10046 120 MINUTES 1. Which element is the second most abundant on the earth's crust? Carbon A) B) Hydrogen C) Silicon D) Aluminium Which statement is <u>not</u> true? 2. Electro negativity tends to decrease down a representative family A) B) Metal fluorides and – oxides tend to be ionic C) Nitrogen cannot form pentavalent compounds Bonding between atoms becomes more effective with increasing atomic D) size 3. The first noble gas compound obtained was XeF₂ B) XePtF₆ C) XeF₄ D) XeOF₄ 4. Which of the following is carborundum? B) CaC₂ C) SiO₂ D) B_4C Which of the following nuclides is the terminal member of the naturally occurring 5. radioactive series which begins with $^{232}_{90}$ Th? B) ²⁰⁸₈₂Pb C) ²⁰⁶₈₂Pb ²⁰⁹₈₃Bi ²¹⁰₈₃Bi A) D) A typical neutron-initiated fission of 235 U yields $^{97}_{42}$ Mo , two neutrons and an 6. isotope $^{137}_{50}$ Sn B) $^{139}_{54}$ Xe C) $^{140}_{56}$ Ba 140 57 La A) D) A black solid (X), when heated with conc. HCl, gives a greenish yellow gas. When 7. (X) is heated with sodium bismuthate in the presence of H₂SO₄, a purple solution is formed. (X) is likely to be A) PbO₂ B) BaO₂ C) MnO₂ D) Pb₃O₄ 8. The tendency of 3-d metal ions to form stable complexes is due to A) Variable oxidation state B) Strong electronegative nature Very low ionization energies C) High charge to size ratio and vacant d-orbitals D) 9. Choose correct statement with respect to the magnetic properties of K₃[Cr₂Cl₉] and $K_3[W_2Cl_9]$ A) Both are paramagnetic Both are diamagnetic B) C) $K_3[Cr_2Cl_9]$ is paramagnetic and $K_3[W_2Cl_9]$ is diamagnetic $K_3[Cr_2Cl_9]$ is diamagnetic and $K_3[W_2Cl_9]$ is paramagnetic 10. An alloy of Cu, Fe, Ni, Al and Co used as permanent magnet is

Alnico

Pewter

B)

D)

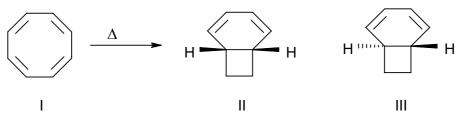
Stellite

Nichrome

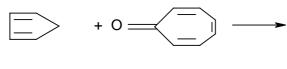
A)

C)

11.	Separa A) C)	Aration of lanthanides by ion-exchange method is based on Size of the hydrated ions Basicity of the hydroxides D) The solubility of their nitrates									
12.	Choose the correct statement with respect to the complex forming ability of actinides A) Actinides will not form complexes B) Actinides are much less prone to complex formation than lanthanides C) Actinides are much more prone to complex formation than lanthanides D) Actinides and lanthanides have comparable complex formation abilities										
13.	Name A) B) C) D)	Bis(thiocyanato)(thiosulphato)platinum(IV) hydrate Aquadi(thiocyanato)(thiosulphato)platinum(IV)									
14.	[Co(N A)	The correct order of stability of the following complexes, (I) $[Ni(NH_3)_6]^{2^+}$, (II) $[Co(NH_3)_6]^{2^+}$ and (III) $[Fe(NH_3)_6]^{2^+}$ is A) I < II < III B) III < II < I C) I < III < III D) II < III < I									
15.	A) B)	2 2 2									
16.	The in A) B) C) D)	intense colour of [Co(en) ₂ Cl ₂] is due to Cl ⁻ to Co ³⁺ charge-transfer transition Co ³⁺ to Cl ⁻ charge-transfer transition d-d transition octahedral geometry of the complex									
17.	The gr A)	round state term sy ³ F B)		n ²⁺ is	C)	2 S		D)	6 S		
18.	of Boh A)	pin-only formula of our Magneton (B.M.) $\mu = \sqrt{n(n+1)}$ $\mu = \sqrt{n(n+2)}$.) and numb B.M.	er of un B)	ipaired μ =	electrons ($n\sqrt{(n+2)}$	(n) is		in terms		
19.		ompound [Ti(C_5H_5 Iigands are 1 and 5 2 and 3) ₂ (C ₅ H ₅) ₂] (B) D)	e 18-e 5 3	lectron rule	. The	n the ha	apticities		

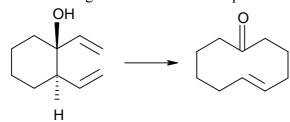

20.	CO is A) B) C) D)	weak Lewis base but act It is a strong σ donor It is a strong π donor It is a strong σ donor and It is a strong π acceptor	nd weak π a								
21.	and (i	iii) $[Mn(CO)_6]^+$ is		equencies of (i) [V(CO) ₆] ⁻ (ii) [Cr(CO) ₆]							
		(ii) > (iii) > (i) (iii) > (ii) > (i)	B) D)	(i) > (ii) > (iii) (ii) > (i) > (iii)							
22.		Haemerythrine is a									
	A) C)	Fe-haem protein Fe-sulphur protein	B) D)	Cu-non-haem protein Diiron-non-haem protein							
23.	The r A) B) C) D)	most important role of ma Water oxidation and did Dioxygen binding and Dioxygen storage Nitrogen fixation	oxygen evol	-							
24.	Which A) B) C) D)	from its ore	s concerned ral materials red mineral	•							
25.		ne refining method the mo		letantinglear process							
23.	A) B) C) D)	Consists of impurity on Consists of purified me Consists of more impur Moves to either side	nly etal only	original metal.							
26.		ct the influence of an incre rate of cobalt-catalysed Rate is decreased No effect on rate		partial pressure above a certain threshold lation of 1-pentene Rate is increased The catalyst is poisoned							
27.	The Z A) C)	Zeigler-Nalta catalyst is TiCl ₄ (Ph ₃ P) ₃ RhCl	B) D)	$(C_2H_5)_3Al$ Formed from TiCl ₄ and Al(C ₂ H ₅) ₃							
28.	If a p	-	ı' an OX any	goes parallel to OY and OZ. Its Miller							
	A) C)	1 0 0 1 1 1	B) D)	0 1 1 0 0 1							
	\sim		D)								

29.	A solid has a structure in which 'W' atoms are located at the cube corners of the unit cell. 'O' atoms are located at the cube edges and 'Na' atoms at the cube centres. What type of lattice is represented by the compound? What is the formu of the compound? A) Simple cubic, Na ₂ WO ₃ B) Boly-centred cubic, NaWO ₃										
	C)	Face-centred		O D)	Simpl	e cubic, NaWC)3				
30.	Which A) C)	n one of the foll NaCl Ice	owing is an	example f B) D)	or a cov SiC Iodine	-					
31.		on the principles of Green Chemistry, which of the following is a good at for the production of high value chemicals? Ethanol B) Methanol Cyclohexane D) Supercritical carbon dioxide									
32.	F-cent A) B) C) D)	Anion vacancies in crystal lattice Lattice sites in which the cation is trapped									
33.	ZnS d A) B) C) D)										
34.	The la A) B) C) D)	H ₂ O and D ₂ O Sulphur dioxide and sulphur trioxide									
35.	numbe	the total number of orbitals possible in an atomic shell with Principal quantum number, $n = 4$ is									
36.	A) How r A)	4 B) 9 C) 24 D) 16 y many significant figures are there in 0.067? 4 B) 3 C) 2 D) 1									
37.	Choos A) B) C) D)	ose the correct statement with respect to indeterminate errors They affect the accuracy of the results They affect the measurement precision They are due to non-ideal instrument behaviour They are due to personal limitations of the experimenter									


- 38. The essential requirement for the visual use of metal ion indicator in EDTA titration is
 - A) The metal-indicator complex should be stable
 - B) The metal-indicator complex should be less stable
 - C) The metal-indicator complex should be more stable than the metal-EDTA complex
 - D) The metal-indicator complex should be less stable than the metal-EDTA complex
- 39. In the titration of iron(II) with potassium dichromate using diphenylamine, addition of phosphoric acid is desirable, because
 - A) It acts as a masking agent
 - B) It lowers the pH of the system
 - C) It lowers the formal potential of the Fe(III)-Fe(II) system
 - D) It stabilizes the metal-indicator complex
- 40. Upon repeated washing of the precipitate with solvent, a part of the adsorbed electrolyte is removed and this may result in
 - A) Coagulation
- B) Flocculation

C) Digestion

- D) Peptisation
- 41. Cycloctatetraene (I) undergoes thermal ring closure to form


- A) Mixture of II and III in which II is excess
- B) Mixture of II and III in which III is excess
- C) II alone
- D) III alone
- 42. Cyclopentadiene(IV) undergoes thermal reaction with cycloheptatrienone(V). The cycloaddition adduct will be

IV

- A) $\pi^4 s + \pi^6 s$ Endo
- B) $\pi^4 s + \pi^6 s$ Exo
- C) $\pi^4 s + \pi^6 a$ Endo
- D) $\pi^4 a + \pi^6 s$ Exo

43. The following reaction is best example of

- A) Claisen rearrangement
- B) Di-Pi-Methane
- C) Oxy-Cope rearrangement
- D) Fries rearrangement
- 44. The 'chasing-arrows' with number is used to represent plastic containers made of
 - A) PETE
- B) HDPE
- C) LDPE
- D) PP
- 45. How many stereocenters are present in the tripeptide, Methionylalanylhistidine
 - A) Three
- B) Four
- C) Five
- D) Zero
- 46. Select the most suitable solvent for the extraction of diethylamine from ether solution
 - A) Benzene
 - B) 10% aqueous HCl
 - C) 10% aqueous NaHCO₃
 - D) Methanol
- 47. During the esterification of acetic acid with ethyl alcohol in presence of conc. H₂SO₄, the reaction mixture was subjected to TLC analysis. The compounds were separated according to the polarity and the least polar compound moved faster. What will be the order of the distances traveled by the three compounds?
 - A) Ester < Carboxylic acid < Alcohol
 - B) Ester < Alcohol < Carboxylic acid
 - C) Carboxylic acid < Alcohol < Ester
 - D) Alcohol < Carboxylic acid < Ester
- 48. When 2-iodohexane was treated with sodium methoxide in methanol, the main product obtained was Zaitzeff elimination product. In addition to this, a byproduct was also formed. What will be the most likely byproduct?
 - A) CH₃CH₂CH₂CH₂CH(OH)CH₃
 - B) CH₃CH₂CH₂CH₂CH₂CH₂OH
 - C) CH₃CH₂CH₂CH₂CH₂OCH₃
 - D) CH₃CH₂CH₂CH₂CH(OCH₃)CH₃

49. When 4-methylstyrene and anhydrous nitric acid in dichloromethane are reacted, the major product obtained is

A) (B)

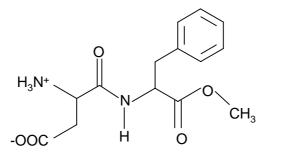
CH₃-CH-NO₂

O₂N-CH₂-CH-ONO₂

CH₃

(C) CH_3 -CH-ONO₂ CH_2 -CH₂NO₂ CH_2 -CH₂NO₂ CH_2

- 50. Using gas chromatography, the *erythro* and *threo* isomers are distinguished by
 - A) Peak heights
 - B) Retention times


CH₃

- C) Peak areas
- D) Injection times
- 51. The structure of the compound which exhibits the following ${}^{1}H$ NMR spectra $\delta = 0.93$ (t, 3H), 1.20 (t, 3H), 1.60 (sextet, 2H), 3.37 (t, 2H), 3.47 (q, 2H) ppm is
 - A) $CH_3-O-C(CH_3)_2-CH_3$
 - B) CH₃-CH₂-CH₂-CH₂-CH₂-OH
 - C) CH₃-O-CH₂-CH₂-CH₂-CH₃
 - D) $CH_3-CH_2-O-CH_2-CH_2-CH_3$
- 52. Which of the following absorbs in the longer wavelength region?
 - A) Azulene
 - B) 2-Methyl-1,3-butadiene
 - C) *trans*-1,3,5-hexatriene
 - D) *trans, trans*-1,3,5,7-octatetraene
- Arrange the following compounds in the decreasing order of their S_{N^1} reactivity a. CH_3 - CH_2 -CH(Cl)- CH_3 b. CH_2 =CH-CH(Cl)- CH_3 c. CH_3 - CH_2 - CH_2 Cl
 - A) a > b > c B) b > a > c C) c > b > a D) a > c > b

54. The progress of the following Diels-Alder reaction can be monitored by IR spectroscopy.

Which of the following spectroscopic features can be best utilized in determining the completion of the reaction?

- A) The disappearance of the dienophile C=O stretch
- B) The disappearance of the diene C=C stretch
- C) The appearance of the product C=C stretch
- D) The appearance of the product alkene C–H stretch.
- 55. Select a pair of aromatic structure from the following
 - (a) cyclopropenyl cation
- (b) cyclononatetraenyl anion
- (c) pentalene
- (d) cyclooctatetraene
- A) (b) and (d)
- B) (a) and (c)
- (a) and (b)
- D) (c) and (d)
- 56. In GPC (Gel Permeation Chromatography) the beads should have some important characteristics. The characteristics are
 - A) Charged and inert
 - B) Charged and reactive
 - C) Neutral and reactive
 - D) Neutral and inert
- 57. How many total stereoisomers exist for the following compound?

6

A)

B)

C)

D)

2

- 58. The relative rates of S_{N^2} reaction of hydroxide ions with a. CH_3CH_2Br b. $CH_3CH_2CH_2Br$ c. $(CH_3)_2CHCH_2Br$ d. $(CH_3)_3CCH_2Br$ are in the order
 - A) a > b > c > d
 - B) d > c > b > a
 - C) b>a>c>d
 - D) d > b > a > c
- 59. When *m*-dimethylbenzene is treated with Br₂ in the presence of FeBr₃, the major product obtained is

A) B) $\begin{array}{c} \mathsf{CH_3} \\ \mathsf{Br} \\ \mathsf{CH_3} \end{array}$

C) CH_3 CH_3 CH_2Br

- 60. Pick out the incorrect statement from the following
 - A) High density polyethylene is manufactured by the Zeigler Natta polymerisation method
 - B) Zeigler Natta polymerisastion gives highly stereo regular polymer
 - C) Low density polyethylene has less amorphous- and more crystalline regions
 - D) Gutta-Purcha is *trans*-polyisoprene
- 61. Silicone polymers contain ----- bonds in the polymer backbone
 - A) Si C

B) Si - Si

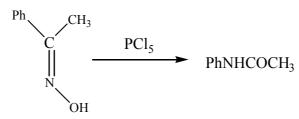
C) Si – N

- D) Si O
- 62. Chain growth polymerisation is the suitable method for the manufacture of
 - A) Polyethylene terephalate
 - B) Polymethylmethacrylate
 - C) Nylon 6, 6
 - D) Polycarbonate

63. Predict the product in the following reaction

B)

CH₃ CH₃


- CH₃
- C) CH_3 Ph CH_3 CH_3 CH_3 CH_3 CH_3
- Among the following sets, select a set in which each compound exhibits a single peak in its PMR spectrum.
 - A) CH₃–CCl₃ and ClCH₂–CHCl₂

B)
$$CI$$
 and $H_2C=C=CH_2$

C) H₂C=C=CH₂ and ClCH₂-CHCl₂

(D)
$$CH_3$$
 and $C = CH_3$

65. The following reaction

is

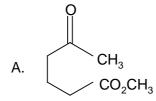
- A) Regioselective and stereospecific
- B) Non regioselective and stereospecific
- C) Neither regioselective and non stereospecific
- D) Regioselective and non -stereospecific

- 66. The most stable conformation of *cis*-1, 4-di-*t*-butylcyclohexane is
 - A) Chair conformation in which the *t*-butyl groups at positions 1- and 4- are equatorial
 - B) Chair confirmation in which the *t*-butyl groups at positions 1- and 4- are axial
 - C) Chair conformation in which *t*-butyl group at position 1 is equatorial and *t*-butyl group at position 4 is axial
 - D) Twist-boat conformation with a quasi equatorial-equatorial t-butyl groups
- 67. The following sugars on degradation with HIO₄ give formic acid and formaldehyde. Choose a sugar that gives two molecules of formaldehyde
 - A) D-Arabinose
 - B) D-Glucase
 - C) D-Erythrose
 - D) D-Erythrulose
- 68. Among the following amino acid carboxylates, only one gives –NH stretching frequency at $\approx 3400 \text{ cm}^{-1}$. Identify it.
 - A) (S)-Alanine
 - B) (S)-Proline
 - C) (S)-Phenylalanine
 - D) (R)-Phenylalanine
- 69. The three base code AUG used in protein synthesis stands for
 - A) Methionine

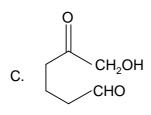
B) Alanine

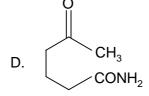
C) Glycine

- D) Proline
- 70. A vitamin having pyridine nucleus in its structure is
 - A) Vitamin B_{12}
- B) Vitamin B₅

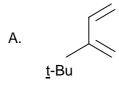

C) Vitamin B₆

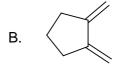
- D) Vitamin B₂
- 71. The following conversion is an example of

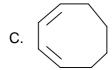

CHO
$$\begin{array}{c|c}
CHO \\
\hline
N \\
\hline
H
\end{array}$$
i) H+, H₂O
$$\hline
ii) -H+$$


- A) Aldol condensation
- B) Claisen condensation
- C) Cannizzaro reaction
- D) Mannich reaction

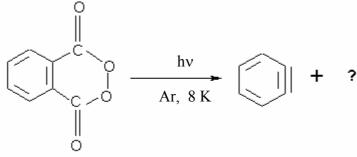
72. 1, 3-Cyclohexanedione can be prepared very easily by an intramolecular mixed Claisen condensation. What may be the structure of the substrate molecule?







73. The Diels-Alder reaction is unlikely in



- 74. Acetophenone when reacted with Zn (Hg) and HCl in ethyl alcohol easily gives ethyl benzene. This is an example of
 - A) Clemensen reduction
- B) Birch reduction
- C) Wolf-Kishner reduction
- D) MPV reaction
- 75. Predict the product, other than benzene, formed in the following reaction

- A) 4O₂
- B) 2CO
- C) 2CO₂
- D) H_2CO_3

- 76. If an ester-, ether- and acid functional groups are present in the same molecule, in which order will they react with aqueous base?
 - A) The ester, the acid and then the ether
 - B) The acid, the ester and then the ether
 - C) The ether, the acid and then the ester
 - D) The acid, the ether and then the ester
- 77. The correct statement in the case of camphor is
 - A) Camphor has two dissimilar chiral centres and two pairs of enantiomers are known
 - B) Camphor has two dissimilar chiral centres but only one pair of enantiomers is known
 - C) Camphor has one chiral centre and one pair of enantiomers is known
 - D) Camphor has no chiral centre and exists in only as one form
- 78. Wegner-Meerwein rearrangement follows through the intermediate formation of
 - A) Carbon radical
 - B) Carbanion
 - C) Carbocation
 - D) Carbene
- 79. A carbonyl (C=O) group is present in both
 - A) Papaveraldine and papaverinic acid
 - B) Papaverine and papaverinol
 - C) Papaverine and papaveraldine
 - D) Papaverine and papaverinic acid
- 80. The most appropriate statement for the structure of quinine is
 - A) A ditertiary base with a methoxy group, a primary alcoholic group containing ethylinic double bond
 - B) A tertiary base with a dimethoxy group, a secondary alcoholic group containing ethylinic double bond
 - C) A ditertiary base with a methoxy group and a secondary alcoholic group
 - D) A ditertiary base with a methoxy group and a secondary alcoholic group containing ethylinic double bond
- 81. The energy of a particle in a box is proportional to
 - A) Square of the mass of the particle
 - B) Square of the length of the box
 - C) Square of the quantum number
 - D) Square of the velocity of the particle
- 82. If an electron travels with a velocity of X ms⁻¹, what will be the approximate velocity of a photon having the same de-Broglie wave length?
 - A) X B) X/1840 C) 1840/X D) 1840 X
- 83. If λ_{max} for a black body radiation is 500 nm, what will be the temperature of the black body?
 - A) 6000 K B) 5000 K C) 5800 K D) 6800 K

84.	Which one of the following diatomic molecules would be stabilized by the removal of an electron?								
	A)	CN	B)	O_2		C)	N_2	D)	C_2
85.	Which A)	n one among the d/dx	e follov B)	ving is n dy/dx	ot an o	perator? C)	? √	D)	ſ
86.	The lo	owest energy te	rm sym B)		silicon a	atom is C)	¹ P	D)	3 D
87.	The b	ond angle in PF	F ₃ , PCl ₃	, PBr ₃ an	nd PI ₃ i	s in the	order		
	A) C)	PCl ₃ > PBr ₃ > PCl ₃ < PF ₃ < 1					PCl ₃ < PBr ₃ < F PCl ₃ > PBr ₃ > F		
88.	NH ₃ nA)	nolecule has the C_{3v}	e symm B)	etry poi T _d	nt grou	p of C)	C_{3h}	D)	D_{4v}
89.	A)	are the values of L = 3, S = 2, L = 3, S = 1,	J=3,2	, 1	B)	L=1,	S = 3, J = 4, 3	, 2	
90.	cubic. transit	At the same te tion to yield a s llowing is the li Cubic close p Primitive tetra	mperati tructure ikely str acked	ure but a much r ructure a	it high _I nore de	pressurense that pressure	e, cesium under n body centered e? cive cubic	goes a	phase
91.	The al	bsorption of ult	raviolet	tradiatio	ons by 1			uses	
	A) C)	Rotational Electronic			B) D)	Vibrat Vibrat	tional tional accompa	nied by	rotational
92.		et the number of on atom. 3, 0, 0					vibrational degrammers of the		
93.		ranck-Condon	,			ating rel	ative intensitie	s of	
94.		notion of an ele- etic dipole, ' μ ' $\mu = I A$ $\mu = A/I$		_		ven by $\mu = I/A$	A	'A' pro	oduces a

95.	The mass spectrum of a compound shows m/e values at 156, 127 and 29. Find out which among the following is the corresponding compound. A) C_2H_5Br B) CH_3I C) CH_3Br D) C_2H_5I									
96.	A) /	wo ideal gases ΔSmix > 0 and ΔSmix < 0 and	$1 \Delta Hmix > 0$	B) D)		$x > 0$ and ΔHmi $x = 0$ and ΔHmi				
97.	A)	crystal B) It may flow like a liquid, but its molecules may be oriented in a colloidal-like way C) Within a liquid crystal domain the molecules are well ordered								
98.	v_p , \overline{v} an	$\operatorname{and}\left(\overline{\mathbf{v}}^{2}\right)^{1/2}$ are	the most prob	able vel	locity,	the arithmetic r	nean ve	locity		
	and th	he root mean s	quare velocity	respect	tively fo	or H_2 at 0° C. The	nen			
	A)	$\left(\overline{\mathbf{v}}^{2}\right)^{\!1/2} < \overline{\mathbf{v}} < \overline{\mathbf{v}}$	$<$ \mathbf{v}_{p}	B)	$\overline{\mathbf{v}} < \left(\overline{\mathbf{v}}\right)$	$\left(\sqrt{2}\right)^{1/2} < v_p$				
	C) ,	$v_p < \overline{v} < (\overline{v}^2)$)1/2	D)	$\overline{v} < v$	$r_{\rm p} < \left(\overline{\rm v}^2\right)^{1/2}$				
99.	 Which of the following statements is not correct? A) The number of collision is proportional to the square root of pressure B) The number of collision is proportional to the square root of temperature C) The number of collision is proportional to the square of no. of molecules D) The number of collision increases with decrease in molecular weight 									
100.	 Which one among the following is a wrong statement about the viscosity of gases? A) Spherical molecules have low viscosity compared with plate like molecules B) Polar molecules have higher viscosities compared with to non polar molecules C) Decreases with increase in temperature D) Increase with increase in temperature 									
101.	represer	ing to the second the change in the change i		-		which of the foll q_{rev}/T	lowing q	uantities W _{rev}		
	,	-			,	-				
102.	the char	ole of an ideal g nge in Gibbs en RT ln ½	_	the pro	-	l its volume is R ln ½	doubled D)	. What is R ln 2		
103.	What is	the change in Negative	,) for the			H ₂ O _(s) D)	Zero		

104.	The thermodynamic property that may be utilized for specifying the direction of time is										
	A)		B)	Н		C)	S	D)	G		
105.	Which A)	one among the $\Delta E = 0$	e follow B)	ving is co $\Delta H = 0$		n Joule- C)	Thomson Expa $\Delta S = 0$	ansion? D)	$\Delta G = 0$		
106.	Which A) B) C) D)	Boiling of war Condensing of Subliming of Melting of ice	ter f water iodine	_	decreas	e in enti	ropy?				
107.	What is A) B) C) D)	Varies inverse Varies as squa Varies linearly Unaffected by	ely with are root y with i	initial continuitial continuiti	oncent l conce ncentra	ration ntration tion		reaction	n?		
108.		is the relationsh ential factor, A $k = A e^{Ea/RT}$ ln A = ln k - B	for a cl	nemical	reaction B)	1.	$E_a/RT + ln k$	$\Xi_{ m a}$ and ${ m tl}$	ne pre-		
109.	The th A) C)	eory that links Simple collision Arrhenius theorem	on theo	ry	s with (B)	Modif	al kinetics is ied collision that the reaction rate	-	,		
110.	17 ⁰ C A)	reaction the rate to 37 ⁰ C. What 3.1 k Cal 12.4 k Cal			n energ B)		e reaction? Cal	increas	ed from		
111.	Which A) B) C) D)	one among the Chemically un A small quant reaction Does not affect Physically und	nchange ity is of at the ed	ed at the ften suffi	end of icient to	the reactory bring a transfer to the transfer	ction about a consident le reaction	-			
112.		This theory ex This theory gi	theory aplains to the control of the	of homo the mech the actio adequate he cataly	geneounanism of cate explain the cate of t	is cataly of home talytic p nation o ne cours	rsis? ogeneous catal poisons and act f the change br e of a reaction	ysis ivators ought a			

16

- 113. Which one among the following is an incorrect statement about Van der Waals adsorption?
 - A) Characterized by low heat of adsorption
 - B) Reversible
 - C) Decreases with increase in temperature
 - D) Activation energy of desorption is very high
- 114. Which among the following is an incorrect statement about Tyndall Effect?
 - A) Strong for Lyophobic sols
 - B) Proves heterogeneous character of the colloidal system
 - C) Depends on volume of the colloidal solution
 - D) Shown by colloidal particles
- 115. Which one of the following is not an assumption for deriving Langmuir Adsorption Isotherm?
 - A) The process of adsorption and desorption is irreversible
 - B) Adsorbed molecules do not interact with one another
 - C) Enthalpy of adsorption was independent of surface coverge
 - D) There are a finite number of surface sites where a molecule can adsorb
- 116. The potential of a half cell consisting of Zn electrode in 0.01 M ZnSO₄ solution at 25° C (E⁰ = 0.763 V) is
 - A) 0.604 V

B) 0.822 V

C) -0.822 V

- D) -0.604 V
- 117. The solubility (S) of a sparingly soluble salt is related to specific conductance (K) and equivalent conductance (Λ_0) as
 - A) $S = 1000 \Lambda_0/K$
- B) $S = K \Lambda_0$
- C) $S = K/1000 \Lambda_0$
- D) $S = 1000 \text{ K} / \Lambda_0$
- 118. The reaction occurring during the charging of lead storage battery is
 - A) $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$
 - B) $Pb^{2+} + 2e \rightarrow Pb$
 - C) Pb \rightarrow Pb²⁺ + 2 e
 - D) $2H^+ + 2e \rightarrow H_2$
- 119. Which of the following is incorrect about transport number?
 - A) Never zero
 - B) Decrease with increase in concentration
 - C) May increase or decrease with increase in temperature
 - D) Different for different solutions
- 120. Which one among the following is an incorrect statement regarding quinhydrone electrode?
 - A) In alkaline solution hydroquinone ionizes appreciably as an acid
 - B) Used for solutions of pH > 8
 - C) In alkaline solution hydroquinone gets oxidized by atmospheric O₂
 - D) The potential of quinhydrone electrode is determined by connecting it with a calomel electrode