins must be stable
others are turned over

function --

active site residues
binding to other proteins
as a substrate for --
signal sequences, intra-cellular transport, export post-translational modification,...
a joke

How we develop Prosite patterns!

Syntax for motif patterns

$\mathrm{x}(n) \quad$ Any amino acid. If n is specified, then n amino acids. n may be a range or a list.
X Amino acid X, only.
[XY] Either X or Y.
\{XY\} NOT X,Y. Anything but X or Y.

```
Example:
C-[AHY]-x(2,4)-G-\{DERKH\}-[GN] matches the sequences:
CAFINTGIN
CHQ--SGFN
CY--MLGMG
CAHDNAGTN
```

Can you find it?
CAAAAAWGYGAHCGQTKGENCYHAGDGCYCYGLNPKGL

Zn finger structure

The helix side of the finger makes H-bonds to the nucleotides. So that side is highly variable.

Zinc finger motif

Loop must be length 12 .
4th position in loop must be hydrophobic

Kringle domain

a triple loop, 3-disulphide bridge structure, whose conformation is defined by a number of hydrogen bonds and small pieces of antiparallel -sheet.
[FY]-C-[RH]-[NS]-x(7,8)-[WY]-C The two C's are involved in a disulfide bonds.

Homeobox

Found in transcription factors.

$$
\mathrm{L}-\mathrm{M}-\mathrm{A}-[\mathrm{EQ}]-\mathrm{G}-\mathrm{L}-\mathrm{Y}-\mathrm{N}
$$

Helix-turn-helix protein. C-terminal helix interacts with DNA, and contains the signature.

ER targeting sequence

[KRHQSA] - [DENQ]-E-L

Proteins that permanently reside in the lumen of the endoplasmic reticulum (ER) have the C-terminal sequence Lys-Asp-Glu-Leu (KDEL). While KDEL is the preferred signal in many species, variants of that signal are used by different species.

```
Signal Species
```

KDEL Vertebrates, Drosophila, Caenorhabditis elegans, plants
HDEL Saccharomyces cerevisiae, Kluyveromyces lactis, plants
DDEL Kluyveromyces lactis
ADEL Schizosaccharomyces pombe (fission yeast)
SDEL Plasmodium falciparum

PTMs

$$
\begin{aligned}
& \mathrm{N} \text {-glycosylation } \\
& \mathrm{N}-\{\mathrm{P}\}-[\mathrm{ST}]-\{\mathrm{P}\} \\
& \hline
\end{aligned}
$$

Tyrosine phosphorylation

[RK]-x(2)-[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y

C-terminal prenylation

$$
\mathrm{C}-\{\text { DENQ }\}-[\text { LIVM }]-\mathrm{x}
$$

Inexact pattern matching

- Exact matching is black/white.
- Most applications use inexact matching.
- Requires a mismatch score.

MSEHILYQGKPSICKKLQEAPNVIGIVSLTFNWPYAKAVAINLEE	3	1	1	1	3

Amino acid substitution matrices for inexact pattern matching

Two 20x20 substitution matrices are used：BLOSUM \＆PAM．

```
A CDEFG HI K LMNPQR ST VWY
```

4 0 0 -2 $-1 \begin{array}{llllllllllllllllll} & -2 & 0 & -2 & -1 & -1 & -1 & -1 & -2 & -1 & -1 & -1 & 1 & 0 & 0 & -3 & -2\end{array}$
$\begin{array}{lllllllllllllllllll}9 & -3 & -4 & -2 & -3 & -3 & -1 & -3 & -1 & -1 & -3 & -3 & -3 & -3 & -1 & -1 & -1 & -2 & -2\end{array}$
$6 \begin{array}{llllllllllllllllll} & 2 & -3 & -1 & -1 & -3 & -1 & -4 & -3 & 1 & -1 & 0 & -2 & 0 & -1 & -3 & -4 & -3\end{array}$
$\begin{array}{llllllllllllllll}5 & -3 & -2 & 0 & -3 & 1 & -3 & -2 & 0 & -1 & 2 & 0 & 0 & -1 & -2 & -3 \\ -2\end{array}$
$\begin{array}{llllllllllllllll}6 & -3 & -1 & 0 & -3 & 0 & 0 & -3 & -4 & -3 & -3 & -2 & -2 & -1 & 1 & 3\end{array}$
$\begin{array}{lllllllllllllll}6 & -2 & -4 & -2 & -4 & -3 & 0 & -2 & -2 & -2 & 0 & -2 & -3 & -2 & -3\end{array}$

$\begin{array}{rrrrrrrrrrrrr}4 & -3 & 2 & 1 & -3 & -3 & -3 & -3 & -2 & -1 & 3 & -3 & -1 \\ 5 & -2 & -1 & 0 & -1 & 1 & 2 & 0 & -1 & -2 & -3 & -2\end{array}$

HW1, due Sep 10

- Find motifs in DNA and Protein, using IUPAC and Prosite notation, respectively.
- Write a program to search for motifs.
- details in HW1 pdf file.

In-class UGENE exercise: DNA dotplot

- Select NCBI-->Nucleotide
- Search "Nucleotide" for "influenza A virus H1N1 Puerto Rico mRNA"
- Select the first one.
- Get the accession number.
- In UGENE, use File/Open remote database.
- Paste the accession number.
- Right-click the sequence window, a menu opens. Select analyze, select dotplot. Do a "self" dotplot.
- Right-click on dotplot image to change \%identical and length.
- Find the locations of the longest repeat sequence

Review

- How does Sanger sequencing wok?
- How does pyrosequencing work?
- What kind of sequence would cause errors in the pyrosequencing method?
- What is shotgun sequencing?
- What is sequence assembly?
- What kind of sequences cause errors in assembly?
- Do you know the 1-letter codes of the amino acids?
- Do you know the IUPAC nucleotide codes?

