2023 2024 Student Forum > Management Forum > Main Forum

 
  #2  
23rd July 2014, 08:42 AM
Super Moderator
 
Join Date: Apr 2013
Re: Indian Institute of Technology Sample Papers

The sample question paper of Indian Institute of Technology is as follows:

Q. 1 Let X be the energy needed to raise the temperature of 5 moles of nitrogen held at constant pressure by one degree. Let Y be the energy needed to raise 5 moles of carbon monoxide by one degree with the pressure held constant. What is the ratio X:Y?
A. 5:7
B. 1:1
C. 7:5
D. 7:9
Answer: B
Discription: There is no need to do any calculations here. If you put X on top of Y, you will see that it reduces to the ratio of Cp for nitrogen over Cp for carbon monoxide. And since both gases have the same Cp, the ratio is simply 1:1.
Q. 2 The difference Cp - Cv is a constant. This constant is often called R, the universal gas constant. Which of the following is true given the data?
A. For a monoatomic gas, Cp = 3/2 R
B. For a diatomic gas, Cp = 3/2 R
C. For a monoatomic gas, Cv = 3/2 R
D. For a diatomic gas, Cv = 3/2 R
Answer: C
Discription: Helium and argon are monoatomic gases, and we can see that Cv = 3/2 *R = (3/2)*2 = 3.
Q. 3 How much energy would be required to heat two moles of methane by one degree if the gas is kept at constant volume?
A. 6.5 calories
B. 8.5 calories
C. 11 calories
D. 13 calories
Answer: D
Description: The definition of Cv is the amount of energy required to heat one mole of a gas by one degree. Therefore, to heat two moles of methane by one degree will require 2*6.5 = 13 calories.
Q. 4 Which of the following is a possible explanation for the fact that Cp is always greater than Cv?
A. Some of the energy is used to expand the container in order to maintain constant pressure.
B. A rigid container does not conduct heat as well as one that can change shape.
C. There are generally more moles of gas when the pressure is kept constant than when the volume is kept constant.
D. There are generally fewer moles of gas when the pressure is kept constant than when the volume is kep constant.
Answer: A
Discription: Because Cp is always greater than Cv we know that it takes more energy to increase a given amount of gas when the pressure is held constant. It is reasonable that the extra energy is used to increase the volume of the container.
Q. 5 A certain amount of energy, X, is sufficient to raise the temperature of 60 moles of argon by T degrees when the pressure is constant. How many moles of argon can be raised by T degrees with the same amount of energy X, if the volume is held constant?
A. 30
B. 50
C. 75
D. 100
Answer: D
Discussion: You can use the two equations:






  #3  
18th March 2015, 10:15 AM
Unregistered
Guest
 
Re: Indian Institute of Technology Sample Papers

Can you provide me the previous year sample question paper of Physics of Indian Institute of Technology as I will be giving the exam this year and need it for preparation?
  #4  
18th March 2015, 10:18 AM
Super Moderator
 
Join Date: Apr 2013
Re: Indian Institute of Technology Sample Papers

The previous year sample question paper of Physics of Indian Institute of Technology as you will be giving the exam this year and need it for preparation is as follows:

Indian Institute of Technology Sample Papers




PHYSICS
General
Units and dimensions, dimensional analysis; least count, significant figures;
Methods of measurement and error analysis for physical quantities pertaining
to the following experiments: Experiments based on using Vernier calipers and
screw gauge (micrometer), Determination of g using simple pendulum, Young’s
modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal
length of a concave mirror and a convex lens using u-v method, Speed of sound
using resonance column, Verification of Ohm’s law using voltmeter and
ammeter, and specific resistance of the material of a wire using meter bridge
and post office box.
Mechanics
Kinematics in one and two dimensions (Cartesian coordinates only),
projectiles; Uniform Circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of
reference; Static and dynamic friction; Kinetic and potential energy; Work and
power; Conservation of linear momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and
inelastic collisions.
Law of gravitation; Gravitational potential and field; Acceleration due to
gravity; Motion of planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and perpendicular axes theorems,
moment of inertia of uniform bodies with simple geometrical shapes; Angular
momentum; Torque; Conservation of angular momentum; Dynamics of rigid
bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders
and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid
bodies.
Linear and angular simple harmonic motions.
Hooke’s law, Young’s modulus.
Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension,
capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal
velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its
applications.
Wave motion (plane waves only), longitudinal and transverse waves,
superposition of waves; Progressive and stationary waves; Vibration of strings
and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in
sound).
Thermal physics
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat
conduction in one dimension; Elementary concepts of convection and
radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for
monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk
modulus of gases; Equivalence of heat and work; First law of thermodynamics
and its applications (only for ideal gases); Blackbody radiation: absorptive and
emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.
Electricity and magnetism
Coulomb’s law; Electric field and potential; Electrical potential energy of a
system of point charges and of electrical dipoles in a uniform electrostatic
field; Electric field lines; Flux of electric field; Gauss’s law and its application in
simple cases, such as, to find field due to infinitely long straight wire, uniformly
charged infinite plane sheet and uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in
series and parallel; Energy stored in a capacitor.
Electric current; Ohm’s law; Series and parallel arrangements of resistances
and cells; Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying
straight wire, along the axis of a circular coil and inside a long straight solenoid;
Force on a moving charge and on a current-carrying wire in a uniform magnetic
field.
Magnetic moment of a current loop; Effect of a uniform magnetic field on a
current loop; Moving coil galvanometer, voltmeter, ammeter and their
conversions.
Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual
inductance; RC, LR and LC circuits with d.c. and a.c. sources.
Optics
Rectilinear propagation of light; Reflection and refraction at plane and
spherical surfaces; Total internal reflection; Deviation and dispersion of light by
a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.
Wave nature of light: Huygen’s principle, interference limited to Young’s
double-slit experiment.
Modern physics
Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay
constant; Half-life and mean life; Binding energy and its calculation; Fission and
fusion processes; Energy calculation in these processes.
Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and
continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves
Attached Files
File Type: pdf Indian Institute of Technology Sample Papers.pdf (1.63 MB, 108 views)


Quick Reply
Your Username: Click here to log in

Message:
Options

Thread Tools Search this Thread



All times are GMT +5. The time now is 02:25 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
SEO by vBSEO 3.6.0 PL2

1 2 3 4