No. \square Q. C. A. B.

Total No. of Questions : 58]

Code No. : 81-E

[Total No. of Printed Pages : 32

Subject : MATHEMATICS

(90 R
[Date: 18. 06. 2012
[Time : 09-30 A.M. to 12-45 P.M.
[Max. Marks : 100

FOR OFFICE USE ONLY

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Marks	$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Marks	$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Marks	$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Marks	$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Marks
1.		14.		27.		40.		53.	
2.		15.		28.		41.		54.	
3.		16.		29.		42.		55.	
4.		17.		30.		43.		56.	
5.		18.		31.		44.		57.	
6.		19.		32.		45.		58.	
7.		20.		33.		46.		\times	
8.		21.		34.		47.		\times	
9.		22.		35.		48.		\times	
10.		23.		36.		49.		\times	
11.		24.		37.		50.		\times	
12.		25.		38.		51.		\times	
13.		26.		39.		52.		\times	
Total Marks									
Tota	Marks in							Otal	
1. $\sqrt{ }$					\checkmark			\checkmark	
2. \checkmark									
Signature of Evaluators			Registration No.		Signature of the Deputy Chief			Signature of the Room Invigilator	

General Instructions :

i) The Question-cum-Answer Booklet consists of objective and subjective types of questions having 58 questions.
ii) Space has been provided against each objective type question. You have to choose the correct choice and write the complete answer along with its alphabet in the space provided.
iii) For subjective type questions enough space for each question has been provided. You have to answer the questions in the space.
iv) Follow the instructions given against both the objective and subjective types of questions.
v) Candidate should not write the answer with pencil. Answers written in pencil will not be evaluated. (Except Graphs, Diagrams \& Maps)
vi) In case of Multiple Choice, Fill in the blanks and Matching questions, scratching / rewriting / marking is not permitted, thereby rendering to disqualification for evaluation.
vii) Space for Rough Work has been printed and provided at the bottom of each page.
viii) Candidates have extra 15 minutes for reading the question paper.
I. Four alternatives are given for each of the following questions / incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its alphabet in the space provided against each question. $20 \times 1=20$

1. If A and B are two disjoint sets, then the relation between them is
(A) $n(A \cup B)=n(A)+n(B)$
(B) $n(A)+n(B)=n(A \mathrm{UB})+n(A \mathbf{I} B)$
(C) $n(A \cup B)=n(A \mathbf{I} B)$
(D) $n(A \mathbf{I} B)=n(A)+n(B)$.

Ans. : \qquad
2. If $U=\{0,1,2,3,4\}, A=\{0,2,4\}$ and $B=\{1,2,3\}$ then $U-B=$
(A) $\{0,4\}$
(B) $\{1,3\}$
(C) $\{0,3\}$
(D) $\{3,4\}$.

Ans. : \qquad
3. Among 9 passengers, 5 can speak Kannada. 2 can speak both Kannada and English. The number of passengers who can speak only English is
(A) 6
(B) 5
(C) 4
(D) 3 .

Ans. : \qquad
4. In a geometric progression, $S_{2 n} \div S_{n}=$
(A) $\frac{r^{n}+1}{r^{n}-1}$
(B) $r^{n}+1$
(C) r^{n+1}
(D) $r^{n}-1$.

Ans. : \qquad
5. If $16, x$ and 25 are in G.P. then the value of x is
(A) 20
(B) 10
(C) 5
(D) 4 .

Ans. : \qquad
6. The H.C.F. of $x^{3}+y^{3}$ and $x^{2}-x y+y^{2}$ is
(A) $x+y$
(B) $x^{2}-x y+y^{2}$
(C) $x^{3}+y^{3}$
(D) $(x+y)^{3}$.

Ans. : \qquad
7. If $A \times B=H \times L$, then $L=$
(A) $\frac{A \times B}{H}$
(B) $\frac{H}{A \times B}$
(C) $\frac{A \times H}{B}$
(D) $\frac{B \times H}{A}$.

Ans. : \qquad
(A) $p^{2}+q^{2}+r^{2}$
(B) 0
(C) $2 p^{2}+2 q^{2}+2 r^{2}$
(D) $p+q+r$.

Ans. : \qquad
9. If one factor of $a^{4}+a^{2} b^{2}+b^{4}$ is $a^{2}+b^{2}+a b$, then the other factor is
(A) $a^{3}+b^{3}+c^{3}$
(B) $a^{2}+b^{2}-a b$
(C) $a^{2}+b^{2}+c^{2}$
(D) $a^{2}+b^{2}+a b$.

Ans. : \qquad
10. The product of $\sqrt{a^{2} b}$ and $\sqrt{a b}$ is
(A) $a b \sqrt{a}$
(B) $a \sqrt{a b}$
(C) $\sqrt{a b}$
(D) $b \sqrt{a b}$.

Ans. : \qquad
11. If $v^{2}=u^{2}+2 a s$, then $u=$
(A) $v^{2}-2 a s$
(B) $\pm \sqrt{2 a s-v^{2}}$
(C) $\pm \sqrt{v^{2}-2 a s}$
(D) $\pm \sqrt{v^{2}+2 a s}$.

Ans. : \qquad
12. Sum of a number and its reciprocal is $5 \frac{1}{5}$. Then the required equation is
(A) $y^{2}+\frac{1}{y}=\frac{26}{5}$
(B) $5 y^{2}-26 y+5=0$
(C) $y^{2}+\frac{1}{y}+\frac{26}{5}=0$
(D) $5 y^{2}+26 y+5=0$.

Ans. : \qquad
13. The product of the roots of equation $2 m^{2}-8 m=0$ is
(A) 4
(B) 2
(C) 0
(D) -8 .

Ans. : \qquad
14. The set of residues of modulo Z_{4} is
(A) $\{0,1,2,3,4\}$
(B) $\{1,2,3,4\}$
(C) $\{0,1,2\}$
(D) $\{0,1,2,3\}$.

Ans. : \qquad
15. If $x+2 \equiv 4(\bmod 5)$, then the value of x is
(A) 7
(B) 5
(C) 4
(D) 3 .

Ans. : \qquad
16. If $a: b=c: d$, then the correct relationship is
(A) $\frac{a}{d}=\frac{b}{c}$
(B) $\frac{d}{a}=\frac{b}{c}$
(C) $\frac{a}{b}=\frac{b}{a}$
(D) $\frac{d}{b}=\frac{c}{a}$.

Ans. : \qquad
17. The surface area of a solid hemisphere is
(A) πr^{2}
(B) $4 \pi r^{2}$
(C) $\frac{4}{3} \pi r^{2}$
(D) $3 \pi r^{2}$.

Ans. : \qquad
18. The height of a hollow cylinder is 7 cm and its radius is 3.5 cm . Then the surface area is
(A) $231 \mathrm{~cm}^{2}$
(B) $154 \mathrm{~cm}^{2}$
(C) $308 \mathrm{~cm}^{2}$
(D) $115.5 \mathrm{~cm}^{2}$.

Ans. : \qquad
19. Euler's formula for polyhedral solids is
(A) $N+R=A+2$
(B) $N+A=R+2$
(C) $F+V=E+2$
(D) $F+E=V+2$.

Ans. : \qquad
20. The number of regions in the figure is

(A) 4
(B) 3
(C) 2
(D) 1 .

Ans. : \qquad
II. Complete the following statements by filling the blanks :
$10 \times 1=10$
21. The formula for $n^{\text {th }}$ term of a geometric progression is \qquad
Ans. : \qquad
22. The value of ${ }^{n} C_{r}-{ }^{n} C_{n-r}=$ \qquad
Ans. : \qquad
23. The formula for coefficient of variation (C.V.) is given by \qquad . .

Ans. : \qquad
24. If the last remainder is a constant and not zero, then the H.C.F. of two expressions is \qquad
Ans. : \qquad
25. The standard form of an adfected quadratic equation is \qquad
Ans. : \qquad
26. In a quadratic equation $a x^{2}+b x+c=0$, the product of the roots of the equation is \qquad
Ans. : \qquad
27. Circles having the same centre but different radii are called \qquad
Ans. : \qquad
28. If two circles of radii 5 cm and 3 cm touch each other internally, then the distance between their centres is equal to \qquad
Ans. : \qquad
29. The formula for the total surface area of a cone is \qquad
Ans. : \qquad
30. The maximum number of odd nodes in a traversable network is \qquad .

Ans. : \qquad
(SPACE FOR ROUGH WORK)
III. 31. If $X=\{1,2,3,5,7,11\}$
$Y=\{2,4,6,8,10\}$
$Z=\{1,3,5,7,9,11\}$
Then show that union of sets is distributive over intersection of sets.
32. The sixth and tenth terms of a Geometric Progression are 63 and 5103 respectively. Find the first term and common ratio.
33. If a, H, b are in Harmonic Progression and H is called the harmonic mean between a and b, then prove that, $H=\frac{2 a b}{a+b}$.
34. If $A=\left[\begin{array}{rr}2 & 5 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}2 & 3 \\ -2 & 4\end{array}\right]$, find the matrix P when $2 A+P=B$.
35. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, find $A \cdot A^{\prime}$.
36. What is fundamental counting principle? What is the meaning of ${ }^{n} P_{r}$?

81-E

 1237. Find the H.C.F. of $x^{3}-7 x^{2}+14 x-8$ and $x^{3}-6 x^{2}+11 x-6$ by division method.
38. The product of two expressions is $a^{4}-9 a^{2}+4 a+12$ and their H.C.F. is $a-2$. Find their L.C.M.
39. What are unlike surds ? Give one example.
40. Simplify : $8 \sqrt{\frac{1}{2}}-\frac{1}{2} \sqrt{8}$.

81-E

41. Using the formula, find the value of x in $x^{2}+7 x+12=0$.
42. Form the quadratic equation, whose roots are $3+\sqrt{2}$ and $3-\sqrt{2}$.
43. In a circle of radius 4 cm , draw two radii such that the angle between them is 120°. Draw two tangents at the ends of the radii.
44. In the given figure, $\angle A B D=\angle B D C$ and $C D=4 A B$. Show that $B D=5 B E$.

45. In the given figure, $T P$ and $T Q$ are tangents drawn to a circle with centre O. Show that, $\angle P T Q=2 \angle O P Q$.

46. The height of a solid metal cylinder is 20 cm . Its radius is 1.5 cm . The cylinder is melted and cast into spheres of each of radius 1.5 cm . How many such spheres can be cast from the cylinder ?
47. Draw a plan for the recordings from the surveyor's field book given below : 2
[Scale: $20 \mathrm{~m}=1 \mathrm{~cm}$]

	Metres	
	to D	
	140	60 to C
To $E 80$	120	
	100	40 to B
	50	

48. Draw the graph for the following matrix :
$\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$
IV. 49. There are 6 bowlers and 9 batsmen in a cricket club. In how many ways can a team of 11 be selected out of them, so that the team contains at least 4 bowlers?
49. Calculate the standard deviation for the given frequency distribution :

C.I.	\boldsymbol{f}
$1-5$	1
$6-10$	2
$11-15$	3
$16-20$	4

51. If $a=\frac{x}{y+z}, \quad b=\frac{y}{z+x}$ and $c=\frac{z}{x+y}$, then prove that

$$
\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1
$$

52. The perimeter of a right angled triangle is 30 cms and its hypotenuse is 13 cms . Find the length of the other two sides.
53. Prove that the areas of similar triangles have the same ratio as the squares of corresponding altitudes.
54. If two circles touch each other externally, then prove that the point of contact and the centres of the circles are collinear.
V. 55. In an A.P. the sum of first 11 terms is 44 and that of the next 11 terms is 55 . Find the first term and the common difference.
55. Two circles of radii 3 cm and 2 cm , have their centres 9 cm apart. Draw transverse common tangent and measure the length of the tangent and write the measurement.
56. Prove that, "In a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides". 4

81-E
58. Draw the graphs of $y=x^{2}$ and $y=2+x$. Solve the equation $x^{2}-x-2=0$.

81-E

