2023 2024 Student Forum > Management Forum > Main Forum

 
  #2  
28th July 2015, 04:36 PM
Super Moderator
 
Join Date: Mar 2013
Re: Syllabus for AMU MBBS Entrance Exam

The Aligarh Muslim University MBBS Entrance Exam comprises of questions from the following subjects:

Botany

Chemistry

Zoology

Physics

Chemistry syllabus

** Some Basic concepts of Chemistry:-
1.General Introduction: Importance and scope of chemistry
2.Nature of matter laws of chemical combination
3. Dalton's atomic theory: concept of elements,atoms and molecules.
4.Atomic and molecular masses
5. mole concept and molar mass
6. percentage composition
7. empirical and molecular formula
8. chemical reactions
9. stoichiometry and calculations based on stoichiometry.

** Structure of Atom:-
1.Discovery of Electron, Proton and Neutron
2. atomic number
3. isotopes and isobars
4. Thomson's model and its limitations
5. Rutherford's model and its limitations
6. Bohr's model and its limitations
7.concept of shells and subshells,
8.dual nature of matter and light
9. de Broglie's relationship
10.Heisenberg uncertainty principle
11. concept of orbitals,
12. quantum numbers
13.shapes of s, p and d orbitals
14.rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and
Hund's rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

** Classification of elements and periodicity in properties:-
1.Significance of classification
2. brief history of the development of periodic table
3. modern periodic
law and the present form of periodic table
4. periodic trends in properties of elements -atomic
radii, ionic radii
5. inert gas radii Ionization enthalpy
6. electron gain enthalpy
7. electronegativity,
valency
8.Nomenclature of elements with atomic number greater than 100.

** Chemical bonding and molecular structure:-
1.Valence electrons
2. ionic bond, covalent bond
3. bond parameters
4. Lewis structure
5. polar character
of covalent bond
6. covalent character of ionic bond
7. valence bond theory
8. resonance
9. geometry
of covalent molecules
10. VSEPR theory
11. concept of hybridization, involving s,p and d orbitals and
shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules
(qualitative idea only)
12. hydrogen bond.

** States of matter : Gases and liquids:-
1.Three states of matter
2. intermolecular interactions
3. types of bonding
4. melting and boiling points
5.role of gas laws in elucidating the concept of the molecule
6. Boyle's law, Charles law, Gay Lussac's
law, Avogadro's law
7. ideal behaviour
8. empirical derivation of gas equation
9.Avogadro's number
10.ideal gas equation
11. Deviation from ideal behaviour
12. liquefaction of gases
13. critical temperature,
kinetic energy and molecular speeds (elementary idea)
14.Liquid State- vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical
derivations)

** Thermodynamics:-
1.Concepts of System and types of systems
2. surroundings
3. work, heat, energy, extensive and
intensive properties, state functions.
4.First law of thermodynamics
-internal energy and enthalpy
- heat capacity and specific heat
-measurement of ΔU and ΔH
- Hess's law of constant heat summation
- enthalpy of bond
dissociation
- combustion
- formation
-atomization
- sublimation
- phase transition
- ionization
- solution
and dilution.
5.Second saw of Thermodynamics (brief introduction)
Introduction of entropy as a state function, Gibbs energy change for spontaneous and non -
spontaneous processes, criteria for equilibrium.
Third law of thermodynamics (brief introduction).

** Equilibrium:-
1.Equilibrium in physical and chemical processes
2. dynamic nature of equilibrium
3. law of mass
action
4. equilibrium constant
5. factors affecting equilibrium - Le Chatelier's principle
6. ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of
poly basic acids, acid strength, concept of pH, Henderson Equation, hydrolysis of salts
(elementary idea), buffer solution, solubility product, common ion effect (with illustrative examples).


** Redox reactions:-
1.Concept of oxidation and reduction
2. redox reactions
3. oxidation number
4. balancing redox reactions
in terms of loss and gain of electrons and change in oxidation number
5. applications of redox
reactions

** Solid State:-
1.Classification of solids based on different binding forces: molecular, ionic, covalent and metallic
solids, amorphous and crystalline solids (elementary idea).
2.Unit cell in two dimensional and three
dimensional lattices
3. calculation of density of unit cell
4. packing in solids
5. packing efficiency
6.voids
7.number of atoms per unit cell in a cubic unit cell
8.point defects, electrical and magnetic properties.
9.Band theory of metals
10. conductors
11.semiconductors and insulators and n & p type semiconductors

** Solutions:-
1.Types of solutions
2.expression of concentration of solutions of solids in liquids
3.solubility of gases in liquids
4.solid solutions
5.colligative properties - relative lowering of vapour pressure
6. Raoult's law
7.elevation of boiling point
8.depression of freezing point
9.osmotic pressure
10.determination of molecular masses using colligative properties
11.abnormal molecular mass
12.van't Hoff factor.

** Electrochemistry:-
1.Redox reactions
2. conductance in electrolytic solutions
3.specific and molar conductivity
4. variations of conductivity with concentration
5.Kohlrausch's Law
6. electrolysis and law of electrolysis (elementary idea)
7.dry cell -electrolytic cells and Galvanic cells lead accumulator
8.EMF of a cell, standard electrode potential
9.Nernst equation and its application to chemical cells
10. Relation
between Gibbs energy change and emf of a cell
11. fuel cells
12.corrosion.

**Chemical Kinetics:-
1.Rate of a reaction (Average and instantaneous)
2.factors affecting rate of reaction: concentration,
temperature, catalyst;
3.order and molecularity of a reaction
4.rate law and specific rate constant
5.integrated rate equations and half life (only for zero and first order reactions)
6.concept of collision
theory (elementary idea, no mathematical treatment).
7.Activation energy
8.Arrhenious equation.

** Surface Chemistry:-
1.Adsorption - physisorption and chemisorption
2.factors affecting adsorption of gases on solids
3.catalysis
4. homogenous and heterogenous activity and selectivity
5. enzyme catalysis colloidal state
distinction between true solutions
6.colloids and suspension; lyophilic , lyophobic multimolecular
and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement,
electrophoresis
7. coagulation, emulsion - types of emulsions.

** Hydrogen:-
1.Position of hydrogen in periodic table
2. occurrence
3. isotopes
4.preparation
5. properties and uses of hydrogen hydrides-ionic covalent and interstitial; physical and chemical properties of water,
heavy water
6. hydrogen peroxide -preparation, reactions and structure and use; hydrogen as a
fuel.

15. General principles and process of isolation of elements

** Studies of s:-
1.Group 1 and Group 2 Elements
-General introduction
- electronic configuration
- occurrence
-anomalous properties of the first
element of each group
- diagonal relationship
- trends in the variation of properties (such as ionization
enthalpy, atomic and ionic radii)
- trends in chemical reactivity with oxygen, water, hydrogen and
halogens, uses.
-Preparation and Properties of Some Important Compounds:
Sodium carbonate, sodium chloride, sodium hydroxide and Sodium hydrogencarbonate,
biological importance of sodium and potassium.
-Calcium oxide and Calcium carbonate and their industrial uses, biological importance of maganesium and calcium.



** p-block elements:-
1.Group -15 Elements:
-General introduction
- electronic configuration
- occurrence
- oxidation states
- trends in physical and chemical properties
- nitrogen preparation properties & uses
-compounds of nitrogen
- preparation and properties of ammonia and nitric acid
-oxides of nitrogen
(Structure only)
- Phosphorus - allotropic forms, compounds of phosphorus: preparation and
-properties of phosphine, halides
- oxoacids (elementary idea only).

2.Group 16 Elements:
General introduction
-electronic configuration
-oxidation states,
-occurrence, trends in physical and chemical properties,dioxygen: Preparation, Properties and uses,
classification of oxides, Ozone, Sulphur -allotropic forms; compounds of sulphur: Preparation
properties and uses of sulphur-dioxide, sulphuric acid: industrial process of manufacture,
properties and uses; Oxoacids of sulphur (Structures only).

3.Group 17 Elements:
General introduction
-electronic configuration- oxidation states
- occurrence, trends in physical and chemical properties; compounds of halogens, Preparation, properties and
uses of chlorine and hydrochloric acid, interhalogen compounds, oxoacids of halogens (structures
only).
4.Group 18 Elements:
General introduction
-electronic configuration
-occurrence
-trends in physical and chemical properties, uses.

**Studies of d & f - block elements:-
1.General introduction
2. electronic configuration
3.occurrence and characteristics of transition metals
4.general trends in properties of the first row transition metals - metallic character, ionization enthalpy,
oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds,
alloy formation, preparation and properties of K2
Cr
2
O7
and KMnO4
.
Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid
contraction and its consequences.
Actinoids - Electronic configuration, oxidation states and comparison with lanthanoids

** Coordination compounds

** Organic chemistry : some basic principles and Tech niques

** Hydrocarbons

** Environmental Chemistry

** Haloalkanes and Haloarenes:-
1.Haloalkanes:
-Nomenclature
- nature of C -X bond
- physical and chemical properties
- mechanism of substitution reactions
- optical rotation.
2.Haloarenes:
-Nature of C -X bond
- substitution reactions (Directive influence of halogen in
monosubstituted compounds only).
3.Uses and environmental effects of - dichloromethane
-trichloromethane, tetrachloromethane,
iodoform, freons, DDT.


** Alchohals, phenols and Ethers:-
1.Alcohols:
- Nomenclature
- methods of preparation
- physical and chemical properties( of primary
alcohols only)
- identification of primary, secondary and tertiary alcohols
- mechanism of dehydration
-uses with special reference to methanol and ethanol.
2.Phenols:
-Nomenclature
- methods of preparation
- physical and chemical properties
- acidic nature of phenol
- electrophillic substitution reactions
- uses of phenols.
3.Ethers:
-Nomenclature- methods of preparation
-physical and chemical properties
- uses.

** Aldehydes, Ketones and Carboxylic acids:-
1.Aldehydes and Ketones:
-Nomenclature
- nature of carbonyl group
- methods of preparation
-physical and chemical properties
- mechanism of nucleophilic addition
- reactivity of alpha hydrogen
in aldehydes: uses.
2.Carboxylic Acids:
-Nomenclature
- acidic nature
- methods of preparation
- physical and chemical properties; uses.

** Organic compounds containing nitrogen:-
1.Amines: Nomenclature
- classification
- structure
-methods of preparation
- physical and chemical properties
- uses
- identification of primary, secondary and tertiary amines.
2.Cyanides and Isocyanides - will be mentioned at relevant places in text.
3.Diazonium salts:
-Preparation
- chemical reactions and importance in synthetic organic chemistry

** Biomolecules:-
1.Carbohydrates - Classification (aldoses and ketoses)
- monosaccahrides (glucose and fructose),
-D-L configuration oligosaccharides (sucrose, lactose, maltose)
- polysaccharides (starch, cellulose,
glycogen)
- Importance of carbohydrates.
2.Proteins -Elementary idea of α - amino acids, peptide bond, polypeptides, proteins, structure
of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea
only), denaturation of proteins; enzymes.
3. Hormones - Elementary idea excluding structure.
4.Vitamins - Classification and functions.
5.Nucleic Acids: DNA and RNA.

** Polymers:-
1.Classification -
-natural and synthetic
- methods of polymerization (addition and condensation)
copolymerization
2. some important polymers: natural and synthetic like polythene, nylon polyesters,bakelite,rubber
3.Biodegradable and non-biodegradable polymers.

** Chemistry in everyday life:-
1.Chemicals in medicines -
-analgesics
- tranquilizers antiseptics
-disinfectants
-antimicrobials
-antifertility drugs
-antibiotics
-antacids
-antihistamines.
2.Chemicals in food -
preservations
- artificial sweetening agents
- elementary idea of antioxidants.
3.Cleansing agents-
-soaps and detergents
- cleansing action.
  #3  
23rd January 2020, 10:11 AM
Unregistered
Guest
 
Re: Syllabus for AMU MBBS Entrance Exam

Can you provide me the syllabus for Aligarh Muslim University (AMU) MBBS Entrance Exam, now replaced with National Eligibility cum Entrance Test Under Graduate (NEET UG)?
  #4  
23rd January 2020, 10:13 AM
Super Moderator
 
Join Date: Oct 2019
Re: Syllabus for AMU MBBS Entrance Exam

The syllabus for Aligarh Muslim University (AMU) MBBS Entrance Exam, now replaced with National Eligibility cum Entrance Test Under Graduate (NEET UG) is as follows:


NEET Syllabus for Chemistry

Class XI
Some Basic Concepts of Chemistry
Structure of Atom
Classification of Elements and Periodicity in Properties
Chemical Bonding and Molecular Structure
States of Matter: Gases and Liquids
Thermodynamics
Equilibrium
Redox Reactions
Hydrogen
s-Block Element (Alkali and Alkaline earth metals)
Some p-Block Elements
Organic Chemistry- Some Basic Principles and Techniques
Hydrocarbons
Environmental Chemistry


Class XII
Solid State
Solutions
Electrochemistry
Chemical Kinetics
Surface Chemistry
General Principles and Processes of Isolation of Elements
p- Block Elements
d and f Block Elements
Coordination Compounds
Haloalkanes and Haloarenes
Alcohols, Phenols and Ethers
Aldehydes, Ketones and Carboxylic Acids
Organic Compounds Containing Nitrogen
Biomolecules
Polymers
Chemistry in Everyday Life


NEET Syllabus for Physics

Class XI
Physical-world and measurement
Kinematics
Laws of Motion
Work, Energy and Power
Motion of System of Particles and Rigid Body
Gravitation
Properties of Bulk Matter
Thermodynamics
Behaviour of Perfect Gas and Kinetic Theory
Oscillations and Waves


Class XII
Electrostatics
Current Electricity
Magnetic Effects of Current and Magnetism
Electromagnetic Induction and Alternating Currents
Electromagnetic Waves
Optics
Dual Nature of Matter and Radiation
Atoms and Nuclei
Electronic Devices


NEET Syllabus for Biology

Class XI
Diversity in Living World
Structural Organisation in Animals and Plants
Cell Structure and Function
Plant Physiology
Human physiology


Class XII
Reproduction
Genetics and Evolution
Biology and Human Welfare
Biotechnology and Its Applications
Ecology and environment


Syllabus National Eligibility cum Entrance Test Under Graduate (NEET UG)






Quick Reply
Your Username: Click here to log in

Message:
Options




All times are GMT +5. The time now is 04:42 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
SEO by vBSEO 3.6.0 PL2

1 2 3 4