NG 27

PART 01 - MATHEMATICS

(Common to all candidates)

(Answer ALL questions)

1.	The unit normal to the surface	4.	If $\overline{A} = x^2 y i - 2xz \overline{j} + 2yz \overline{k}$, then	
	$x^2y + 2xz = 4$ at the point (2, -2, 3) is		$curlcurl\overline{A}$ is	
2.	1. $-i+2j+2\overline{k}$		1. $(x+2)\bar{j}$	
			$2. \qquad (2x+2)\overline{j}$	
	2. $\frac{1}{3}(-i+2j+2\overline{k})$		$3. \qquad (2x+1)\overline{j}$	
	1		$4. \qquad (2x+2y)\overline{j}$	
	3. $\frac{-}{3}(i-2j+2k)$		If $\overline{V} = (x+2y+az)i+(bx-3y-z)\overline{i}+$	
	4. $i-2j-2\overline{k}$		$(4x + cy \frac{2}{2})\overline{k}$ is irrotational, then	
	If $\mathbf{r} = \sqrt{x^2 + y^2 + z^2}$, then $\mathbf{V}\left(\frac{1}{r}\right)$ is equal to 1. $\frac{\overline{r}}{r^3}$ 2. $\frac{\overline{r}}{r^2}$ 3. $\frac{-\overline{r}}{r^2}$ 4. $\frac{-\overline{r}}{r^3}$		1. $a = 4, b = -1, c = 2$	
			2. $a = 2, b = -1, c = 4$	
			3. $a = 4, b = 2, c = -1$	
			4. $a = 4, b = -2, c = 1$	
		6,	Which of the following is a factor of the	
			determinant?	
			a+b+2c a b	
			$c \qquad b+c+2a \qquad b$	
			c a $c+a+2b$	
			1. a 2. $a - b$	
			3. $a+b$	
			4. $a+b+c$	
3.	If $A = x^2 z i - 2y^3 z^2 j + xy^2 z k$, then $divA$	7.	If $a+b+c=0$, one root of	
	at (1, -1, 1) is 1. 0 23		a-x c b	
			$\begin{vmatrix} c & b - x & a \\ b & a & c & x \end{vmatrix} = 0$ is	
			$\begin{vmatrix} 0 & u & c - x \end{vmatrix}$	
	3. 3		x = 1 $2, x = 2$	
	4. 1		3. $x = a^2 + b^2 + c^2$	
			4. $x = 0$	

Download From www.jbigDeaL.com

Powered By © JbigDeaL

8. If *A* is a 4×4 matrix. A second order minor
of *A* has its value as 0. Then the rank
of *A* is
1. <2
2. =2
3. >2
4. anything
9. Given
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$
, then the determinant
value of A^{-1} is
1. 32
2. $\frac{1}{32}$
3. $\frac{1}{64}$
4. 64
10. If $\begin{pmatrix} 3 & 1 \\ 4 & 1 \end{pmatrix} X = \begin{pmatrix} 5 & -1 \\ 2 & 3 \end{pmatrix}$, then
1. $X = \begin{pmatrix} -3 & 4 \\ 14 & 13 \end{pmatrix}$
2. $X = \begin{pmatrix} 3 & -4 \\ -14 & 13 \end{pmatrix}$
3. $X = \begin{pmatrix} -3 & 4 \\ 14 & -13 \end{pmatrix}$
4. $X = \begin{pmatrix} -3 & -4 \\ 14 & -13 \end{pmatrix}$

11. C-R equations for a function $w = P^{(r, \theta) + iQ(r, \theta)}$ to be analytic, in polar form are

1.
$$\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}, \quad \frac{\partial Q}{\partial r} = \frac{-1}{r} \frac{\partial P}{\partial \theta}$$
2.
$$\frac{\partial Q}{\partial \theta} = \frac{1}{r} \frac{\partial P}{\partial r}, \quad \frac{\partial P}{\partial \theta} = \frac{1}{r} \frac{\partial Q}{\partial r}$$
3.
$$\frac{\partial P}{\partial r} = \frac{-1}{r} \frac{\partial Q}{\partial \theta}, \quad \frac{\partial Q}{\partial r} = \frac{1}{r} \frac{\partial P}{\partial \theta}$$
4.
$$\frac{\partial P}{\partial \theta} = \frac{1}{r} \frac{\partial Q}{\partial r}, \quad \frac{\partial Q}{\partial \theta} = \frac{-1}{r} \frac{\partial P}{\partial r}$$

- 12. If f(z) = u + iv is an analytic function and v and v are harmonic, then u and v will satisfy
 - 1. one dimensional wave equation
 - 2. one dimensional heat equation
 - 3. Laplace equation
 - 4. Poisson equation
- 13. In the analytic function f (z) = u + iv, the curves u(x,y) = c₁ and v(x,y) = c₂ are orthogonal if the product of the slopes m₁ and m₂ are
 - 1. $m_1m_2 = 0$ 2. $m_1m_2 = -\pi$ 3. $m_1m_2 = \frac{-\pi}{2}$ 4. $m_1m_2 = -1$
- 14. If the imaginary part of the analytic function f(z) = iz + iv is constant, then
 - 1. \mathcal{U} is not a constant
 - 2. f(z) is not a complex constant
 - 3, $f^{(z)}$ is equal to zero
 - 4. ²⁴ is a constant
- 15. If $f^{(\alpha)} = P^{(r, \theta)} + iQ^{(r, 8)}$ is analytic, then $f^{(\alpha)}$ is equal to

1.
$$e^{i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial \theta} \right)$$

2. $e^{-i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial \theta} \right)$
3. $e^{-i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right)$
4. $e^{+i\theta} \left(\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right)$

Download From www.JbigDeal

The formula for the radius of curvature in 16. cartesian coordinate is

1.
$$\frac{(1+(y')^2)^{1/2}}{y''(x)}$$

2.
$$\frac{(1+(y')^2)^{3/2}}{y''(x)}$$

3.
$$\frac{\left(1+(y')^2\right)^{3/2}}{(y'')^2}$$

4.
$$\frac{(1+(y')^2)^{1/2}}{(y''(x))^2}$$

z f(x, y)

17. The condition for the function
$$=$$
 $\frac{\partial z}{\partial x} = 0^{\text{to}}$
have a extremum at (a, a_2) is $\frac{\partial z}{\partial y} = 0$. $\frac{\partial^2 z}{\partial x^2}, B = \frac{z}{\partial a} \frac{z}{\partial y}, C = \frac{2z}{a}$.
and $A = \frac{z}{a}$.
 AC z ay_2
rAaximumB². Then the function has a
 $value at (a, a)$ if
 $\Delta > 0, A < 0$
1. $\Delta > 0, A = 0$
2. $\Delta < 0, A < 0$

0

$$\Delta > 0, A > 4.$$

18. Thus,
$$y = x^{\text{stationary}^2} - 2x + y^{\text{point}}$$

 f (0, 1)
1. 0)
2. .(1, 0)
3. (-1, (1, 4. - 1))

19.	$\int_{0}^{\pi/2} s$	sin x sinx <u>+</u>	<i>d x</i> is
	<i>cos</i> 1.	$\frac{x}{\frac{\pi}{2}}$	
	2.	π	
	3.	$\frac{\pi}{4}$	
	4.	2π	

20.
$$\int x \cos x \, dx$$

1. $x \sin x + \cos x$

2. $x \sin x - x \cos x$

is

3. $x \sin x + x \cos x$

21. For the following data :

y: -1 3 7 11

the straight line y = m x + by the method of least square is

 $y \equiv \overline{x} 2 \mathbf{1}^{x-1}$ 1. 2. y = 1 - 2x

3.
$$y = 2x - 1$$

4.

v (km/min)

22. The velocity of a train which starts from rest, is given at fixed intervals of time *t* a s follows :

t: 2 4 68 10 12 14 16 18 20 v: 10 18 25 29 32 20 11 5 2 0

approximate distance covered by The \$impson's rule is

- 306.3 2.
- 309.3 3.
 - 310.3
- 307.3 4.

of

is

- 23. Find the cubic polynomial by Newton's forward difference which takes the following
 - x: 0123 f(x): 1 2 1 10 Then f (4) is
 - 1. 40
 - 2. 41
 - 3. 39
 - 4. 42
- 24. The first derivative $\frac{dy}{dx}$ at x = 0 for the given data

- is
- 1. 2
- 2. -2
- 3. -1
- 4. 1
- 25. Error in Simpson's $\frac{1}{3}$ rule is of the order 1. $-h^2$ 2. h^3 3. h^4
 - 4. $\frac{2h^3}{3}$
- 26. A lot consists of ten good articles, four with minor defects and two with major defects. Two articles are chosen from the lot a t random (without replacement). Then the probability that neither of them good is
 - 1. $\frac{5}{8}$ 2. $\frac{7}{8}$ 3. $\frac{3}{8}$ 4. $\frac{1}{8}$

27. If A, B, C are any three events such that

$$P(A) = P(B) = P(C) = \frac{1}{4};$$

$$P(A \cap B) = P(B \cap C) = 0, \quad P(C \cap A) = \frac{1}{8}.$$

Then the probability that at least one of the events A, B, C occurs, is

- 1. $\frac{1}{32}$ 2. $\frac{3}{32}$ 3. $\frac{7}{8}$ 4. $\frac{5}{8}$
- 28. To establish the mutual independence of n events, the equations needed are
 - 1. $2^n + n + 1$
 - 2. $n^2 + n + 1$
 - 3. $2^n (n+1)$
 - 4. $2^n + 2(n+1)$
- 29. If atleast one child in a family with two children is a boy, then the probability that both children are boys is
 - 1. 3/4
 - 2. 1/3
 - 3. 1/4
 - 4. 1/2
- 30. A discrete random variable X takes the values $a, ar, ar^2, \dots, ar^{n-1}$ with equal probability. Then Arithmetic Mean (A.M) is 1. $a(1-r^n)$
 - 2. $\frac{1}{n}a(1-r^n)$ 3. $\frac{a}{n}\frac{(1-r^n)}{1-r}$

4.
$$\frac{a}{a} \frac{(r^n - 1)}{1}$$

$$n$$
 $1-r$