ANSWERS \& HINTS
 for
 WBJEE - 2013
 SUB: CHEMISTRY

CATEGORY - I

Q. 1 - Q. 45 carry one mark each, for which only one option is correct. Any wrong answer will lead to deduction of $1 / 3$ mark.

1. In diborane, the number of electrons that account for bonding in the bridges is
(A) Six
(B) Two
(C) Eight
(D) Four

Ans: (D)

Hints :

Each bridging bond is formed by two electrons. Hence four electrons account for bonding in the bridges.
2. The optically active molecule is
(A)

(B)

(C)

(D)

Ans: (C)
Hints: Others are meso ompound due to presence of plane of symmetry.
3. A van der Waals gas may behave ideally when
(A) The volume is very low
(B) The temperature is very high
(C) The pressure is very low
(D) The temperature, pressure and volume all are very high

Ans: (C)
Hints : A van der waals gas may behave ideally when pressure is very low as compressibility factor (Z) approaches 1. At high temperature $Z>1$.
4. The half-life for decay of ${ }^{14} \mathrm{C}$ by β-emission is 5730 years. The fraction of ${ }^{14} \mathrm{C}$ decays, in a sample that is 22,920 years old, would be
(A) $1 / 8$
(B) $1 / 16$
(C) 7/8
(D) $15 / 16$

Ans: (D)

Hints: $N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{t_{1}}}=N_{0}\left(\frac{1}{2}\right)^{\frac{22920}{5730}}=N_{0}\left(\frac{1}{2}\right)^{4}=\frac{N_{0}}{16}$ where $N_{0}=$ initial amount, $N=$ amount left So fraction reacted $N_{0}-\frac{N_{0}}{16}=\frac{15}{16} N_{0}$
5. 2-Methylpropane on monochlorination under photochemical condition give
(A) 2-Chloro-2-methylpropane as major product
(B) (1:1) Mixture of 1-chloro-2-methylpropane and 2-chloro-2-methylpropane
(C) 1-Chloro-2-methylpropane as a major product
(D) (1:9) Mixture of 1-chloro-2-methylpropane and 2-chloro-2-methylpropane

Ans: (C)

Ratio of $(A):(B)$ is $5: 9$.
6. For a chemical reaction at $27^{\circ} \mathrm{C}$, the activation energy is 600 R . The ratio of the rate constants at $327^{\circ} \mathrm{C}$ to that of at $27^{\circ} \mathrm{C}$ will be
(A) 2
(B) 40
(C) e
(D) e^{2}

Ans: (C)
Hints: $\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{E}_{a}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$ or, $\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{600 \mathrm{R}}{\mathrm{R}}\left(\frac{1}{300}-\frac{1}{600}\right)$ or, $\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{600 \mathrm{R}}{\mathrm{R}}\left(\frac{2-1}{600}\right)=1$

$$
\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\ln \mathrm{e} \quad \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\mathrm{e}
$$

7. Chlorine gas reacts with red hot calcium oxide to give
(A) Bleaching powder and di hlorine monoxide
(B) Bleaching powder and water
(C) Calcium chloride and chlorine dioxide
(D) Calcium chloride and oxygen

Ans: (D)
Hints : $2 \mathrm{CaO}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CaCl}_{2}+\mathrm{O}_{2} \uparrow$
Red hot
8. Correct pair of compounds which gives blue colouration/precipitate and white precipitate, respectively, when their Lassaigne's test is separately done is
(A) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}$ and $\mathrm{ClCH}_{2} \mathrm{COOH}$
(B) $\mathrm{NH}_{2} \mathrm{CSNH}_{2}$ and $\mathrm{PhCH}_{2} \mathrm{Cl}$
(C) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
(D)

Ans: (D)

Hints: Organic compound

Prussian blue

9. The change of entropy (dS) is defined as
(A) $\quad d S=\delta q / T$
(B) $\mathrm{dS}=\mathrm{dH} / \mathrm{T}$
(C) $\quad d S=\delta q_{\text {eqv }} / T$
(D) $\mathrm{dS}=(\mathrm{dH}-\mathrm{dG}) / \mathrm{T}$

Ans: (C)
Hints: It's a fact
10. In O_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$, the $\mathrm{O}-\mathrm{O}$ bond lengths are 121 and $1.48 \AA$ respectively. In ozone, the average $\mathrm{O}-\mathrm{O}$ bond length is
(A) $1.28 \AA$
(B) $1.18 \AA$
(C) $1.44 \AA$
(D) $1.52 \AA$

Ans: (A)
Hints: Bond length is nearly average of bond length of $\mathrm{O}-\mathrm{O}$ in

Hence it is $1.28 \AA$
11. The IUPAC name of the compound X is $(\mathrm{X}=$

(A) 4-cyano-4-methyl-2-oxopentane
(B) 2-cyano-2-methyl-4-oxopentane
(C) 2,2-dimethyl-4-oxopentanenitrile
(D) 4-cyano-4-methyl-2-pentanone

Ans: (C)

Hints:

2, 2-Dimethyl-4-oxopentanenitrile
12. At $25^{\circ} \mathrm{C}$, the solubility product of a salt of $\mathrm{MX} X_{2}$ type is 3.2×10^{-8} in water. The solubility (in moles/lit) of $M X_{2}$ in water at the same temperature will be
(A) 1.2×10^{-3}
(B) 2×10^{-3}
(C) 3.2×10^{-3}
(D) 1.75×10^{-3}

Ans: (B)
Hints: $K_{s p}\left(M X_{2}\right)=4 s^{3}=3.2 \times 10^{-8} \Rightarrow s=\sqrt{\frac{3.2 \times 10^{-8}}{4}}$

$$
=2 \times 10^{-3}
$$

13. In SOCl_{2}, the $\mathrm{Cl}-\mathrm{S}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{S}-\mathrm{O}$ bond angles are
(A) 130° and 115°
(B) 106° and 96°
(C) 107° and 108°
(D) 96° and 106°

Ans: (D)
Hints: Fact
14. (+)-2-chloro-2-phenylethane in toluene racemises slowly in the pre ence of mall amount of SbCl_{5}, due to the formation of
(A) Carbanion
(B) Carbene
(C) Free-radical
(D) Carbocation

Ans: (D)
Hints : SbCl_{5} removes Cl^{-}from the substrate to generate a planar carbocation, which is then subsequently attacked by Cl^{-}from both top and bottom to result in a racemic mixture.
15. Acid catalysed hydrolysis of ethyl acetate follows a pseudo-first order kinetics with respect to ester. If the reaction is carried out with large excess of ester, the order wi h respect to ester will be
(A) 1.5
(B) 0
(C) 2
(D) 1

Ans: (B)
Hints: With large excess of ester th rate of reaction is independent of ester concentration.
16. The different colours of litmus in acidic, neutral and basic solutions are, respectively
(A) Red, orange and blue
(B) Blue, violet and red
(C) Red, colourless and blue
(D) Red, violet and blue

Ans: (D)
Hints:
17. Baeyer's reagent is
(A) Alkaline potassium permanganate
(B) Acidified potassium permanganate
(C) Neutral potassium permanganate
(D) Alkaline potassium manganate

Ans: (A)
Hints:
18. The correct order of equivalent conductances at infinite dilution in water at room temperature for $\mathrm{H}^{+}, \mathrm{K}^{+}, \mathrm{CH}_{3} \mathrm{COO}^{-}$and HO^{-}ions is
(A) $\mathrm{HO}^{-}>\mathrm{H}^{+}>\mathrm{K}^{+}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
(B) $\mathrm{H}^{+}>\mathrm{HO}^{-}>\mathrm{K}^{+}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
(C) $\mathrm{H}^{+}>\mathrm{K}^{+}>\mathrm{HO}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$
(D) $\mathrm{H}^{+}>\mathrm{K}^{+}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{HO}^{-}$

Ans: (B)
19. Nitric acid can be obtained from ammonia via the formations of the intermediate compounds
(A) Nitric oxides and nitrogen dioxides
(B) Nitrogen and nitric oxides
(C) Nitric oxide and dinitrogen pentoxide
(D) Nitrogen and nitrous oxide

Ans: (A)
Hints:
20. In the following species, the one which is likely to be the intermediate during benzoin condensation of benzaldehyde, is
(A) $\mathrm{Ph}-\mathrm{C} \equiv \stackrel{+1}{\mathrm{O}}$
(B)

(C)

(D)

Ans: (C)

Hints :

21. The correct order of acid strength of the following substituted phenols in wate at $28^{\circ} \mathrm{C}$ is
(A) p-nitrophnenol<p-fluorophenol<p-chlorophenol
(B) p-chlorophenol<p-fluorophenol<p-nitrophnenol
(C) p -fluorophenol<p-chlorophenol<p-nitrophnenol
(D) p-fluorophenol<p-nitrophnenol<p-chlorophenol

Ans: (C)

Hints:

(Acidic strength)
As order of electron withdrawing nature from benzene ring : $-\mathrm{NO}_{2}>-\mathrm{Cl}>-\mathrm{F}$
22. For isothermal expansion of an ideal gas, the correct combination of the thermodynamic parameters will be
(A) $\Delta \mathrm{U}=0, \mathrm{Q}=0, \mathrm{w} \neq 0$ and $\Delta \mathrm{H} \neq 0$
(B) $\Delta \mathrm{U} \neq 0, \mathrm{Q} \neq 0, \mathrm{w} \neq 0$ and $\Delta \mathrm{H} \neq 0$
(C) $\Delta U=0, Q \neq 0, w=0$ and $\Delta H \neq 0$
(D) $\Delta U=0, Q \neq 0, w \neq 0$ and $\Delta H \neq 0$

Ans: (D)

Hints : For isothermal process, $\Delta \mathrm{T}=0$

$$
\begin{aligned}
\therefore \Delta U & =\mathrm{nC}_{v} \Delta \mathrm{~T}=0 \\
\Delta H & =\mathrm{CC}_{\mathrm{p}} \Delta \mathrm{~T}=0
\end{aligned}
$$

From first law of thermodynamics
$\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$
As $\Delta U=0$
$\therefore \mathrm{Q}=\mathrm{W} \neq 0$
23. Addition of excess potassium iodide solution to a solution of mercuric chloride gives the halide complex
(A) tetrahedral $\mathrm{K}_{2}\left[\mathrm{Hgl}_{4}\right]$
(B) trigonal $\mathrm{K}\left[\mathrm{Hgl}_{3}\right]$
(C) linear $\mathrm{Hg}_{2} \mathrm{I}_{2}$
(D) square planar $\mathrm{K}_{2}\left[\mathrm{HgCl}_{2} \mathrm{I}_{2}\right]$

Ans: (A)
Hints: $\mathrm{HgCl}_{2}+4 \mathrm{KI} \longrightarrow \mathrm{K}_{2}\left[\mathrm{HgI}_{4}\right]+2 \mathrm{KCl}$
$\mathrm{Hg}:[\mathrm{xe}] 4 \mathrm{f}^{145} \mathrm{~d}^{10} 6 \mathrm{~s}^{2}$

24. Amongst the following, the one which can exist in free state as a stable compound is
(A) $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}$
(B) $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$
(C) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}$
(D) $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$

Ans: (B)
Hints: Degree of unsaturation $=\frac{\sum \mathrm{n}(\mathrm{v}-2)}{2}+1$
; $n=$ no. of atoms of a particular type
$v=$ valency of the atom
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O} ; \mathrm{DU}=\frac{7(4-2)+9(1-2)+1(2-2)}{2}+1=3.5$
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O} ; \mathrm{DU}=\frac{8(4-2)+12(1-2)+1(2-2)}{2}+1=3$
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}: \mathrm{DU}=\frac{6(4-2)+11(1-2)+1(2-2)}{2}+=1.5$
$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}: \mathrm{DU}=\frac{10(4-2)+17(1-2)+2(2-2)}{2}+1=2.5$
Molecules with fractional degr e of unsaturation cannot exist with stability
25. A conducitivity cell has been calibrated with a $0.01 \mathrm{M} 1: 1$ electrolyte solution (specific conductance, $\mathrm{k}=1.25 \times 10^{-3} \mathrm{~S}$ cm^{-1}) in the cell and the measured resistance was 800 ohms at $25^{\circ} \mathrm{C}$. The constant will be
(A) 1.02 cm
(B) $0.102 \mathrm{~cm}^{-1}$
(C) $1.00 \mathrm{~cm}^{-1}$
(D) $0.5 \mathrm{~cm}^{-1}$

Ans: (C)
Hints : $K=1.25 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}: \rho=\frac{1}{\mathrm{~K}}=\frac{1}{1.25 \times 10^{-3}}$
$R=\rho \frac{I}{A}$
$\therefore 800=\frac{1}{1.25 \times 10^{-3}} \times\left(\frac{\mathrm{I}}{\mathrm{A}}\right)$, where $\frac{\mathrm{I}}{\mathrm{A}}=$ cell constant
$\frac{\mathrm{I}}{\mathrm{A}}=800 \times 1.25 \times 10^{-3}=1$
26. The orange solid on heating gives a colourless gas and a greensolid which can be reduced to metal by aluminium powder. The orange and the green solids are, respectively
(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ (B) $\quad \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(C) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and CrO_{3}
(D) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}$ and CrO_{3}

Ans: (A)

Hints :

27. The best method for the preparationof 2,2-dimethylbutane is via the reaction of
(A) $\mathrm{Me}_{3} \mathrm{CBr}$ and $\mathrm{MeCH}_{2} \mathrm{Br}$ in Na /ether
(B) $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{CuLi}$ and $\mathrm{MeCH}_{2} \mathrm{Br}$
(C) $\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{CuLi}$ and $\mathrm{Me}_{3} \mathrm{CBr}$
(D) $\mathrm{Me}_{3} \mathrm{CMgl}$ and $\mathrm{MeCH}_{2} \mathrm{I}$

Ans: (B)
Hints: Corey-House alkane synthesis gives the alkane in best yield

(${ }^{\circ}$)
28. The condition of spontaneity of process is
(A) lowering of entropy at constant temperature and pressure
(B) lowering of Gibbs free energy of system at constant temperature and pressure
(C) increase of entropy of system at constant temp rature and pressure
(D) increase of Gibbs free energy of the universe at constant temperature and pressure

Ans: (B)
Hints : $d G_{P, T}=-v e$ is the criterion for spontaneity
29. The increasing order of $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle in the species $\mathrm{NO}_{2}, \mathrm{NO}_{2}{ }^{+}$and NO_{2}^{-}is
(A) $\mathrm{NO}_{2}+<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{-}$
(B) $\mathrm{NO}_{2}<\mathrm{NO}_{2}-<\mathrm{NO}_{2}^{+}$
(C) $\mathrm{NO}_{2}+<\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}$
(D) $\mathrm{NO}_{2}<\mathrm{NO}_{2}{ }^{+}<\mathrm{NO}_{2}^{-}$

Ans:()
Hints: No option is correct
correct ans : $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-}$
30. The correct structure of the dipeptide gly-ala is
(A)

(B)

(C)

(D)

Ans: (C)

Hints:

31. Equivalent conductivity at infinite dilution for sodium-potassium oxalate (($\left.\left.\mathrm{COO}^{-}\right)_{2} \mathrm{Na}^{+} \mathrm{K}^{+}\right)$will be [given, molar conductivities of oxalate, K^{+}and Na^{+}ions at infinite dilution are $148.2,50.1,73.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively]
(A) $271.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$
(B) $67.95 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$
(C) $543.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$
(D) $135.9 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$

Ans: (D)
Hints: $\lambda_{M}^{\infty}=\lambda_{M}^{\infty}($ Oxa late $)+\lambda_{M}^{\infty}\left(\mathrm{Na}^{+}\right)+\lambda_{M}^{\infty}\left(\mathrm{k}^{+}\right)$

$$
\begin{aligned}
& \lambda_{M}^{\infty}=(148 .+50.1+73.5) \mathrm{S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
& \lambda_{M}^{\infty}=271.8 \mathrm{~S} \mathrm{~cm} 2 \mathrm{~mol}^{-1} \\
& \therefore \lambda_{\text {Eq }}^{\infty}=\frac{271.8}{2}=135.9 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}\left(\lambda^{\infty}{ }_{\text {eq }}=\frac{\lambda_{M}^{\infty}}{\text { n.factor }}\right)
\end{aligned}
$$

32. For $\mathrm{BCl}_{3}, \mathrm{AICl}_{3}$ and GaCl_{3} te increasing order of ionic character is
(A) $\mathrm{BCl}_{3}<\mathrm{AlCl}_{3}<\mathrm{GaCl}_{3}$
(B) $\mathrm{GaCl}_{3}<\mathrm{AlCl}_{3}<\mathrm{BCl}_{3}$
(C) $\mathrm{BCl}_{3}<\mathrm{GaCl}_{3}<\mathrm{AlCl}_{3}$
(D) $\mathrm{AlCl}_{3}<\mathrm{BCl}_{3}<\mathrm{GaCl}_{3}$

Ans: (C)
Hints : Ionic character is inversely proportional to polarising powe of cation.
$\mathrm{AlCl}_{3}>\mathrm{GaCl}_{3}>\mathrm{BCl}_{3}$
33. At $25^{\circ} \mathrm{C}, \mathrm{pH}$ of a $10^{-8} \mathrm{M}$ aqueous KOH solution will be
(A) 6.0
(B) 7.02
(C) 8.02
(D) 9.02

Ans: (B)
Hints: $[\mathrm{OH}]_{\text {Totala }}=\left(10^{-8}+10^{-7}\right) \mathrm{M}$

$$
\therefore \mathrm{P}^{\mathrm{OH}}=-\log \left[10^{-8}+10^{-7}\right]
$$

$$
\sim 6.98
$$

$$
\therefore \mathrm{pH}=14-6.98=7.02
$$

34. The reaction of nitropruss de anion with sulphide ion gives purple colouration due to the formation of
(A) the tetranionic complex of iron(II) coordinating to one NOS- ion
(B) the dianionic complex of iron (II) coordinating to one NCS- ion
(C) the trianionic complex of (III) coordinating to one NOS- ion
(D) the tetranionic complex of iorn (III) coordinating to one NCS- ion

Ans: (A)
Hints : $\mathrm{Na}_{2} \mathrm{~S}+\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right] \longrightarrow \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
Sod. Nitroprusside Violet color
$\left[\mathrm{Fe}^{+2}(\mathrm{CN})_{5}{ }^{-5} \mathrm{NoS}\right]^{-4} \Rightarrow$ Tetra anionic complex of iron (II) co-ordinating to one NOS- ion
35. An optically active compound having molecular formula $\mathrm{C}_{8} \mathrm{H}_{16}$ on ozonolysis gives acetone as one of the products. The structure of the compound is
(A)

(B)

(C)

(D)

Ans: (B)

optically active compound

36. Mixing of two different ideal gases under istohermal reversible condition will lead to
(A) inccrease of Gibbs free energy of the system
(B) no change of entropy of the system
(C) increase of entropy of the system
(D) increase of enthalpy of the system

Ans: (C)
Hints: During mixing, $\Delta \mathrm{s}_{\text {mix }}$ is always positve
37. The ground state electronic configuration of CO molecule is
(A) $1 \sigma^{2} 2 \sigma^{2} 1 \pi^{4} 3 \sigma^{2}$
(B) $1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2} 1 \pi^{2} 2 \pi^{2}$
(C) $1 \sigma^{2} 2 \sigma^{2} 1 \pi^{2} 3 \sigma^{2} 2 \pi^{2}$
(D) $1 \sigma^{2} 1 \pi^{4} 2 \sigma^{2} 3 \sigma^{2}$

Ans: (A)

E.C for $\mathrm{CO}: 1 \sigma^{2} 2 \sigma^{2} 1 \sigma^{4} 3 \sigma^{2}$
38. When aniline is nitrated with nitrating mixturte in ice cold condition, the major product obtained is
(A) p-nitroaniline
(B) 2,4-dinitroaniline
(C) o-nitroaniline
(D) m-nitroaniline

Ans: (A)

Hints:

39. The measured freezing point depression for a 0.1 m aqueous CH 3 COOH solution is $0.19^{\circ} \mathrm{C}$. The acid dissociation constant K_{a} at this concentration will be (Given K_{f}, the molal cryoscopic constant $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
(A) 4.76×10^{-5}
(B) 4×10^{-5}
(C) 8×10^{-5}
(D) 2×10^{-5}

Ans: (B)
Hints: $\Delta T_{f}=i \times k_{f} \times m$
$i=\frac{0.9}{1.86 \times 0.1}=1.02$
$\alpha=\frac{i-1}{n-1}=\frac{0.02}{1}=2 \times 10^{-2}$
$k_{a}=c \alpha^{2}=1 \times 10^{01} \times\left(2 \times 10^{-2}\right)^{2}=4 \times 10^{-5}$
40. The ore chromite is
(A) $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
(B) $\mathrm{CoCr}_{2} \mathrm{O}_{3}$
(C) $\mathrm{CrFe}_{2} \mathrm{O}_{4}$
(D) $\mathrm{FeCr}_{2} \mathrm{O}_{3}$

Ans: (A)
Chromite ore is $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
41. 'Sulphan' is
(A) a mixture of SO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{5}$
(B) 100% conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) a mixture of gypsum and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) 100% oleum (a mixture of $100 \% \mathrm{SO}_{3}$ in $100 \% \mathrm{H}_{2} \mathrm{SO}_{4}$)

Ans: (D)
Hints : Sulphan is pure liquid SO_{3}
42. Pressure-volume (PV) work done by an ideal gaseous system at constant volume is (where E is internal energy of the system)
(A) $-\Delta \mathrm{P} / \mathrm{P}$
(B) Zero
(C) $-\mathrm{V} \Delta \mathrm{P}$
(D) $-\Delta \mathrm{E}$

Ans: (B)
Hints: From 1st law of thermodynamic

$$
\Delta E=q+w . \text { Now } w=P \Delta V \text {. for } \Delta v=0
$$

$$
\mathrm{w}=0
$$

43. Amongst $\left.[\mathrm{NiCl})_{4}\right]^{--},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right],\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{--}$, the paramagnetic species are
(A) $\left[\mathrm{NiCl}_{4}\right]^{--},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(B) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right],\left[\mathrm{NiCl}_{4}\right]^{2-}$
(C) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{NiCl}_{4}\right]^{2-}$
(D) $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right],\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Ans: (A)
Hints: $\mathrm{Ni}^{+2}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$
(i) $\left[\mathrm{NiCl}_{4}\right]^{2-} \mathrm{Cl}^{-}$weak I gand (spectrochemical series), so no pairing possible CFSE $<$ Pairing energy)
(ii) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \mathrm{H}$ O weak field ligand. So no pairing possible. CFSE < pairing energy)
(iii) $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ alough. PPh_{3} has d-acceptance but presence of Cl makes complext ahedral.
44. Number of hydrogen ions present in 10 millionth part of $1.33 \mathrm{~cm}^{3}$ of pure water at $25^{\circ} \mathrm{C}$ is
(A) 6.023 million
(B) 60 milli n
(C) 8.01 million
(D) 80.23 million

Ans: (C)
Hints:
so, no of H^{+}ions $=1.33 \times 10^{-17} \times \mathrm{N}_{\mathrm{A}}$
45. Ribose and 2-deoxyribose can be differentiated by
(A) Fehling's reagent
(B) Tollens's reagent
(C) Barfoed's reagent
(D) Osazone formation

Ans: (D)

$$
\begin{aligned}
& \text { Now }\left[\mathrm{H}^{+}\right]=10^{-7} \text { mole / litre } \\
& \text { Now } 1000 \mathrm{ml} \text { contains } 10^{-7} \text { mole. } \mathrm{H}^{+} \\
& 1 \mathrm{ml} \text { " " } \frac{10^{-7}}{1000} \text { moleH }^{+} \\
& 1.33 \times 10^{-7} \mathrm{ml} \text { - " } 1.33 \times 10^{-17} \\
& 10 \text { million }=10^{-7} \\
& \text { so, } 10 \text { million th } \text { part of } 1.33 \mathrm{~cm}^{3} \\
& =1.33 \times 10^{-7} \mathrm{ml}
\end{aligned}
$$

In deoxyribose, one-OH group is missing, which will prevent the formation of osazone.
CATEGORY - II
Q. 46 - Q. 55 carry two marks each, for which only one option is correct. Any wrong answer will lead to deduc tion of 2/3 mark
46. The standard Gibbs free energy change $\left(\Delta G^{0}\right)$ at $25^{\circ} \mathrm{C}$ for the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ to $\mathrm{NO}_{2}(\mathrm{~g})$ is (given, equilibriurn constant $=0.15, \mathrm{R}=8.314 \mathrm{JK} / \mathrm{mol}$)
(A) 1.1 kj
(B) 4.7 kj
(C) 8.1 kj
(D) 38.2 kj

Ans: (B)
Hints : $\Delta G^{0}=-$ RTInk
47. Bromination of PhCOMe in acetic acid medium produces mainly
(A)

(B)

(C)

(D)

Ans: (D)
Hints : Reaction in acid media proceeds upto m nob omination stage.
48. Silicone oil is obtained from the hydrolysis and polymerisation of
(A) trimethylchlorosilane and dimethydich orosilane
(B) trimethylchlorosilane and methyl richlorosilane
(C) methyltrichlorosilane and dime hy dichlorosilane
(D) triethylchlorosiland and diethyldichl rosilane

Ans: (A)
Hints : Silicone oils are formed on low degree of polymerisation
49. Treatment of
 with $\mathrm{NaNH}_{2} /$ liq. NH_{3} gives
(A)

(B)

(C)

(D)

Ans: (D)

Hints : Reaction proceeds via benzyne mechanism with intermediate as

50. Identify the CORRECT statement
(A) Quantum numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m}, \mathrm{s}$) are obtained arbitrarily
(B) All the Quantum numbers ($\mathrm{n}, \mathrm{I}, \mathrm{m}, \mathrm{s}$) for any pair of electrons in an atom can be idential under special circum stance
(C) all the quantum numbers ($\mathrm{n}, \mathrm{I}, \mathrm{m}, \mathrm{s}$) may not be required to described an electron of an atom completely
(D) All the quantum numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m}, \mathrm{s}$) are required to describe an electron of an atom completely

Ans: (D)
Hints: Fact
51. In borax the number of $\mathrm{B}-\mathrm{O}-\mathrm{B}$ links and $\mathrm{B}-\mathrm{OH}$ bonds present are, respectively,
(A) Five and four
(B) Four and five
(C) Three and four
(D) Five and five

Ans: (A)

Hints :

52. Reaction of benzene with $\mathrm{Me}_{3} \mathrm{COCl}$ in the presence of anhydrous AlCl_{3} gives
(A)

(B)

(C)

(D)

Ans: (B)
Hints : It is because of rearrangemen during which initially formed acyl cation loses CO to form stable tertiary butyl cation
53. 1×10^{-3} mole of HCl is added t a buffer solution made up of 0.01 M acetic and 0.01 M sodium acetate. The final pH of the buffer will be (given, pK_{a} of acetic acid is 4.75 at $25^{\circ} \mathrm{C}$)
(A) 4.60
(B) 4.66
(C) 4.75
(D) 4.8

Ans: (B)
Hints :

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{COO}^{-} & +\underset{0.001}{\mathrm{H}^{+}} \rightarrow \underset{3}{\mathrm{CH}_{3} \mathrm{COOH}} \\
0.01 & 0.01 \\
0.01-0.001 \\
=0.009 & & \\
0.01+0.001 \\
& & =0.011
\end{array} \\
& \mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { acid }]}=4.75+\log \frac{0.009}{0.011}=4.66
\end{aligned}
$$

54. The best method for preparation of $\mathrm{Me}_{3} \mathrm{CCN}$ is
(A) To react $\mathrm{Me}_{3} \mathrm{COH}$ with HCN
(B) To react $\mathrm{Me}_{3} \mathrm{CBr}$ with NaCN
(C) To react $\mathrm{Me}_{3} \mathrm{CMgBr}$ with ClCN
(D) To react $\mathrm{Me}_{3} \mathrm{CLi}$ with $\mathrm{NH}_{2} \mathrm{CN}$

Ans: (C)
Hints: It's a $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reaction where $\mathrm{Me}_{3} \mathrm{C}-\mathrm{MgBr}+\mathrm{Cl}-\mathrm{CN} \rightarrow \mathrm{Me}_{3} \mathrm{C}-\mathrm{CN}+\mathrm{Mg}(\mathrm{Cl}) \mathrm{Br}$
55. On heating, chloric acid decompose to
(A) $\mathrm{HClO}_{4}, \mathrm{Cl}_{2}, \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{HClO}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{HClO}, \mathrm{Cl}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$
(D) $\mathrm{HCl}, \mathrm{HClO}, \mathrm{Cl}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$

Ans: (A)
Hints: Fact

CATEGORY - III

Q. 56 - Q. 60 carry two marks each, for which one or more than one options may be correct. Marking of correct options will lead to a maximum mark of two on pro rata basis. There will be no negative marking for these questions. However, any marking of wrong option will lead to award of zero mark against the respective question-irrespective of the number of correct options marked.
56. Consider the following reaction for $2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})$. The expression for the rate of reaction interms of the rate of change of partial pressures of reactant and product is/are
(A) rate $=-1 / 2\left[d p\left(\mathrm{NO}_{2}\right) / \mathrm{dt}\right]$
(B) rate $=1 / 2\left[d p\left(\mathrm{NO}_{2}\right) / \mathrm{dt}\right]$
(C) rate $=-1 / 2\left[\mathrm{dp}\left(\mathrm{NO}_{2} \mathrm{~F}\right) / \mathrm{dt}\right]$
(D) rate $=1 / 2\left[d p\left(\mathrm{NO}_{2} \mathrm{~F}\right) / d t\right]$

Ans: (A, D)
Hints: Fact
57. Tautomerism is exhibited by
(A)
$\left(\mathrm{Me}_{3} \mathrm{CCO}\right)_{3} \mathrm{CH}$
(B)

(C)

(D)

Ans: (A, B, D)

Hints:

Availability of acidic $\alpha \mathrm{H}$-atoms at these positions(shown by arrow marks) enable the compounds to show keto-enol tautomerism
58. The important advantage(s) of Lintz and Donawitz (L.D.) process for the manufacture of steel is (are)
(A) The process is very quick
(B) Operating costs are low
(C) Better quality steel is obtained
(D) Scrap iron can be used

Ans: (A, C, D)
Hints: Fact
59. In basic medium the amount of Ni^{2+} in a solution can be estimated with the dimethylglyoxime reagent. The correct statement(s) about the reaction and the product is(are)
(A) In ammoniacal solution Ni^{2+} salts give cherry-red precipitate of nickel (II) dimethylglyoximate
(B) Two dimethylglyoximate units are bound to one Ni^{2+}
(C) In the complex two dimethylglyoximate units are hydrogen bonded to each other
(D) Each dimethylglyoximate unit forms a six-membered chelate ring with Ni^{2+}

Ans: (A, B, C)

Hints:

60. Correct statement(s) in cases of n-butanol and t-butanol is (are)
(A) Both are having equal solubility in water
(C) Boiling point of t-butanol is lower than n-butanol

Ans: (B, C)
Hints : More branching means less boiling point and high solubility

