2023 2024 Student Forum > Management Forum > Main Forum

 
  #2  
22nd July 2015, 10:43 AM
Super Moderator
 
Join Date: Apr 2013
Re: NEET Exam Date and Time

Central Board of Secondary Education (CBSE) conducts National Eligibility cum Entrance Test every year and it is a qualifying entrance exam in India, for students who wish to study any graduate medical course (MBBS), dental course (BDS) or postgraduate course (MD / MS) in government or private medical colleges in India.

Eligibility:
Applicants should have passed Class 12th or must be appearing for the final examination.

NEET Tentative dates:

Date of Examination, NEET (UG): First week of May 2015
Schedule for submission of application forms without late fee: First week of December 2014 to last week of December 2014
Date of receipt of confirmation page in CBSE: First week of January 2015
Schedule for submission of online application forms with late fee Rs.1000/-: First week of January 2014 to end of January 2015
Date of receipt of confirmation page in CBSE for the applications submitted late with fee of Rs.1000: First week of February 2015

Duration of Exam: three hrs

Pattern of NEET:

The entrance exam is based on an objective type question paper based on the questions on the following:

Physics, Chemistry and Biology

Total Marks Assigned: 720 Marks (4 Marks each)

Total Questions: 180

The candidates will be penalized for every wrong attempt in the form of 1 marks deduction
National Eligibility cum Entrance Test syllabus
CONTENTS CLASS XI SYLLABUS
UNIT I: Physical World and Measurement
Details:-
Physics: Scope and excitement; nature of physical laws; Physics, technology and
society.
Need for measurement: Units of measurement; systems of units; SI units,
fundamental and derived units. Length, mass and time measurements; accuracy
and precision of measuring instruments; errors in measurement; significant
figures.
Dimensions of physical quantities, dimensional analysis and its applications.
UNIT II: Kinematics
Details:-
Frame of reference, Motion in a straight line; Position-time graph, speed and
velocity. Uniform and non-uniform motion, average speed and instantaneous
velocity. Uniformly accelerated motion, velocity-time and position-time graphs,
for uniformly accelerated motion (graphical treatment).
Elementary concepts of differentiation and integration for describing motion.
Scalar and vector quantities: Position and displacement vectors, general vectors,
general vectors and notation, equality of vectors, multiplication of vectors by a
real number; addition and subtraction of vectors. Relative velocity.
Unit vectors. Resolution of a vector in a plane-rectangular components.
Scalar and Vector products of Vectors. Motion in a plane. Cases of uniform
velocity and uniform acceleration- projectile motion. Uniform circular motion.
UNIT III: Laws of Motion
Details:-
Intuitive concept of force. Inertia, Newton’s first law of motion; momentum and
Newton’s second law of motion; impulse; Newton’s third law of motion. Law of
conservation of linear momentum and its applications.
Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction,
rolling friction, lubrication.
Dynamics of uniform circular motion. Centripetal force, examples of circular
motion (vehicle on level circular road, vehicle on banked road).
UNIT IV: Work, Energy and Power
Details:-
Work done by a constant force and variable force; kinetic energy, work-energy
theorem, power.
Notion of potential energy, potential energy of a spring, conservative forces;
conservation of mechanical energy (kinetic and potential energies); nonconservative
forces; motion in a vertical circle, elastic and inelastic collisions in
one and two dimensions.
UNIT V: Motion of System of Particles and Rigid Body
Details:-
Centre of mass of a two-particle system, momentum conservation and centre of
mass motion. Centre of mass of a rigid body; centre of mass of uniform rod.
Moment of a force,-torque, angular momentum, conservation of angular
momentum with some examples.
Equilibrium of rigid bodies, rigid body rotation and equation of rotational motion,
comparison of linear and rotational motions; moment of inertia, radius of
gyration. Values of M.I. for simple geometrical objects (no derivation).
Statement of parallel and perpendicular axes theorems and their applications.
UNIT VI: Gravitation
Details:-
Kepler’s laws of planetary motion. The universal law of gravitation.
Acceleration due to gravity and its variation with altitude and depth.
Gravitational potential energy; gravitational potential. Escape velocity, orbital
velocity of a satellite. Geostationary satellites.
UNIT VII: Properties of Bulk Matter
Details:-
Elastic behavior, Stress-strain relationship. Hooke’s law, Young’s modulus, bulk
modulus, shear, modulus of rigidity, poisson’s ratio; elastic energy.
Viscosity, Stokes’ law, terminal velocity, Reynold’s number, streamline and
turbulent flow. Critical velocity, Bernoulli’s theorem and its applications.
Surface energy and surface tension, angle of contact, excess of pressure,
application of surface tension ideas to drops, bubbles and capillary rise.
Heat, temperature, thermal expansion; thermal expansion of solids, liquids, and
gases. Anomalous expansion. Specific heat capacity: Cp, Cv- calorimetry;
change of state – latent heat.
Heat transfer- conduction and thermal conductivity, convection and radiation.
Qualitative ideas of Black Body Radiation, Wein’s displacement law, and Green
House effect.
Newton’s law of cooling and Stefan’s law.
UNIT VIII: Thermodynamics
Details:-
Thermal equilibrium and definition of temperature (zeroth law of
Thermodynamics). Heat, work and internal energy. First law of
thermodynamics. Isothermal and adiabatic processes.
Second law of the thermodynamics: Reversible and irreversible processes. Heat
engines and refrigerators.
UNIT IX: Behaviour of Perfect Gas and Kinetic Theory
Details:-
Equation of state of a perfect gas, work done on compressing a gas.
Kinetic theory of gases: Assumptions, concept of pressure. Kinetic energy and
temperature; degrees of freedom, law of equipartition of energy (statement only)
and application to specific heat capacities of gases; concept of mean free path.
UNIT X: Oscillations and Waves
Details:-
Periodic motion-period, frequency, displacement as a function of time. Periodic
functions. Simple harmonic motion(SHM) and its equation; phase; oscillations of
a spring-restoring force and force constant; energy in SHM –Kinetic and potential
energies; simple pendulum-derivation of expression for its time period; free,
forced and damped oscillations (qualitative ideas only), resonance.
Wave motion. Longitudinal and transverse waves, speed of wave motion.
Displacement relation for a progressive wave. Principle of superposition of
waves, reflection of waves, standing waves in strings and organ pipes,
fundamental mode and harmonics. Beats. Doppler effect.
CONTENTS OF CLASS XII SYLLABUS
UNIT I: Electrostatics
Details:-
Electric charges and their conservation. Coulomb’s law-force between two point
charges, forces between multiple charges; superposition principle and continuous
charge distribution.
Electric field, electric field due to a point charge, electric field lines; electric
dipole, electric field due to a dipole; torque on a dipole in a uniform electric field.
Electric flux, statement of Gauss’s theorem and its applications to find field due to
infinitely long straight wire, uniformly charged infinite plane sheet and uniformly
charged thin spherical shell (field inside and outside)
Electric potential, potential difference, electric potential due to a point charge, a
dipole and system of charges: equipotential surfaces, electrical potential energy of
a system of two point charges and of electric diploes in an electrostatic field.
Conductors and insulators, free charges and bound charges inside a conductor.
Dielectrics and electric polarization, capacitors and capacitance, combination of
capacitors in series and in parallel, capacitance of a parallel plate capacitor with
and without dielectric medium between the plates, energy stored in a capacitor,
Van de Graaff generator.
UNIT II: Current Electricity
Details:-
Electric current, flow of electric charges in a metallic conductor, drift velocity and
mobility, and their relation with electric current; Ohm’s law, electrical resistance,
V-I characteristics (liner and non-linear), electrical energy and power, electrical
resistivity and conductivity.
Carbon resistors, colour code for carbon resistors; series and parallel
combinations of resistors; temperature dependence of resistance.
Internal resistance of a cell, potential difference and emf of a cell, combination of
cells in series and in parallel.
Kirchhoff’s laws and simple applications. Wheatstone bridge, metre bridge.
Potentiometer-principle and applications to measure potential difference, and for
comparing emf of two cells; measurement of internal resistance of a cell.
UNIT III: Magnetic Effects of Current and Magnetism
Details:-
Concept of magnetic field, Oersted’s experiment. Biot-Savart law and its
application to current carrying circular loop.
Ampere’s law and its applications to infinitely long straight wire, straight and
toroidal solenoids. Force on a moving charge in uniform magnetic and electric
fields. Cyclotron.
Force on a current-carrying conductor in a uniform magnetic field. Force
between two parallel current-carrying conductors-definition of ampere. Torque
experienced by a current loop in a magnetic field; moving coil galvanometer-its
current sensitivity and conversion to ammeter and voltmeter.
Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic
dipole moment of a revolving electron. Magnetic field intensity due to a magnetic
dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a
magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an
equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic
elements.
Para-, dia-and ferro-magnetic substances, with examples.
Electromagnetic and factors affecting their strengths. Permanent magnets.
UNIT IV: Electromagnetic Induction and Alternating Currents
Details:-
Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law,
Eddy currents. Self and mutual inductance.
Alternating currents, peak and rms value of alternating current/ voltage; reactance
and impedance; LC oscillations (qualitative treatment only), LCR series circuit,
resonance; power in AC circuits, wattles current.
AC generator and transformer.
UNIT V: Electromagnetic Waves
Details:-
Need for displacement current.
Electromagnetic waves and their characteristics (qualitative ideas only).
Transverse nature of electromagnetic waves.
Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet,
x-rays, gamma rays) including elementary facts about their uses.
UNIT VI: Optics
Details:-
Reflection of light, spherical mirrors, mirror formula. Refraction of light, total
internal reflection and its applications optical fibres, refraction at spherical
surfaces, lenses, thin lens formula, lens-maker’s formula. Magnification, power
of a lens, combination of thin lenses in contact combination of a lens and a mirror.
Refraction and dispersion of light through a prism.
Scattering of light- blue colour of the sky and reddish appearance of the sun at
sunrise and sunset.
Optical instruments: Human eye, image formation and accommodation,
correction of eye defects (myopia and hypermetropia) using lenses.
Microscopes and astronomical telescopes (reflecting and refracting) and their
magnifying powers.
Wave optics: Wavefront and Huygens’ principle, reflection and refraction of
plane wave at a plane surface using wavefronts.
Proof of laws of reflection and refraction using Huygens’ principle.
Interference, Young’s double hole experiment and expression for fringe width,
coherent sources and sustained interference of light.
Diffraction due to a single slit, width of central maximum.
Resolving power of microscopes and astronomical telescopes. Polarisation, plane
polarized light; Brewster’s law, uses of plane polarized light and Polaroids.
UNIT VII: Dual Nature of Matter and Radiation
Details:-
Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric
equation- particle nature of light.
Matter waves- wave nature of particles, de Broglie relation. Davisson-Germer
experiment (experimental details should be omitted; only conclusion should be
explained).
UNIT VIII: Atoms and Nuclei
Details:-
Alpha- particle scattering experiments; Rutherford’s model of atom; Bohr model,
energy levels, hydrogen spectrum. Composition and size of nucleus, atomic
masses, isotopes, isobars; isotones.
Radioactivity- alpha, beta and gamma particles/ rays and their properties decay
law. Mass-energy relation, mass defect; binding energy per nucleon and its
variation with mass number, nuclear fission and fusion.
UNIT IX: Electronic Devices
Details:-
Energy bands in solids (qualitative ideas only), conductors, insulators and
semiconductors; semiconductor diode- I-V characteristics in forward and reverse
bias, diode as a rectifier; I-V characteristics of LED, photodiode, solar cell, and
Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor
action, characteristics of a transistor; transistor as an amplifier (common emitter
configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR).
Transistor as a switch
Here I am attaching syllabus of National Eligibility cum Entrance Test which is in pdf format so you can download…..
Attached Files
File Type: pdf National Eligibility cum Entrance Test syllabus.pdf (123.6 KB, 49 views)


Quick Reply
Your Username: Click here to log in

Message:
Options

Thread Tools Search this Thread



All times are GMT +5. The time now is 03:21 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
SEO by vBSEO 3.6.0 PL2

1 2 3 4