NG 27

PART 01 - MATHEMATICS

(Common to all candidates)
(Answer ALL questions)

1. The unit normal to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$ is
2. $-i+2 j+2 \bar{k}$
3. $\frac{1}{3}(-i+2 j+2 \bar{k})$
4. $\frac{1}{3}(i-2 j+2 \bar{k})$
5. $i-2 j-2 \bar{k}$
6. If $\mathrm{r}=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\mathrm{V}\left(\frac{1}{r}\right)$ is equal to
7. $\frac{\bar{r}}{r^{3}}$
8. $\frac{\bar{r}}{r^{2}}$
9. $\frac{-\bar{r}}{r^{2}}$
10. $\frac{-\bar{r}}{r^{3}}$
11. If $\bar{A}=x^{2} z i-2 y^{3} z^{2} \bar{j}+x y^{2} z \bar{k}$, then $\operatorname{div} \bar{A}$ at $(1,-1,1)$ is
12. 0
13. -3
14. 3
15. 1
16. If $\bar{A}=x^{2} y i-2 x z \bar{j}+2 y z \bar{k}$, then curlcurl \bar{A} is
17. $(x+2) \bar{j}$
18. $(2 x+2) \bar{j}$
19. $(2 x+1) \bar{j}$
20. $(2 x+2 y) \bar{j}$
21. If $\bar{V}=(x+2 y+a z) i+(b x-3 y-z) \bar{j}+$ $(4 x+$ cy $t z) \bar{k}$ is irrotational, then
22. $a=4, b=-1, c=2$
23. $a=2, b=-1, c=4$
24. $a=4, b=2, c=-1$
25. $a=4, b=-2, c=1$
$6,>$ Which of the following is a factor of the determinant?
$\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|$
26. a
27. $a-b$
28. $a+b$
29. $a+b+c$
30. If $a+b+c=0$, one root of $\left|\begin{array}{ccc}\mathrm{a}-\mathrm{x} & \mathrm{c} & \mathrm{b} \\ \mathrm{c} & \mathrm{b}-\mathrm{x} & \mathrm{a} \\ \mathrm{b} & a & \mathrm{c}-\mathrm{x}\end{array}\right|=0$ is
31. $x=1$
32. $x=2$
33. $x=a^{2}+b^{2}+c^{2}$
34. $x=0$
35. If \boldsymbol{A} is a 4×4 matrix. A second order minor of A has its value as

0 . Then the rank of \boldsymbol{A} is

1. <2
2. $=2$
3. >2
4. anything
5. Given $\mathrm{A}=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8\end{array}\right)$, then the determinant value of A^{-1} is
6. 32
7. $\frac{1}{32}$
8. $\frac{1}{64}$
9. 64
10. If $\left(\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right) X=\left(\begin{array}{cc}5 & -1 \\ 2 & 3\end{array}\right)$, then
11. $X=\left(\begin{array}{cc}-3 & 4 \\ 14 & 13\end{array}\right)$
12. $X=\left(\begin{array}{cc}3 & -4 \\ -14 & 13\end{array}\right)$
13. $X=\left(\begin{array}{cc}-3 & 4 \\ 14 & -13\end{array}\right)$
14. $X=\left(\begin{array}{cc}-3 & -4 \\ -14 & 13\end{array}\right)$
15. $C-\mathrm{R}$ equations for a function $\mathrm{W}=\mathrm{P}(r, \theta)+z Q(r, \theta)$ to be analytic, in polar form are
16. $\frac{\partial P}{\partial r}=\frac{1}{r} \frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial r}=\frac{-1}{r} \frac{\partial P}{\partial \theta}$
17. $\frac{\partial Q}{\partial \theta}=\frac{1}{r} \frac{\partial P}{\partial r}, \frac{\partial P}{\partial \theta}=\frac{1}{r} \frac{\partial Q}{\partial r}$
18. $\frac{\partial P}{\partial r}=\frac{-1}{r} \frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial r}=\frac{1}{r} \frac{\partial P}{\partial \theta}$
19. $\frac{\partial P}{\partial \theta}=\frac{1}{r} \frac{\partial Q}{\partial r}, \frac{\partial Q}{\partial \theta}=\frac{-1}{r} \frac{\partial P}{\partial r}$
20. If $\mathrm{f}(z)=\mathrm{u}+i v$ is an analytic function and z and v are harmonic, then u and v will satisfy
21. one dimensional wave equation
22. one dimensional heat equation
23. Laplace equation
24. Poisson equation
25. In the analytic funstion $\mathrm{f}^{(z)}=u+i v$, the curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ are orthogonal if the product of the slopes
m_{1} and m_{2} are
26. $m_{1} m_{2}=0$
27. $m_{1} m_{2}=-\pi$
28. $m_{1} m_{2}=\frac{-\pi}{2}$
29. $m_{1} m_{2}=-1$
30. If the imaginary part of the analytic function $f(z)=z+i v$ is constant, then
31. u is not a constant
32. $\quad f(z)$ is not a complex constant

3, $f^{(z)}$ is equal to zero
4. u is a constant
15. If $\mathrm{f}(z)=\mathrm{P}(r, \theta)+z \mathrm{Q}(r, 8)$ is analytic, then $f^{\prime}(z)$ is equal to

1. $e^{i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial \theta}\right)$
2. $e^{-i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial \theta}\right)$
3. $e^{-i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial r}\right)$
4. $e^{+i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial r}\right)$
5. The formula for the radius of curvature in cartesian coordinate is
6. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{1 / 2}}{y^{\prime \prime}(x)}$
7. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}{y^{\prime \prime}(x)}$
8. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}{\left(y^{\prime \prime}\right)^{2}}$
9. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{1 / 2}}{\left(y^{\prime \prime}(x)\right)^{2}}$

$$
z \quad f(x, y)
$$

17. The condition for the function $=\frac{\partial z}{\partial x}=0$
have a extremum at $\quad\left(a, a_{2}\right)$ is and $\quad \frac{\partial z}{\partial y}=0 . \quad A=-\frac{\partial^{2} z}{\frac{2}{2}}, B=\frac{{ }^{2} z}{\partial \boldsymbol{a} \partial y}, C=\frac{{ }^{2} z}{\boldsymbol{a}}$. $A C$
$z \quad$ byz
maximum B^{2}. Then the function has a

$$
\begin{aligned}
& \text { value at }(a, a) \text { if } \\
& \Delta>0, A<0
\end{aligned}
$$

1.

$$
\Delta>0, A=0
$$

2.

$$
\Delta<0, A<0
$$

3.

$$
\Delta>0, A>0
$$

4.
5. Th($x, y)=x^{3 \text { tataignary }} 2 y^{2}-2 x+y^{\text {point }}$ of $f(0,1)$
6.
0)
2. . (1,
0)
3. $(-1$,
4. -1)
5.

$\int_{0}^{\pi / 2} \sin x \pm \quad \sin x \quad d x$ is

1. $\cos x^{\frac{\pi}{2}}$
2. π
3. $\frac{\pi}{4}$
4. 2π
5. $\int x \cos x d x$ is
6. $x \sin x-4 \cos x x$
7. $x \sin x-x \cos x$
8. $x \sin x+x \cos x$
9.
10. For the following data : $y: \begin{array}{lllll}-1 & 3 & 7 & 11\end{array}$
the straight line $y=m x+$ by the method of least square is
11. $y=\bar{x}-2 x-1$
12. $y=1-2 x$
13. $y=2 x-1$
14.

$$
v(\mathrm{~km} / \mathrm{min})
$$

22. The velocity of a train which starts frbmifest, is given at fixed intervals of time $t \quad$ a s follows :
$\boldsymbol{t}: \begin{array}{lllll}2 & 4 & 6 & 8101214161820\end{array}$
$v: 10182529322011520$
The approximate distance covered by Simpson's rule is
23. $\quad 306.3$
24. 309.3
310.3
25. 307.3
26. Find the cubic polynomial by Newton's forward difference which takes the following
x: 0123
$f(x): \begin{array}{llll}1 & 2 & 1 & 10\end{array}$
Then $\mathrm{f}(4)$ is
27. 40
28. 41
29. 39
30. 42
31. The first derivative $\frac{d y}{d x}$ at $x=0$ for the given data

$$
\begin{gathered}
x: \quad 0123 \\
f(x): 2125
\end{gathered}
$$

is

1. 2
2. -2
3. -1
4. 1
5. Error in Simpson's $\frac{1}{3}$ rule is of the order
6. $-h^{2}$
7. h^{3}
8. h^{4}
9. $\frac{2 h^{3}}{3}$
10. A lot consists of ten good articles, four with minor defects and two with major defects.
Two articles are chosen from the lot a t random (without replacement). Then the probability that neither of them good is
11. $\frac{5}{8}$
12. $\frac{7}{8}$
13. $\frac{3}{8}$
14. $\frac{1}{8}$
15. If A , B, C are any three events such that
$P(A)=P(B)=P(C)=\frac{1}{4}$;
$P(A \cap B)=P(B \cap C)=0, \quad P(C \cap A)=\frac{1}{8}$.
Then the probability that atleast one of the events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ occurs, is
16. $\frac{1}{32}$
17. $\frac{3}{32}$
18. $\frac{7}{8}$
19. $\frac{5}{8}$
20. To establish the mutual independence of n events, the equations needed are
21. $2^{n}+n+1$
22. $n^{2}+n+1$
23. $2^{n}-(n+1)$
24. $2^{n}+2(n+1)$
25. If atleast one child in a family with two children is a boy, then the probability that both children are boys is
26. $3 / 4$
27. $1 / 3$
28. $1 / 4$
29. $1 / 2$
30. A discrete random variable X takes the values $a, a r, a r^{2}, \cdots, a r^{n-1} \quad$ with equal probability. Then Arithmetic Mean (A.M) is 1. $a\left(1-r^{n}\right)$
31. $\frac{1}{n} a\left(1-r^{n}\right)$
32. $\frac{a}{n} \frac{\left(1-r^{n}\right)}{1-r}$
33. $\frac{a}{n} \frac{\left(r^{n}-1\right)}{1-r}$
