M. Tech

2) CHEMICAL ENGINEERING G.S. CH

Syllabus & Model Question Paper

Syllabus

1. Process Calculations: Units and Standards, material and energy balance, humidity and saturation and combustion.

2. Fluid Mechanics: Fluid statics, incompressible flow through conduits, flow meters, flow past immersed bodies, transportation of fluids.

3. Mechanical Operations: Size analysis, reduction and separation, filteration, agitation and material handling.

4. Thermodynamics: First and Second law of thermodynamics, PVT relations, thermodynamic relations, phase equilibria and reaction equilibria.

5. Heat Transfer: Conduction, convection, heat exchangers, steady and unsteady state heat transfer and radiation.

6. Mass Transfer: Diffusion, convective mass transfer, gas liquid contactors, distillation, absorption, adsorption, leaching, drying, evaporation, crystallization.

7. Reaction Kinetics: Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.

8. Process Control: Measurement of process variables; sensors, transducers and their dynamics, dynamics of simple systems, dynamics such as CSTRs, transfer functions and responses of simple systems, process reaction curve, controller modes (P, PI, and PID); control valves; analysis of closed loop systems including stability, frequency response (including Bode plots) and controller tuning, cascade, feed forward control.

9. Pollution Control Engineering: Waste Water Treatment, Air pollution treatment, Solid Waste Treatment, Noise Control.

10. Process Industries: Water, Industrial Gases: Co₂, H₂, O₂, N₂, Water Gas, and shift Gas, Sulfur: SO₂, SO₃, Acids: Surfuic, Hydrochloric and Phosporic Acids. Fertilizers: Ammonia, Urea, Ammoniam Chloride, Ammoniam Nittrate, Ammoniam Phosphate, Ammoniam Sulfate, DAP, Concept of Sustained and Solubilised Fertilizer and Formulation, Potash Fertilizers, Bio-Fertilizers. Coal tar distillation and Chemicals from coal. Oils, Fats, and Waxes, Soaps and Pulp and Paper, Sugar and Starch Industries, Fermatation Industried, Peroleum Industries – Constituts of crude petroleum, refining and processing, polymers and Rubber.

MODEL QUESTIONS

CHEMICAL ENGINEERING

PART - I

Each question carries One Mark 50 x 1 = 50 Marks

- 1) Reynolds number is the ratio of
 - a) Viscous forces to gravity forces
 - b) Inertial forces to viscous forces
 - c) Viscous forces to inertial forces
 - d) Inertial forces to gravity forces
- 2) Heat transfer co-efficient (h_i) for liquids increases with
 - a) Increasing temperature

b) Decreasing temperature

c) Decreasing Reynolds number

- d) None of these
- 3) Black liquor is converted into the white liquor by
 - a) Evaporation and burning the concentrate followed by causticization of products
 - b) Multi effect evaporation only
 - c) Selective liquid extraction
 - d) Extractive distillation
- 4) In the equation, A = U TS, A is defined as
 - a) Gibb's free energy
- b) Helmoltz free energy
- c) Both a and b
- d) None of the above
- 5) Which of the following acts as a homogeneous system
 - a) Water + Steam

b) Ice + Steam

c) Water + Nitric acid

d) None of the above

PART - II

Each question carries two Marks

 $25 \times 2 = 50 \text{ Marks}$

- 1) Substances A and B form an ideal solution. The Vapour pressures of A and B at a certain temperature are 1000 and 500 mm Hg respectively. The concentration of A in liquid and vapour phase in equilibrium at 750mm Hg total pressure are :
 - a) 0.67, 0.5
- b) 0.5, 0.67
- c) 0.67, 0.75
- d) 0.75, 0.67

	reached using an equ	A reversible reaction A+B= C+D is conducted in a vessel until equilibrium is ched using an equimolar mixture of A and B. The equilibrium constant is 1. e content of C in final product is				
	a) 33.3%	b) 25%	c) 50%	d) 75%		
	4) The Temperatures across an insulation layer of thickness 15mm are 40 and 3 0 C respectively. The thermal conductivity of the material at these emperatures is 0.045 W/m-K. The cross sectional area of wall is 2 m ² . The heat lux across the layer in W/m ² is					
	a) 2.4	b) 12	c) 1.2	d) 24		
5) The power in k W required to crush 100 tph of a solid, if 80% of feed p through a 49 mm screen, 80% of product passes through a 4 mm screen work index = 14 is						
	a) 15.81	b) 31.62	c) 316.2	d) 158.1		

2) In an evaporator 2400 kg of water is evaporated so that the solution is concentrated from 10 to 25 % solids. What is the weight of original solution in kg?

c) 3600

d) None of these

b) 4400

a) 4000