CHAPTER - 1

BINARY SYSTEM

Base Conversion: A number $a_{n}, a_{n-1} \ldots a_{2}, a_{1} a_{0} \cdot a_{-1} a_{-2} a_{-3} \ldots$ expressed in a base r system has coefficient multiplied by powers of r.

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}} \mathrm{r}^{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} \mathrm{r}^{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2} \mathrm{r}^{\mathrm{n}-2}+\ldots+\mathrm{a}_{1} \mathrm{r}+\mathrm{a}_{0}+\mathrm{a}_{-1} \mathrm{r}^{-1}+\mathrm{a}_{-2} \mathrm{r}^{-2}+\mathrm{a}_{-3} \mathrm{r}^{-3}+\ldots \tag{A}
\end{equation*}
$$

Coefficients a_{j}; range from 0 to $\mathrm{r}-1$

Key Points:

To convert a number of base r to decimal is done by expanding the number in a power series as in (A) Then add all the terms.
Example 1: Convert following Binary number (11010.11)2 in to decimal number.

Solution:

Base $\mathrm{r}=2$
$1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}$
$(11010.11)_{2}=(26.75)_{10}$
Example 2: Convert (4021.2) $)_{5}$ in to decimal equivalent
Solution: $4 \times 5^{3}+0 \times 5^{2}+2 \times 5^{1}+1 \times 5^{0}+2 \times 5^{-1}$
$=(511.4)_{10}$
Example 3: Convert (127.4) $)_{8}$ in to decimal equivalent.
Solution: $1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+4 \times 8^{-1}$
$=(87.5)_{10}$

Numbers with Different bases:

Decimal $(\mathrm{r}=10)$	Binary $(\mathrm{r}=2)$	Octal $(\mathrm{r}=8)$	Hexadecimal $(\mathrm{r}=16)$
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4

28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com © 2011 ENGINEERS INSTITUTE OF INDIA ${ }^{\circledR}$. All Rights Reserved

STUDENT COPY
DIGITAL \& MICROPROCESSORS

05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Example 4: Convert following hexadecimal number into decimal number: (B65F) ${ }_{16}$

Solution:

$$
11 \times 16^{3}+6 \times 16^{2}+5 \times 16^{1}+15 \times 16^{0}=(46.687)_{10}
$$

Conversion of decimal number to a number in base r :

- Separate the number into an integer part and fraction part.
- Divide the number and all successive quotients by r and accumulating the remainders.
- Conversion of decimal fraction is done by multiplying the fraction and all successive fraction and integers are accumulated.
Example 1: Convert decimal number 41 to binary.

Solution:

Integer quotient

$41 / 2$	$=$	20	+
$20 / 2$	$=$	10	+
$10 / 2$	$=$	5	+
$5 / 2$	$=$	2	+
$2 / 2$	$=$	1	+
$1 / 2$	$=$	0	+

Remainder

1
0
0
1
0
1

Coefficient

$$
\begin{aligned}
& \mathrm{a}_{0}=1 \\
& \mathrm{a}_{1}=0 \\
& \mathrm{a}_{2}=0 \\
& \mathrm{a}_{3}=1 \\
& \mathrm{a}_{4}=0 \\
& \mathrm{a}_{5}=1
\end{aligned}
$$

$$
(101001)_{2}
$$

$(41)_{10} \rightarrow(101001)_{2}$

Example 2: Convert (153) ${ }_{10}$ to octal.

Solution:

Required base r is 8 .
153 are divided by 8 to give integer quotient of 19 and remainder 1 . Then 19 are divided by 8 to give integer quotient of 2 and remainder 3 . Finally 2 are divided by 8 to give quotient of 0 and remainder of 2 .

Thus $\quad(153)_{10} \rightarrow(231)_{8}$
Example 3: Convert (0.6875) ${ }_{10}$ to Binary.
Solution: 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is multiplied by 2 to give a new integer and new fraction.
This process is continuing until the fraction becomes zero or until the numbers of digits have sufficient accuracy.

		Integer		Fraction	Coefficient
0.6875×2	$=$	1	+	0.3750	$\mathrm{a}_{-1}=1$
0.3750×2	$=$	0	+	0.7500	$\mathrm{a}_{-2}=0$
$0.7500 \times 2=$	1	+	0.5000	$\mathrm{a}_{-3}=1$	
$0.500 \times 2=$	1	+	0.0000	$\mathrm{a}_{-4}=1$	

Example 4: Convert (0.513) 10 to octal.

Solution:

0.513×8	$=$	4	+	0.104	$\mathrm{a}_{-1}=4$
0.104×8	$=$	0	+	0.832	$\mathrm{a}_{-2}=0$
0.832×8	$=$	6	+	0.656	$\mathrm{a}_{-3}=6$
0.656×8	$=$	5	+	0.248	$\mathrm{a}_{-4}=5$
0.248×8	1	+	0.984	$\mathrm{a}_{-5}=1$	
0.984×8	$=$	7	+	0.872	

Answer to seven significant figures is:
(0.406517...) $)_{8}$

Thus $\quad(0.513)_{10} \rightarrow(0.406517)_{8}$
$(41.6875)_{10} \rightarrow(101001.1011)_{2}$
$(153.513)_{10} \rightarrow(231.406517)_{8}$
28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com

STUDENT COPY

Octal and hexadecimal numbers:

Conversion from binary to octal is easily done by partitioning the binary number into groups of 3 digits each starting from binary point \& proceeding to left and to the right.

The corresponding octal digit is then assigned to each group.
For conversion into hexadecimal, binary number is divided into group of 4 digits.
Example:
Thus binary number is

$$
(010110001101011.11110011000)_{2}
$$

Example 5: Convert binary to hexadecimal number:

$$
(10110001101011.11110010)_{2}
$$

$$
0010110001101011.11110010
$$

$$
2 \begin{array}{lllll}
2 & \text { C } & 6 & \text { B } & \text { F }
\end{array}
$$

Example 6: (673.124) $)_{8}$ to binary number:

$$
(673.124)_{8} \equiv(110111011 \cdot 001010100)_{2}
$$

$$
\begin{array}{llllll}
6 & 7 & 3 & 1 & 2 & 4
\end{array}
$$

(306.D) ${ }_{16}$ to binary number:

$$
\left.\begin{array}{c}
(306 . D)_{16} \equiv(00110000 \\
3
\end{array} 0110 \quad 11101\right)_{2}
$$

Note: In communication, octal or hexadecimal represented is more desirable because it can be expressed more compactly with a third or a quarter of the number of digits required for the equivalent binary number.

Complements: Complements are used in digital computer for simplifying the subtraction operations and for logic manipulation.

There are 2 types of complements for each base r system

1. Radix complements (r's complement)
2. Diminished radix complement ($(\mathrm{r}-1)$'s complement
3. Diminished radix complement:

- Given a number N in base r having n digits, the $\left(\mathrm{r}-1\right.$)'s complement of N is defined as $\left(\mathrm{r}^{\mathrm{n}}-1\right)$ N .
- For decimal number $\mathrm{r}=10,(\mathrm{r}-1)$'s complement or 9 's complement of N is N .

9's complement: ($\mathbf{1 0}^{\text {n }} \mathbf{- 1}$) - N

- 10^{n} can be represented as single 1 followed by n 0 's
- $10^{\mathrm{n}}-1$ is number represented by n 9 's.
- Thus 9's complement can be obtained by subtracting each digit of number N by 9 's.

Example 7: Find 9's complement of 546700

Solution:

$999999-546700=453299$
9's complement of 546700 is 453299

1's Complement for binary number:

- It is given as $\left(2^{\mathrm{n}}-1\right)-\mathrm{N}$
- 2^{n} can be representing as binary number consist of single 1 followed by n 0 's.
- $2^{\mathrm{n}}-1$ can be represented as n 1 's.

Example 8: $2_{4} \rightarrow 10000$

$$
24-1 \rightarrow(1111)_{2}
$$

- Thus 1's complement can be obtained as $\left(2^{n}-1\right)-N$ or subtracting each digit of number from 1.

Example 9: 1's complement of 1011000.
Solution: $1111111-1011000=0100111$
Note: It is similar to changing 1's to 0 's and 0 's to 1 or complement each digit of number is similar to taking 1's complement of the number.
Note: $(\mathrm{r}-1$)'s complement of octal or hexadecimal number is obtained by subtracting each digit from 7 and F respectively.

Example 10: Obtain 15's complement of number (3241) ${ }_{16}$
Solution: Subtracting each digit of number from FFFF:
FFFF
-3241
C DBE
15 's complement is (CDBE) ${ }_{16}$.

(ii) Radix Complement:

r 's complement of n digit number N in base r is defined as $\mathrm{r}^{\mathrm{n}}-\mathrm{N}$ for $\mathrm{N} \neq 0$ \& 0 for $\mathrm{N}=0$
It is equivalent to adding 1 to $(r-1)$'s complement.
If ($r-1$)'s complement is given, r 's complement can be obtained.
Example: Find r's complement of 546700 if its 9's complement is 453299 .

Solution: r's complement is $453299+1$

$$
\text { r's complement }=453300
$$

Example 11: 2's complement of 1010110 is:
Solution: 1's complement: complement each digit of number (1010110) $\rightarrow(0101001)_{2}$
Thus 2's complement is $0101001+1$
2 's complement $=(0101010) 2$

Another Method to Obtain 10, 2's Complement:

Leaving all least significant 0's unchanged, subtracting the first non-zero least significant digit from 10 and subtracting all higher significant digits from 9 .

Example 12: Find 10's complement of 012398.

Solution:

1. Subtract 8 from 10 in the least significant position
2. Subtracting all other digits from 9 .

9999910
-012398
987602
Thus 10 's complement of 012398 is 987602 .
Example: 13 10's complement of 246700.
Solution: Leaving 2 least significant 0 's unchanged, subtracting 7 from 10 and other 3 digits from 9 .

$$
\begin{array}{r}
9991000 \\
-246700 \\
\hline 753300
\end{array}
$$

Thus 10 's complement of 246700 is 753300
Similarly 2's complement can be formed by leaving all least significant 0 's and first 1 unchanged and replacing 1's with 0 's and 0 's with 1 's in all other higher significant digits.
Example 14: 2's complement of (1101100) $)_{2}$:
Solution: $\underbrace{1101100}_{\text {Reverse all digits }} \begin{aligned} & 100 \\ & \text { Remain unchanged } \\ & \text { Remanged }\end{aligned}$

0010100

Thus 2's complement of 1101100 is $(0010100)_{2}$

Subtraction with complement:

1. Convert subtrahend N to r's complement.
2. Then add to the minuend M.
3. If $\mathrm{M} \geq \mathrm{N}$, sum will produce end carry, which can be discarded, what is left is the result, $\mathrm{M}-\mathrm{N}$.
4. If $\mathrm{M}<\mathrm{N}$, sum does not produce carry and is equal to $\mathrm{r}^{\mathrm{n}}-(\mathrm{N}-\mathrm{M})$, which is same as r 's complement of $(\mathrm{N}-\mathrm{M})$.
5. To take the answer in familiar form, take the r's complement of the sum and place a negative sign in front.

Example 15: Using 10's complement, subtract 72532-3250
Solution:

$$
\mathrm{M}=72532
$$

$\mathrm{N}=03250$
10 's complement of $\mathrm{N}=96750$
Sum: 72532
$+96750$
169282
Discard end carry as M > N so result: 69282
Example 16: Using 10's complement, subtract 3250 - 72532
Solution: $\quad \mathrm{M}=3250$

$$
\mathrm{N}=72532
$$

10 's complement of 72532 is

$$
999910
$$

-72532
10's complement 27468
Sum: 3250
$\underline{27468}$
Sum 30718
Since $\mathrm{N}>\mathrm{M}$ so no end carry.
Therefore answer is $-(10$'s complement of 30718 $)=-69282$
Example 16: Subtract 1010100-1000011
Solution: 2's complement of N (1000011)=0111101
Sum: 1010100

28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com © 2011 ENGINEERS INSTITUTE OF INDIA ${ }^{\circledR}$. All Rights Reserved

$$
\begin{array}{r}
+0111101 \\
10010001
\end{array}
$$

So result is 0010001
Example 17: Subtract: 1000011 - 1010100
Solution: 2's complement of $1010100 \rightarrow 0101100$
Sum: 1000011
$+0101100$
1110111
There is no end carry. Therefore, answer is - (2's complement of 1101111)
$=-0010001$
Note: Subtraction can also be done using ($\mathrm{r}-1$)'s complement.
Signed Binary numbers: When binary number is signed, left most bit represents the sign and rest of bits represent the number.

- If binary number is unsigned, then left most bits is the most significant bit of the number.
- Positive or Negative can be represented by (0 or 1) bit which indicate the sign.

Example 19: String of bits 01001 can be considered as 9 (unsigned binary) or +9 (signed binary) because left most bits are 0 .

Example 20: String of bits 11001 represent 25 when considered as unsigned number or -9 when considered as signed number.

Negative number representation:

(i) Signed magnitude representation: In this representation number consist of a magnitude and a symbol (+ or -) or bit (0 or 1) indicating the sign. left most bit represents sign of a number.
$\mathrm{E} \xi .: 11001 \rightarrow-9$
$01001 \rightarrow+9$
(ii) Signed complement system:

- In this system, negative number is indicated by its complement.

It can use either 1's or 2's complement, but 2's complement is most common.
Note:

1. 2 's complement of positive number remain number itself.
2. In both signed magnitude \& signed complement representation, the left most significant bit of negative numbers is always 1 .

Example: $\quad+9$ ® 00001001
$-9{ }^{8} 11110111$ (2 's complement of +9)

28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com
© 2011 ENGINEERS INSTITUTE OF INDIA ${ }^{\circledR}$. All Rights Reserved

Note: Signed complement of number can be obtained by taking 2's complement of positive number including the sign bit.

- Signed magnitude system is used in ordinary arithmetic, can not employed in computer arithmetic because of separate handling of the sign and the magnitude.
- In computer arithmetic signed complement system is used to represent negative numbers.

Decimal	Signed 2'Complement	Signed 1's complement	Signed magnitude
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1100	1100	1011
-4		1011	1100

Arithmetic addition:

- Addition in signed magnitude system follows rules of ordinary arithmetic.
- EX. : $+25+-37=-37+25=-12$
- Thus In this, comparison of sign and magnitude and them performing either addition or subtraction.
- But in signed complement system, only addition, it does not require comparison \& subtraction.
- In signed complement system, negative numbers are represents in 2 's complement form and then addition to other number including their sign bits.
Example: $+600000110 \quad-6 \quad 11111010$ (2's complement)

+13	00001101	+13	00001101
+19	00010011	+7	100000111
+6	00000110	-6	11111010
-13	11110011	-13	11110011
-7	111111001	-19	11101011

[Left significant bit is 1 so number is negative, number will be -(2's complement of 111111001)

$$
=-(000000111)=-7
$$

28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com
© 2011 ENGINEERS INSTITUTE OF INDIA ${ }^{\circledR}$. All Rights Reserved

STUDENT COPY

Number will be: $-(2$'s complement of 11101011 $)=-(00010101)=-(19)$
Note: If result of sum is negative, then it is in 2's complement form.
The left most significant bit of negative numbers is always 1 .

- If we use signed complement system, computer needs only one hardware circuit to handle both arithmetic (signed \& unsigned), so generally signed complement system is used.

Binary Codes:

Any discrete element of information distinct among a group of quantities can be represented with a binary code.

- n bit binary code is a group of n bits that have 2 n distinct combinations of 1 's and 0 's with each combination representing one element of the set that is being coded.
Example: With 2 bits $2^{2}=4$ elements can be coded as: 00, 01, 10, 11
With 3 bits $2^{3}=8$ elements can be coded as:
$000,001,010,011,100,101,110,111$
- Minimum number of bits required to code 2^{n} distinct quantities in n .
- The bit combination of an n bit code is determined from the count in binary from 0 to $2^{\mathrm{n}}-1$.

Example: 3 bit combination
000 0
$001 \quad 1$
$010 \quad 2$
0113
$100 \quad 4$
1015
$110 \quad 6$
$111 \quad 7$
BCD code:

Binary coded decimal

- A number with k decimal digits require 4 K bits in BCD .
- A decimal number in BCD is same as its equivalent binary number only when number is between 0 to 9 .
- BCD number needs more bits that its equivalent binary.
- Example: $(185)_{10}=(000110000101)_{\mathrm{BCD}}=(1011101)_{2}$
- In BCD number, each bit is represented by its equivalent binary representation.

28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com
© 2011 ENGINEERS INSTITUTE OF INDIA ${ }^{\circledR}$. All Rights Reserved

Note: BCD numbers are decimal numbers and not binary numbers, although they use bits in their representation.

- Decimal are written as $0,1,2,3, \ldots, 9$ which BCD can be written as : $0000,0001,0010,0011, \ldots$, 1001

Benefits of BCD:-

- BCD helps to do arithmetic operation directly on decimal numbers without converting them into equivalent binary numbers.

Decimal system	BCD digits	Binary equivalent
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	1000	0111
8	1001	1000
9	00010000	1001
10	00010001	1011

BCD addition:

- If binary sum is equal to or less than 1001 (without a carry), the corresponding BCD digit is correct.
- If binary sum ≥ 1010, the result is an invalid BCD digit.
- Addition of $6=(0110)_{2}$ to the binary sum converts it to the correct digit and also produces a carry as required.

Example:	4		0100	4		0100	8	1000
+5		$\underline{+0101}$	+8		$\underline{+1000}$	$\underline{+9}$	+1001	
9		1001	12		1100	17	10001	
					$\underline{+0110}$		0110	
					10010		10111	

Example: Add $184+576$ in BCD.

Solution:	1	1			
	0001		1000	0100	184
	$\underline{0101}$		$\underline{0111}$	$\underline{0110}$	$\underline{+576}$
Binary sum0111		10000	1010		
Add 6		$\underline{0110}$	$\underline{0110}$		
BCD sum 0111	0110	0000			
	7	6	0	760	

The first least significant pair of BCD digits produces a BCD digits sum of 0000 and carries for the next pair of digits. The second pair of (BCD digits + carry) produces digit sum of 0110 and carry for next pair of digits. The third pair of digits plus carry produces binary sum of 0111 and does not require a correction.

- Representation of Signed decimal numbers in BCD is similar to the representation of signed number in binary.
- Sign of decimal number is represented with 4 bits:

Positive number: ‘ 0000 ’ (0)
Negative number - '1001' (9)
Example: Do the following in BCD system:

$$
(+375)+(-240)
$$

Solution: $\quad+375$ can be represented as 0375
-240 in 10 's complement form can be represented as 9760
Put to represent negative number.
$+0375$
-9760
10135 in which 1 can be discarded.
Thus result is 0135 .
0 is representing that number is positive.

Other Decimal codes:

Many different codes can be formulated by arranging 4 bits in 10's distinct possible combination.

- Each code shown uses 10 bit combination out of 16 bit combinations.
- BCD \& 2421 codes are example of weighted codes.

4 Different Binary codes for the decimal digits:

- The 2421 and excess 3 code are example of self complementing codes. These are having property that 9 's complement can be directly obtained by changing 1 's to 0 's and 0 's to 1 's.
- BCD code is not self complementing (or reflective code).
- Self complementing codes are also called reflective code.

Example: 9's complement of 395 is 604 which can be obtained as 395
$00111001010 \leftarrow$ (BCD)
011011001000 (excess 3 code)
100100110111 (complement 1's)
(This excess 3 code of 604)

Gray code:

In this only one bit in the code group changes when going from one number to the next number.

	Gray code	Binary code
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	0100
5	0111	0101
6	0101	0110
7	0100	0111

- Gray code is used where normal sequence of binary numbers may produce an error during transition from one number to the next.

Example: $0111 \rightarrow 1000$ may produce an intermediate result of 1001 if LSB takes longer to change than other 3bits.

- In gray code, since only 1bit change during transition between 2 numbers, so no such error occurs.

Binary number can be converted to gray code as :

Binary number	Gray code
$a_{4} a_{3} a_{2} a_{1}$	$G_{4} G_{3} G_{2} G_{1}$

- keep MSB a_{4} same i.e. $\mathrm{G}_{4}=\mathrm{a}_{4}$

28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com

