भरा कृषि सेवा परीसा-2006 दि . २ ० व २ > / > / 200 प्रेंगपुस्तिका क्रमांक

BOOKLET NO.

100566

CODE: AKO

प्रश्नपुस्तिका

वेळ : दोन तास

कृषि अभियांत्रिकी

एकूण प्रश्न : 200 एकूण गुण: 400

(1) सदर प्रश्नपुस्तिकेत 200 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून

लगेच बदलून घ्यावी.

आपला परीक्षा क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- परीक्षा-क्रमांक						
				,	क शेवटचा	
	संकेताक्षरे				अंक	

(3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.

- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सूचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी, ह्याकरिता फक्त काळ्या शाईचें बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण *एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न* **घालिवता पृढील प्रश्नाकडे वळावे.** अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे पुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. त्या प्राप्त गुणांतून त्यांनी उत्तरपत्रिकेत चुकीची उत्तरे नमूद केल्याबद्दल गुण वजा केले जाणार नाहीत.
- प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

(9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. <u>मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न</u> विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

- Q. 201. Tha Catch varies inversely with the size of the :
 - (1) nozzle

(2) droplet

(3) obstruction

(4) sprayer

ह्या प्रश्नाचे योग्य उत्तर ''(3) obstruction'' हे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. आता प्र.क्र. 201 समोरील उत्तर-क्रमांक ''③'' चा कंस खालीलप्रमाणे पूर्णपणे छायांकित करुन दाखविणे आवश्यक आहे.

प्र.क्र. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करुन दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे. पेन्सिल वा शाईचे पेन वापरु नये.

पर्यवेक्षकांच्या सूचनेविना हे पृष्ठ उलटू नये

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

1.	Und	ler ground dams are a	divocated under v	vateronica acveropriter	P-00-1							
	(1)	prevent subsurface s	soil movement				*					
	(2)	control deep percola	tion losses									
	(3)	control surface rune permeable layers	off, to achieve w	ater harvesting and t	to recha	rge sub	surface					
	(4)	improve moisture av	ailability for crop	pping								
2.		rmal conductivity of n by :	single grain is	greater than thermal	condu	ctivity (of bulk					
	(1)	2 - 3 times	(2)	3 - 4 times								
	(3)	4 -5 times	(4)	5 -6 times								
3.	Rou	gh grading is done by	the following equ	ipments :								
	(1)	bulldozers, tractor-d	rawn carrier type	scrapers, small scrap	ers etc.							
	(2)	tractor drawn land j	planes or wooden	floats								
	(3)	•										
	(4)	tractor drawn sub-se	oiler									
! .				specific gravity of	electroly	te falls	below					
1.			oe charged when	specific gravity of (3) 2.0	electroly (4)	vte falls	below					
	Trac	ctor battery should b	ne charged when	(3) 2.0			below					
	Trac	ctor battery should b	ne charged when	(3) 2.0			below					
	Trac (1) Sur	ctor battery should be 2.22 (2)	nost effective met	(3) 2.0 hod of:			below					
5.	Trac (1) Surg (1) (3)	ctor battery should be 2.22 (2) ging is the one of the representation Drilling of Well	nost effective met (2) (4)	(3) 2.0 hod of:	(4)	0.8						
4 . 5 . 6 .	Trac (1) Surg (1) (3)	2.22 (2) ging is the one of the national Drilling of Well	nost effective met (2) (4)	(3) 2.0 hod of: Drainage Well development	(4)	0.8						
5.	Trace (1) Surge (1) (3) In delater	zior battery should be 2.22 (2) ging is the one of the management of the design	nost effective met (2) (4)	(3) 2.0 hod of: Drainage Well development enerally based on emi	(4)	0.8						
5.	Trace (1) (3) In delater (1) (3)	2.22 (2) ging is the one of the number of th	nost effective met (2) (4) ign criterion is ge (2) (4)	(3) 2.0 hod of: Drainage Well development enerally based on emi	(4)	0.8						
5. 6.	Trace (1) (3) In delater (1) (3)	2.22 (2) ging is the one of the number of th	nost effective met (2) (4) ign criterion is ge (2) (4)	(3) 2.0 hod of: Drainage Well development enerally based on emi Less than 20% Less than 40%	(4)	0.8						
5. 6.	Trace (1) (3) In delater (1) (3)	2.22 (2) ging is the one of the management of th	nost effective met (2) (4) ign criterion is ge (2) (4) type of device	(3) 2.0 hod of: Drainage Well development enerally based on emi Less than 20% Less than 40%	(4)	0.8						

8.	Whi	ich of the follov	ving rain	n gauge do	not p	roduce	e a mass curve	of rainfa	all as record :
	(1)	tipping bucke	et type r	ain gauge	(2)	weig	ghing bucket ty	pe rain	gauge
	(3)	natural sipho	n type r	ain gauge	(4)	sym	on's rain gauge	!	
9.	Whi	ich impurity sh	ould be	doped in cr	rystall	ine Sil	icon to form n-	type ser	niconductor ?
	(1)	Having holes							
	(2)	Having same	numbei	r of electror	ns as s	emico	nductor		
	(3)	Having surpl	us free e	electrons					
	(4)	Having defici	it of free	electrons					
10.	The	calorific value	of bioga	ns (dung ga	s) is _		•,		
	(1)						20 MJ/m ³	(4)	30 MJ/m ³
11.	Dra	ins are designe	d to low	er and mai	ntain	the gr	ound water :		
	(1)	above the cro	p root z	one	(2)	with	nin the crop roo	t zone	
	(3)	below the fol	iage of c	rop	(4)	belo	w the crop roo	t zone	
12.							s with little mo is possible usir		on in engine and
	(1)	85%	(2)	95%		(3)	100%	(4)	75%
13.	Spe	cific Gravity of	fully ch	arged Lead	Acid	Batter	y is :		
	(1)	1.700	(2)	1.560		(3)	1.420	(4)	1.280
14.		ent innovation owing ?	s in bel	t conveyor	syste	m for	grain handling	g are ex	ccept one of the
	(1)	Use of higher	r belt spe	eeds (upto 4	4.5 m/	′s)			
	(2)	Use of steepe	er trough	ning angle (upto 4	4 5°)	•		
	(3)	Use of incline	d belts to	elevate gra	ins, th	ereby (eliminating the r	need for	bucket elevators.
	(4)	Use of horize elevators.	ontal be	lts to eleva	te gra	ins, th	ereby eliminat	ing the	need for bucket

		inc gravity sepa			•	-			
	(a)	The characteri	stics of	grains to	flow do	own o	ver an inclined	i surface	
	(b)	The floatation	of part	icle due to	upwa	rd mo	vement of air		
	(1)	Principle (a) is	applic	able					
	(2)	Principle (b) is	applic	able					
	(3)	Principles (a)	and (b)	are not ap	plicabl	e			
	(4)	Principles (a)	and (b)	are applic	able				
16.	Whi	ch of the follow	ing is a	vertical a	xis type	wind	mill ?	_	
	(1)	Dutch type			(2)	Sail	type		
	(3)	Savonius			(4)	Non	e of the above		
17.	Indi	cate the form of	drople	ts which is	s not us	sed in	Ultra Low Vo	lume (U	LV) spraying ?
	(1)	Fine sprays	(2)	Mists		(3)	Aerosol	(4)	Fog
18.	Imp	ervious core wa	ll is pro	ovided in t	the emb	ankm	ent, when :		
	(1)	foundation ma	aterial i	s of imper	vious r	ature			
	(2)	embankment :	materia	l is of imp	ervious	natu	re		
	(3)	embankment :	materia	l is pervio	us to w	ater			
	(4)	embankment	and fou	indation m	naterial	impe	rvious to wate	r	
 19.		at is the approxi	mate m	aximum tl	heoretic	al effi	ciency of the h	orizonta	l axis type wind
	(1)	10.5%	(2)	E0 22%		(2)	20 = 404		
	(-)	2010 /5	(2)	59.32%		(3)	38.76%	(4)	90.01%
 20.					allel, th				90.01%
20.		en the pipes are	connec		allel, tl				90.01%
20.	Whe	en the pipes are	connec	ted in par		ne tota		is	90.01%
20.	Whe	en the pipes are	connect ch pipe eciproca	eted in par	ım of lo	ne tota	l loss of head head in each p	is	90.01%
20.	Whe (1) (2)	en the pipes are same as in eac equal to the re	connect ch pipe eciproca um of th	eted in par	ım of lo	ne tota	l loss of head head in each p	is	90.01%
20.	When (1) (2) (3) (4)	en the pipes are same as in each equal to the second none of the above	connect ch pipe eciproca um of the	eted in parall of the su	im of lo	each	l loss of head head in each p pipe	isipe	90.01%
	When (1) (2) (3) (4)	en the pipes are same as in eac equal to the re equal to the so	connect ch pipe eciproca um of the	eted in parall of the su	m of lonead in	each	l loss of head head in each p pipe	isipe	90.01%

	The	depth of water	table is	obtained l	by:				
	(1)	Piezometer			(2)	Obs	ervation well		
	(3)	Driven well			(4)	All	of above		
23.		ich of the follo	wing de	sign invol	ves the	estin	nation of desig	n runof	f rate and flood
	(1)	hydraulic des	sign		(2)	stru	ctural design		
	(3)	hydrologic de	esign		(4)	none	e of the above		
24.	Sedi	iment yield is e	qual to :						
	(1)	sediment yiel	d index	/delivery r	ratio				
	(2)	delivery ratio	× gross	soil erosio	n				
	(3)	gross soil eros	sion/del	livery ratio	,				
	(4)	none of the a	bove						
25.	The	width of borde	r strip i	s not econo	omical:	if it is	less than :		
	(1)	4 m	(2)	3 m	•	(3)	2 m	(4)	1 m
26.					lected d	lepend	ling upon the p	ossibiliti	es of developing
	it co	mpletely within	P						
	(1)	ompletely within 1 - 2 years	(2)	2 - 3 year	rs	(3)	3 - 5 years	(4)	5 - 7 years
 27.	(1)	- •	(2)	2 - 3 year				(4)	5 - 7 years
 27.	(1)	1 - 2 years probable maxis	(2)	2 - 3 year	at a ba	asin o			5 - 7 years
27.	(1)	1 - 2 years probable maxis	(2) mum pr	2 - 3 year ecipitation or a given	at a ba	asin or	a station is :		5 - 7 years
27.	(1) The (1)	1 - 2 years probable maximum the greatest ran impossibly	(2) mum pr ainfall for large r	2 - 3 year ecipitation or a given ainfall of a	at a ba	asin or on that	a station is :	possible	
27.	(1) The (1) (2)	1 - 2 years probable maximum the greatest rule an impossibly a rainfall of a	(2) mum pr ainfall for large r	2 - 3 year ecipitation or a given ainfall of a duration th	at a ba duration given nat can	asin or on that durat	a station is : is physically ploon	possible period o	of 1000 years
27.	(1) The (1) (2) (3) (4)	1 - 2 years probable maximum the greatest run impossibly a rainfall of a rainfall of a	mum prainfall for large regiven of given of give	2 - 3 year ecipitation or a given ainfall of a duration th	at a baduration given nat can nat has	asin on that durat occur the m	a station is : is physically plots on with a return aximum proba	possible period o	of 1000 years
	(1) The (1) (2) (3) (4)	1 - 2 years probable maximum the greatest rule an impossibly a rainfall of a a rainfall of a dry bulb alwa	mum prainfall for large regiven of given of give	2 - 3 year ecipitation or a given ainfall of a duration the duration the ters the ac	at a baduration given nat can nat has	asin on that durat occur the m	a station is : is physically plots on with a return aximum proba	possible period o	of 1000 years
	(1) The (1) (2) (3) (4) The temp	1 - 2 years probable maximum the greatest rainfall of a rainfall of a dry bulb alwayerature which	mum prainfall for large regiven of given of the given of	2 - 3 year ecipitation or a given ainfall of a duration th duration th ters the ac	at a baduration given nat can nat has ctual ai	asin on that durat occur the m	a station is : is physically plots on with a return aximum proba	possible period o	of 1000 years
	(1) The (1) (2) (3) (4) The temp (1)	1 - 2 years probable maximum the greatest run impossibly a rainfall of a a rainfall of a dry bulb alwayerature which higher than a company t	mum prainfall for large regiven of given of the given of	2 - 3 year ecipitation or a given ainfall of a duration the duration the ters the ac- temperature	at a baduration given nat can nat has ctual ai	asin on that durat occur the m	a station is : is physically plots on with a return aximum proba	possible period o	of 1000 years

ΑKÇ	2				9					
29.		per	cent of the	total rural	popul	ation	is available	for doing	g farm wo	ork.
	(1)	30	(2)	40		(3)	35	(4)	45	
30.		tor rear mou lack cotton so		vator used	for see	d bed	l preparation	n and inte	er row cu	ltivation
	(1)	Duck foot	cultivator		(2)	Bucl	k foot cultiv	ator		
	(3)	Suck foot c	ultivator		(4)	Bull	ock foot cul	tivator		
31.		agnitudes of ch of the foll				eriod	ls of 50, 75 a	and 100 y	ears resp	ectively
	(1)	$x_1 < x_2 < x_3$			(2)	$x_1 > 1$	$x_2 > x_3$			
	(3)	$x_1 < x_2 \text{ and }$	$x_2 > x_3$		(4)	<i>x</i> ₁ >	x_2 and x_2 <	x_3		
32.		cate the safe		evel for har	vesting	g the	crop, reduci	ng sheddi	ng and sl	nattering
	(1)	3 - 5%	(2)	13 - 15%		(3)	23 - 25%	(4)	33 - 3	5%
33.		entage loss of		luring harv	est and	d pos	t harvest pe	riod betw	een field	and the
	(1)	10 to 25 pe	r cent		(2)	25 to	o 30 per cen	it		
	(3)	30 to 35 pe			(4)	35 to	o 40 per cen	ıt		
34.	In c	arburettor en	gine thern	nal efficienc	y vari	es bet	tween :			
	(1)	45 to 52 pe	r cent	(2)	38 to	45 p	er cent			
	(3)	32 to 38 pe		(4)			er cent			
35.	Whe	ere it is feasib sed :	le to grad	e the field to	o a tru	e pla	ne	method	d of land	levelling
	(1)	profile			(2)	plar	ne			
	(3)	planinspec	tion		(4)	Con	tour-adjusti	ment		

36. The oil pressure in the hydraulic pump of hydraulic system of tractor is :

(1) $301 \text{ to } 350 \text{ kg/cm}^2$

(2) $251 \text{ to } 300 \text{ kg/cm}^2$

(3) $201 \text{ to } 250 \text{ kg/cm}^2$

(4) 150 to 200 kg/cm²

the velocity, press the fluid characters with time	re and der		None of	ity generation f the above									
steady flow is that ty the velocity, press the fluid character with time	re and der	in which		f the above	· 								
the velocity, press the fluid characters with time	re and der		ı:										
the fluid characters with time		Unsteady flow is that type of flow, in which: (1) the velocity, pressure and density at a point changes with respect to time											
with time	stics like ve	(1) the velocity, pressure and density at a point changes with respect to time.											
	(2) the fluid characteristics like velocity, pressure, density etc., at a point do not change with time												
(3) the velocity at any given time do not change with respect to space (i.e. length of direction of the flow)													
the fluid particles i lines are straight a			ined path	ns or stream lines	and all the stream								
ong following which	one shoul	d be foll	owed for	the tractor after	every 10 working								
(1) Under dusty conditions, air cleaner oil is changed.													
Engine oil should	be changed												
Transmission oil sl	nould be ch	anged											
Tappet clearance s	hould be e	xamined	and chec	ked									
					y. For a secondary								
1000 (2	2) 500		(3) 16	600 (4	3200								
required to fill the t	ank of com	pression	sprayer (to of i	its capacity.								
$\frac{1}{2}$ (2)	$\frac{3}{4}$		(3) $\frac{2}{3}$	(4	$\frac{4}{5}$								
ermocol used for insu	lation of re	frigerated	d room is	made of :									
Foamed polysterer	ne-	(2)	Cork										
Asbestos fibre		(4)	Polyeth	ylene									
	required to fill the to $\frac{1}{2}$ (2) removed used for insurance polysterer	required to fill the tank of compared to fil	required to fill the tank of compression $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{4}$ remocol used for insulation of refrigerated Foamed polysterene (2)	required to fill the tank of compression sprayer $\frac{1}{2}$ (2) $\frac{3}{4}$ (3) $\frac{2}{3}$ removed used for insulation of refrigerated room is Foamed polysterene (2) Cork	required to fill the tank of compression sprayer to of $\frac{1}{2}$ (2) $\frac{3}{4}$ (3) $\frac{2}{3}$ (4) rmocol used for insulation of refrigerated room is made of : Foamed polysterene (2) Cork								

3.		ng limb of hyd	- ai al	-	(2)				
	(1)	Storm and be			(2)		m characteristic	cs only	
	(3)	Basin charac	teristics	only ——-	(4)	Non	e of the above		
4 .	If di	rect runoff is 1	5 ha-cm	and basin a	area is	0.5 sc	q. km, the exces	s rainfa	ll will be:
	(1)	0.3 cm	(2)	4.5 cm		(3)	0.45 cm	(4)	3.0 cm
5.	The	capacity of eac	ch comp	aftment (bu	ıcket) c	of tipp	oing bucket typ	e of rair	n gauge is :
	(1)	1 mm	(2)	0.50 mm		(3)	0.25 mm	(4)	0.75 mm
6.	Bel-	fast truss is als	o someti	mes known	as:				
	(1)	steel truss			(2)	man	sard truss		
	(3)	latticed roof	truss		(4)	trun	cated truss		
7.	Grai	in property not	t used in	cleaning of	f padd	y is :			
	(1)	Size	(2)	Specific g	ravity	(3)	Weight	(4)	Strength
18.		Size Weir does not						(4)	Strength
8.			require			d con		(4)	Strength
18.	The	Weir does not	require Weir		for en	d con	tractions :	(4)	Strength
18.	The (1) (3)	Weir does not Rectangular Triangular W	require Weir Veir	corrections	for en. (2) (4)	d con Cipo All o	tractions : oletti Weir of the above		
	The (1) (3)	Weir does not Rectangular Triangular W	require Weir Veir	corrections	for en. (2) (4)	d con Cipo All o	tractions : oletti Weir of the above		
	The (1) (3)	Weir does not Rectangular Triangular W average fie ha/hr 0.2	require Weir Veir Id capa	corrections acity of tr	for en (2) (4)	d con Cipo All o mou	tractions: pletti Weir of the above unted sugarca	ane pla	onter is about
9.	The (1) (3) The (1)	Weir does not Rectangular Triangular W average fie ha/hr 0.2	require Weir Veir Id capa	corrections acity of tr	for en (2) (4) ractor	d con Cipo All o mou	tractions: pletti Weir of the above unted sugarca	ane pla	inter is about
19.	The (1) (3) The (1)	Weir does not Rectangular Triangular W average fie ha/hr 0.2	require Weir Veir Id capa	corrections acity of tr	for en (2) (4) ractor	d con Cipo All o mou	tractions: pletti Weir of the above unted sugarca	ane pla	onter is about
19.	The (1) (3) The (1)	Weir does not Rectangular Triangular W average fie ha/hr 0.2 type of lizer drill. Pick up	require Weir Veir Id capa (2)	corrections acity of to 0.5 er metering	for en (2) (4) ractor	d con Cipo All o mou (3)	tractions: oletti Weir of the above inted sugarca 1 n is used on a	nimal d	0.8 rawn seed cum
19.	The (1) (3) The (1)	Weir does not Rectangular Triangular W average fie ha/hr 0.2 type of lizer drill. Pick up	require Weir Veir Id capa (2) of fertiliz (2)	corrections acity of tr 0.5 er metering Double ru	for en (2) (4) ractor	d con Cipo All o mou (3)	tractions: oletti Weir of the above inted sugarca 1 m is used on a	nimal d	0.8 rawn seed cum
19.	The (1) (3) The (1) ferti (1)	Weir does not Rectangular Triangular W average fie ha/hr 0.2 type of lizer drill. Pick up use of glass sh	require Weir Veir Id capa (2) of fertiliz (2) neet cove	corrections acity of tr 0.5 er metering Double ru	for en (2) (4) ractor	d con Cipo All o mou (3)	tractions: oletti Weir of the above inted sugarca 1 m is used on a	nimal d	0.8 rawn seed cum
19.	The (1) (3) The (1) The (1)	Weir does not Rectangular Triangular W average fie ha/hr 0.2 type of lizer drill. Pick up use of glass sh Reflecting the	require Weir Veir Id capa (2) of fertiliz (2) neet cove e sun lig	corrections acity of tr 0.5 er metering Double ru er(s) solar he ht	for en (2) (4) ractor g mech	d con Cipo All o mou (3)	tractions: oletti Weir of the above inted sugarca 1 m is used on a	nimal d	0.8 rawn seed cum

52.	The	capacity of a screw conveyor is i	nfluenc	ed by :
	(a)	Screw diameter		
	(b)	Inclination of the screw		
	(c)	Speed of blade		
	(d)	Shaft diameter		
	(1)	(a), (b) are only correct	(2)	(a), (b), (c) and (d) are correct
	(3)	only (c) is correct	(4)	(c), (d) are only correct
53.	The	size of the foundation should be	determ	ined on the basis of :
	(1)	Bearing pressure of the soil	(2)	Tensile strength of the soil
	(3)	Crushing strength of the soil	(4)	None of the above
54.	The	recommended air temperature fo	or dryin	g parboiled paddy in LSU dryer is :
	(1)	45°C (2) 85°C		(3) 95°C (4) 75°C
55.	The	parboiling of paddy is a cumulat	ive fun	ction of one of the following.
	(1)	moisture and temperature	(2)	moisture, temperature and drying
	(3)	only steam heating	(4)	moisture and drying
56.	Con	struction of Nala bund facilitates	:	
	(1)	reclamation of gullied lands		
	(2)	recharging of ground water		
	(3)	reduction of soil erosion and th	ereby s	ilting of natural water courses
	(4)	all the above		
57.		earthen check dam, is being ugramme in Maharashtra for enha		stensively under watershed development ground water recharge, is :
	(1)	Cement weir	(2)	Drop structure
	(3)	Nala bund	(4)	Chute spillway
58.	In E	I ₃₀ index method of rainfall erosi	vity est	imation, I ₃₀ stands for :
	(1)	threshold rainfall intensity of 30	0 mm/	hr
	(2)	maximum rainfall intensity for	30 min	ute duration during the storm
	(3)	rainfall intensity at successive 3	0 minu	te interval during storm
	(4)	30 cm depth of rainfall		

				_				um of :
(1)	1.1 : 1	(2)	1.2 : 1		(3)	2:1	(4)	1.5 : 1
60 ci	m. For the sam			_	-			•
(1)	< 60 cm	(2)	≥ 60 cm		(3)	60 cm	(4)	30 cm
Insti	itute in India w	vhich de	veloped sug	garcan	e plar	nters is :	,	
(1)	I.I.T.	(2)	N.D.D.B.		(3)	C.F.T.R.I.	(4)	I.I.S.R.
Osci	llating type of	hydraul	ic jump tak	es pla	ce wh	en Froude nur	nber is ir	the range of :
(1)	2.5 to 4.5	(2)	1.5 to 2.5		(3)	4.5 to 5.5	(4)	5.5 to 7.5
Whi	ch of the follow	wing is n	nost desiral	ole for	earth	en embankmei	nt ?	
(1)	gravel + sand	l + clay		(2)	grav	el + fine sand		
(3)	sand + clay	•		(4)	•			
As p	per land use cla	assificatio	on, class-III	land i	is suit	able for cultiva	ntion and	demands :
(1)	occasional cu	ıltivatior	1					
(2)	no conservat							
` '		ion meas	sures					
(3)	moderate cor			3				
(3) (4)	moderate con	nservatio	n measures	3				
(4) Whe	intensive con	nservationservation	n measures measures d, the soil e	rosive	capac	rity as represen	ted by th	ne kinetic energy
(4) Whe	intensive con	nservationservation	n measures measures d, the soil e	rosive	(3)	ity as represen	ted by th	ne kinetic energy
Whe of th	intensive con en the velocity in the flowing wat	is double er is incr	n measures n measures ed, the soil e reased about 4 times	rosive t :	(3)	6 times	(4)	0.
Whe of th	en the velocity in the flowing wat	is double er is incr	n measures n measures ed, the soil e reased about 4 times	rosive t :	(3) e of sa	6 times	(4)	0.
	60 cr to be (1) Insti (1) Osci (1) Whi (1) (3)	60 cm. For the same to be: (1) < 60 cm Institute in India w (1) I.I.T. Oscillating type of (1) 2.5 to 4.5 Which of the follow (1) gravel + sand (3) sand + clay As per land use class	60 cm. For the same area the to be: (1) < 60 cm (2) Institute in India which det (1) I.I.T. (2) Oscillating type of hydrault (1) 2.5 to 4.5 (2) Which of the following is re (1) gravel + sand + clay (3) sand + clay As per land use classification	60 cm. For the same area the maximum to be: (1) < 60 cm (2) ≥ 60 cm Institute in India which developed suggetting in India which devel	60 cm. For the same area the maximum aver to be: (1) < 60 cm (2) ≥ 60 cm Institute in India which developed sugarcan (1) I.I.T. (2) N.D.D.B. Oscillating type of hydraulic jump takes place (1) 2.5 to 4.5 (2) 1.5 to 2.5 Which of the following is most desirable for (1) gravel + sand + clay (2) (3) sand + clay (4) As per land use classification, class-III land is	60 cm. For the same area the maximum average de to be: (1) < 60 cm (2) ≥ 60 cm (3) Institute in India which developed sugarcane plant (1) I.I.T. (2) N.D.D.B. (3) Oscillating type of hydraulic jump takes place when (1) 2.5 to 4.5 (2) 1.5 to 2.5 (3) Which of the following is most desirable for earther (1) gravel + sand + clay (2) gravel (3) sand + clay (4) clay As per land use classification, class-III land is suited.	60 cm. For the same area the maximum average depth for a 2-day to be: (1) < 60 cm (2) ≥ 60 cm (3) 60 cm Institute in India which developed sugarcane planters is: (1) I.I.T. (2) N.D.D.B. (3) C.F.T.R.I. Oscillating type of hydraulic jump takes place when Froude num (1) 2.5 to 4.5 (2) 1.5 to 2.5 (3) 4.5 to 5.5 Which of the following is most desirable for earthen embankmen (1) gravel + sand + clay (2) gravel + fine sand (3) sand + clay (4) clay	(1) < 60 cm (2) ≥ 60 cm (3) 60 cm (4) Institute in India which developed sugarcane planters is: (1) I.I.T. (2) N.D.D.B. (3) C.F.T.R.I. (4) Oscillating type of hydraulic jump takes place when Froude number is in (1) 2.5 to 4.5 (2) 1.5 to 2.5 (3) 4.5 to 5.5 (4) Which of the following is most desirable for earthen embankment? (1) gravel+sand+clay (2) gravel+fine sand (3) sand+clay (4) clay As per land use classification, class-III land is suitable for cultivation and

67.	Hea	t can be transferre	ed by	except one o	of the	follo	wing ways?		. •		
	(1)	Conduction	(2)	Radiation		(3)	Convection	(4)	Proportion		
68.	In ca	ase of hydraulic d	esign	for non-stea	dy st	ate su	b-surface draina	age	formula		
	(1)	Glover-Dumm	(2)	Ernst		(3)	Hooghoudt	(4)	Kirkham		
69.		neology except on avior of the mater		ne following	paran	neters	are used for ex	pressing	the mechanical		
	(1)	Force	(2)	Deformation	on	(3)	Time	(4)	Porosity		
70.	In e	xcavated farm por	nd, th	e side slope	usual	ly ke _l	pt in firm soils is	s:			
	(1)	1:1	(2)	1.5 : 1		(3)	2:1	(4)	1:2		
71.		en average annual	l rainf	all and evap	oratio	on ov	er land masses a	and ocea	ans on the earth		
	(1)										
	(2)	more rainfall o	curs (over land are	ea tha	an eva	aporated back fi	om the	same area		
	(3)	more rainfall or	n ocea	ns than wha	ıt is e	vapo	rated				
	(4)	annual rainfall	and a	nnual evapo	ratio	n ove	r oceans are equ	ıal			
72.	Surp	olus weirs are ger	nerally	used to pro	tect l	oreach	ning of :				
	(1)	contour bund			(2)	grac	led bund				
	(3)	terrace			(4)	dive	ersion drain				
73.		science of artific									
	(1)	evaporation	(2)	runoff		(3)	rainfall	(4)	irrigation		
74.		ing conditioning of then tempered in			cont	ent is	increased to 15	- 16 pei	rcent by soaking		
	(1)	18 - 72 hours			(2)	2 - 1	10 hours				
	(3)	10 - 20 hours			(4)	70 -	80 hours				

The erosion control structure adopted for the non arable land is:

contour bunds **(1)**

(2) graded bunds

(3)trenches **(4)** ponds

Engineering measures of erosion control for arable land become necessary, when land slopes are:

more than 2% (1)

more than 3% (2)

(3)more than 5% more than 10%

In the drum or roller dryer the food is coated as a thin paste over the surface of a slowly revolving heated cylinder in one of the following positions?

- Vertical **(1)**
- (2)Horizontal
- Inclined
- Declined **(4)**

If temperature and pH are favourable a Carbon-Nitrogen (C/N) ratio of which range will permit optimum digestion in biogas plant?

- **(1)** 10
- (2)
- 30 **(4)**

A queen post truss is suitable for roof of spans varying from _

10 to 15 meters **(1)**

05 to 10 meters (2)

(3) 08 to 12 meters (4) 05 to 15 meters

Which of the following is not a basic element of a transformer?

(1) Core

- Secondary winding (2)
- (3)Primary winding
- (4)Mutual flux

L₁, L₂, L₃ are the length of three pipes, connected in series. If d₁, d₂ and d₃ are their diameter, then the equivalent size of the pipe is given by:

- (1) $\frac{L}{d^5} = \frac{L_1}{d_1^5} + \frac{L_2}{d_2^5} + \frac{L_3}{d_3^5}$ (2) $\frac{d^5}{L} = \frac{d_1^3}{L_1} + \frac{d_2^3}{L_2} + \frac{d_3^3}{L_3}$
- (3) $Ld^5 = L_1d_2^5 + L_2d_2^5 + L_3d_2^5$ (4) $Ld^5 = L_1d_3^5 + L_2d_3^5 + L_3d_3^5$

82.	Efficient irrigation by the Furrow method is obtained by selecting proper combination of:									
	(1)	spacing and ler	ngth o	nly	,		,			
	(2)	slope of furrow	s and	suitable size	of in	rigatio	n stream only			
	(3)	length and dur	ation (of water app	olicati	on onl	y			
	(4)	spacing, length a of water applic		ope of furrow	s and	l suitab	le size of irrigat	ion stre	am and duration	
83.	Indi	cate which is not	a spra	ayer in this	group).				
	(1)	Hand atomizer			(2)	Engi	ne powered sp	rayer		
	(3)	Air plane spray	ær		(4)	Orier	nt sprayer			
84.	For	conveying grains	on a l	belt conveyo	r, rec	ommei	nded speed of i	its belt i	s:	
	(1)	2.5 - 2.8 m/s	(2)	3 - 3.5 m/s	S	(3)	4 - 4.5 m/s	(4)	0.5 - 1 m/s	
85.	In te	erms of power ou	ıtput c	one can expe	ct ho	w muc	ch kW per anin	nal?		
	(1)	0.3 to 0.6	(2)	0.7 to 1.0		(3)	1.1 to 1.4	(4)	1.5 to 1.8	
86.	Wha	nt is the standard	value	e of the sola	r con	stant _				
	(1)	1000 W/m^2			(2)	2000	W/m^2			
	(3)	1353 W/m ²			(4)	1857	W/m ²			
87.	Colo	l storages are use	ed to r	naintain the	fruits	s at :				
	(1)	Low temperatu	ıre		(2)	Low	humidity			
	(3)	High temperate	ure		(4)	High	humidity	÷		
88.	The	milk house is ge	nerally	y placed awa	ay fro	m the	dairy barn at a	ibout :		
	(1)	4 m	(2)	2 m		(3)	6 m	(4)	8 m	
89.	The	most important	factor	affecting the	e term	ninal ve	elocity of a spr	ay drop	olet is :	
89.	The	most important i	factor	affecting the	(2)		elocity of a spr let density	ay drop	let is :	

90.		ong the methods ensive and situat		mentation contro ented ?	l in res	ervoirs, which m	ethod	is comparatively
	(1)	Construction of	f vege	tation screens				
	(2)	Control of sedi	ment i	nflow				
	(3)	Removal of sed	liment	deposit				
	(4)	erosion control	in the	catchment				
91.	If th	_	increa	ased twice then t	the po	wer available w	ill incr	ease how many
	(1)	8 times	(2)	20 times	(3)	16 times	(4)	32 times
92.	A m	inimum furrow	grade	of pe	er cent	is needed to en	sure s	ırface drainage.
	(1)	0.01	(2)	0.03	(3)	0.05	(4)	0.10
93.		area is classified	l as a	drought prone a	rea if	the probability	ʻp' of	occurrence of a
	(1)	0.4	(2)	$0.2 \le p \le 0.4$	(3)	$0.1 \le p < 0.2$	(4)	0.0
94.	The	mass curve of ra	infall i	is drawn as a plo	ot of :			
	(1)	Rainfall intensi	ty Vs	time				
	(2)	Accumulated r	ainfall	intensity Vs tim	e			
	(3)	Accumulated r	ainfall	Vs time in chron	nologi	cal order		
	(4)	Rainfall volum	e Vs ti	me				
95.		ssential tests ur wing ?	nder ti	ractor testing th	ere ar	e number of tes	sts exc	rept one among
	(1)	Engine test		(2)	Dra	wbar test		
	(3)	Centre of grave	ity	(4)	Noi	se measurement		
96.	Bucl	ket elevator with	a belt	carrier can be us	ed at	a high speed of :		
	(1)	2.5 to 4.0 m/se	ec	(2)	5.0	to 8.0 m/sec		
	(3)	7.5 to 12.0 m/s	sec	(4)	10.0	to 16.0 m/sec		
				·				P.T.

97.	Whi	ch one of the foll	owing	g is not a po	sitive	displa	acement pump?		
	(1)	Reciprocating p	iston	pump	(2)	Gea	r pump		
	(3)	Rotary pump			(4)	Cen	trifugal pump		
98.	Soil	erodibility factor	′K′ is	higher in :					
	(1)	Sandy soils			(2)	Clay	ey soils		
	(3)	Silt clay soils			(4)	Loai	my soils		
99.	Road	d speed of farm t	ractor	for transpo	ort wo	rk is :			
	(1)	19 to 24 kmph	(2)	25 to 30 l	kmph	(3)	31 to 36 kmph	(4)	37 to 42 kmph
100.	In th	nin layer drying g	rain l	ed thicknes	ss is :				
	(1)	20 cm	(2)	40 cm		(3)	60 cm	(4)	80 cm
101.	Rice	milling machine	ry hav	ing the hig	hest sl	helling	g efficiency is :		
	(1)	Under runner d	isc sh	neller	(2)	Rub	ber roll sheller		
	(3)	Huller			(4)	Cen	trifugal dehuske	r	
102.	The	practical unit of	electr	ical energy	is		•		
	(1)	Joules-second			(2)	Wat	t-second		
	(3)	Kilowatt-hour			(4)	Wat	t-hour		
103.	The	equipment used	for la	nd grading	is:				
	(1)	M.B. Plough	(2)	Disc Plou	gh	(3)	Buck Scraper	(4)	Cultivator
104.	Dive	ersion ditches pro	vided	for protect	tion of	cultiv	vated land, are g	enerall	y planned :
	(1)	along the slope	at the	e upstream	of pro	tected	land		
	(2)	across the slope	at th	e upstream	of pro	otecte	d land		
	(3)	at the field bour	ndary	irrespectiv	e of sle	ope di	rection		
	(4)	across the slope	at th	e downstre	am of	prote	cted land		
105.	Whi	ch one of the foll	owing	g is not a pr	 rincipa	l part	of a Sprayer No	zzle ?	
	(1)	Body			(2)	Was	sher		

114. In case of two point sampling the sediment observations are recorded from :

(1) 0.4 d and 0.6 d

(2) 0.3 d and 0.7 d

(3) 0.2 d and 0.8 d

(4) 0.1 d and 0.9 d

115.	Aqu	ifers, ground v	vater res	ervoir or v	vater b	earing	g formations a	re the :	
	(1)	formations of	r strata	within the	unsatu	ırated	zone below g	ground su	ırface
	(2)	formations of	r strata v	vithin the	unsatu	ırated	zone above t	he groun	d surface
	(3)	formations of	r strata v	vithin the	saturat	ed zo	ne below the	ground s	urface
	(4)	formation or	strata w	ithin the s	aturate	d zon	e above the g	round su	rface
116.		e delta for a cro uty will be				eriod (of crop is fron	n June to	September, then
	(1)	748.7	(2)	784.8		(3)	846.5	(4)	878.4
<u>.</u> 117.	For e	efficient photo-	voltaic c	ell, it is de	sirable	to hav	ve high values	s of :	
	(1)	Fill factor			(2)	Shor	t circuit curre	ent	
	(3)	Open circuit	voltage		(4)	All o	of the above		
118.	Spar	k ignition eng	ine work	s on the p	rincipl	e of _	сус	ele.	
	(1)	otto	(2)	petrol		(3)	diesel	(4)	gas
119.		return period (years means :		ay maximu	ım rain	fall of	magnitude e	qual to or	greater than 'x'
-	(1) *	In a long per	iod of 10	00 years, 10) such	events	s can be expec	ted	
	(2)	That every 10) years, t	he event v	vould o	definit	ely occur		
	(3)	Such events a	are likely	twice in 1	l0 years	S			
	(4)	None of the a	above						
120.	Con	tents of fruit a	nd veget	ables are r	etained	more	e in :		
	(1)	Tray drying	method		(2)	Tun	nel drying me	ethod	
	(3)	Sun drying n	nethod		(4)	Free	ze drying me	thod	
 121.		combine harve x) is:	ester the	normal rat	tio of p	eriphe	eral speed to f	orward s	peed (reel speed
	(1)	2 to 2.5	(2)	2.5 to 3		(3)	1.25 to 1.5	(4)	3.5 to 4

ΑKÇ	2				21				
122.	In di		orque is co	nsidera	ably h	igh at	lower than rated	speed	this behavior is
	(1)	rising ability	(2) gea	ring al	oility	(3)	lugging ability	(4)	traction ability
123.	For a	a hilly terrain reg	ion the gre	en hou	ise rec	comm	ended is :		
	(1)	Lean to type gr	een house		(2)	Eve	n span type greer	hous	e
	(3)	Uneven span ty	pe green l	nouse	(4)	Quo	nset green house	•	
124.	Purp	oose of providing	very flat s	ides in	broad	l base	terraces is :		
	(1)	to increase space	ing of terr	aces, th	nereby	achie	eving economy		
	(2)	to increase carr	ying capac	ity of t	terrace	e char	nnel		
	(3)	to facilitate agr	icultural o	peratio	ns				
	(4)	to improve soil	deposition						
 125.	To i	ncrease the spray	angle of r	ozzle s	pray	patter	n, it is required :		
	(a)	to increase orifi	ce diamete	er		-	_		
	(b)	to increase pres	sure						
	(c)	to reduce openi	ng of swir	l plate					
	(1)	(a) and (b) are	correct onl	y					
	(2)	(a), (b) and (c)	all are corr	ect					
	(3)	(b) and (c) are	correct only	y					
	(4)	(a), (b) and (c)	are incorre	ct					
							ake into storage plead normal to th		
 126.		aquifer per unit c							
 126.		equifer per unit o coefficient of st	Ü		(2)	spec	ific yield		

(2)

(4)

High speed Engine

P.T.O.

Hand Automizer

(1)

(3)

Blower

Discharge Hose pipe

128.	In ra	ational method,	'I' repr	esents :			•		
	(1)	average rate of	f rainfa	111					
	(2)	one hour inten	sity of	rainfall					
	(3)	intensity of rai	nfall fo	or a duratio	n at le	east eq	jual to the tim	e of conc	entration
	(4)	none of the ab	ove						
129.	Dry	er used to remov	e wate	r from solu	itions (or sus	pensions is :		
	(1)	Solar dryer			(2)	Rota	ary dryer		
	(3)	Spray dryer			(4)	Bato	h dryer	i	
130.		is the an	nount o	of forward	travel	per c	ut by the rota	y tiller.	
	(1)	Byte length			(2)	Cut	length		
	(3)	Bite length			(4)	Effe	ctive length		
131.		the purpose of starter of ratio					a star-delta sv	vitch is e	quivalent to an
 132.	The	erodibility index	of a s	oil having	 20% sa	 and, 4	0% silt and 60	% clay is	
	(1)	1	(2)	1.5		(3)	2	(4)	2.5
133.	The	factors affecting	drawl	oar perforn	nance	are :			
	(a)	total weight							
	(b)	centre of gravi	ty						
	(c)	condition of tr	action	surface					
	(d)	travel speed							
	(1)	(a), (b), (c) and	(d) all	are correc	t				¢.
	(2)	(a), (b), (c) com	rect an	d (d) incor	rect				,
	(3)	only (d) is corr	ect						
	(4)	(b), (c) correct	and (a), (d) incom	rect				
134		ch of the followi	no ie d	ifferent fro	m the	rect 2	·····		<u> </u>
104.	(1)	rain	(2)	drizzle	M ME	(3)	hail	(4)	fog

135. An isohyte is a line joining points having :

(1) equal evaporation values

	(2)	equal heights above mean s	sea level	
	(3)	equal rainfall intensity		
	(4)	equal rainfall magnitude	•	
136.	For	gully erosion control, long ar	nd narrow n	nedium size gullies are controlled with :
	(1)	diversion structures at gull	y head	
	(2)	permanent and semi-perma	anent check	dams
	(3)	tillage operations		
	(4)	filling with soil		
137.	One	of the following is not a par	t of single e	ffect Evaporator :
	(1)	Heat Exchanger	(2)	Condenser
	(3)	Separator	(4)	Concentrator
138.	non	-arable hill slopes is to:	. 0	, primary objective of planning trenches or
	(1)	control soil erosion and lan		
	(2)	conserve moisture for affor		
	(3)	break the length of slope at		unoff safely
	(4)	to engage personnel under	EGS	·
139.	grou	•		aeration interrupts percolation and causes above that stratum. Such type of geological
	(1)	Confined aquifer	(2)	Unconfined aquifer
	(3)	Perched water table	(4)	Aquiclude
 140.	Sepa	arator which separates mater	ial on the b	asis of shape and surface texture is :
	(1)	Disc separator	(2)	Inclined draper
		0 1 1	(4)	Cyclone separator
	(3)	Spiral separator	(=)	Cycloric separator

141.		capacity of Rotary	d ry er	for dry	ing parbo	oiled pa	iddy i	ntroduced b	y Jada	vpur University
	(1)	1 Tonne/hr			(2)	2 To	nnes/	hr .		
	(3)	3 Tonnes/ hr			(4)	4 To	nnes/	/hr		
142.	The	most efficient cro	ss sec	tion for	an open	chann	el is :			
	(1)	Semi circle	(2)	Rectar	ngular	(3)	Trap	pezoidal	(4)	Triangular
143.		erally head water gn flood, are of ty		control	reservoi	rs, use	d for a	automatic re	egulati	ing the excess of
	(1)	storage reservo	irs		(2)	dete	ntion	reservoirs		
	(3)	multipurpose re	eservo	irs	(4)	wate	er har	vesting res	ervoirs	3
144.	The	total area which	can be	e ir r igat	ed by a o	ertain	chanı	nel or a pro	ject is	called as :
	(1)	C. C. A.	(2)	G. C.	A.	(3)	I. I.		(4)	None of above
145.	Air	cleaner used in F	arm ei	ngines is	s :				_	
	(1)	Oil bath type		((2) Hit	and m	niss ty	pe		
	(3)	Pre-cleaner typ	e	. ((4) Sw	immin	g type	2		٠.,
146.	The	common applica	tion of	f pasteu	rization	is to or	ne of t	he followin	ng liqu	ids ?
	(1)	Milk	(2)	Butter	-milk		(3)	Water	(4)	Honey
147.	In U	SLE, the most se	nsitive	factor (causing s	oil los	s is :			
	(1)	R	(2)	K		(3)	LS		(4)	С
148.	Mec	hanical cotton pi	cker c	annot a	ct as a d	evice :				
	(1)	to remove the c	otton	from th	e open b	olls		•		
	(2)	to remove cotto	n fror	n unope	ened boll	s				
	(3)	to convey picke	ed cott	ton						
	(4)	to store picked								

	(1)	grain size of th	e soil	(2)	size	of the footing		
	(3)	shape of the fo	ooting	(4)	all o	f the above		
150.	1 da	arcy =				-		
	(1)	0.876 (µm) ²	(2)	$0.789 \ (\mu m)^2$	(3)	$0.987 \ (\mu m)^2$	(4)	none of these
151.		he time of physi ne tune of :	o-logic	al maturity of the	plant	, the food grains	hold 1	noisture content
	(1)	12-15%	(2)	16-18%	(3)	20-25%	(4)	25-30%
152.		ler single croppi every two hectar	-	tern, it is normal	ly rec	ommended to co	onsider	нг
	(1)	2	(2)	2.5	(3)	3	(4)	1 '
153.	A til	es except one wl	nich m	l) moving at a country to the in equilibrity	um?		ected to	following main
153.	A ti	Force of gravit The soil forces The forces acti	nich mich mich mich acting acting ng bet		um? ement. nent. ent an	d the prime mo		following mair
	A till force (1) (2) (3) (4)	es except one will Force of gravit The soil forces The forces acti Forces of wind	y acting acting ng bety	ust be in equilibring upon the implemented ween the implemented acting upon the	um? ement. nent. ent an	d the prime mo		following main
	A till force (1) (2) (3) (4)	es except one will Force of gravit The soil forces The forces acti Forces of wind yetograph is dra	nich miny acting acting between twelocing with as	ust be in equilibring upon the implementation upon the implementation acting upon the aplot of:	um ? ement. nent . ent an	d the prime mo	ver.	following main
	A till force (1) (2) (3) (4)	Force of gravit The soil forces The forces acti Forces of wind yetograph is dra Run off discha	y acting acting ng beto l velocion wn as	ust be in equilibring upon the implemented ween the implemented acting upon the aplot of:	ement. nent . ent an ne imp	nd the prime more element.	ver.	
154.	A till force (1) (2) (3) (4) A h; (1) (3)	es except one will Force of gravit The soil forces The forces acti Forces of wind yetograph is dra Run off discha	nich miny acting acting between the velocion was as ity Vs	ust be in equilibrium upon the implementation when the implementation are upon the implementation applot of: time (2)	ement. nent . ent an ne imp	od the prime movelement. of all Volume Vs nulative rainfall	ver. time Vs tim	e
154.	A till force (1) (2) (3) (4) A h; (1) (3)	Force of gravit The soil forces The forces acti Forces of wind yetograph is dra Run off discha Rainfall intens average conditio	y acting acting ng beto velocion was as rge Vs	ust be in equilibrium upon the implementate acting upon the implementate a plot of: time (2) time interval (4)	ement. nent . nent an ne imp Rair Cun	od the prime movelement. Infall Volume Vs nulative rainfall ection, the flow was	ver. time Vs tim	e v used for design
154. 155.	A till force (1) (2) (3) (4) A hy (1) (3) For pure (1)	Force of gravit The soil forces The forces acti Forces of wince yetograph is dra Run off discha Rainfall intens average condition poses is: 0.9 to 1.5 m/s	nich miny acting acting between as rge Vs ity Vs	ust be in equilibrium upon the implementation when the implementation acting upon the aplot of: time (2) time interval (4)	ement. nent . nent an ne imp Rair Cun nnel s (3)	od the prime movelement. Infall Volume Vs nulative rainfall ection, the flow value of 2.0 to 2.5 m/s	time Vs tim velocity (4)	e v used for design 2.5 to 3.0 m/s

157.		method tration rates.	d of irrig	gation to soils	is i	having	g moderately	low to m	noderately high
	(1)	Check basin		(2	2)	Bord	er		
	(3)	Furrow		(4	:)	None	e of above		
	12 s							_	en a lateral has ertilizer dose is
	(1)	25.92 kg/sett	ing	(2	2)	26.92	kg/setting		
	(3)	27.92 kg/sett	ing	(4	.)	28.92	2 kg/setting		
159.	Dur	ing milk proces	ssing hor	nogenization o	of n	nilk is	carried out :		
	(1)	To kill the ba	cteria	(2	2)	Тор	reserve the qu	ality	
	(3)	To break fat g	globules	(4	l)	Non	e of the above		
 160.	The	advantages of	solar cor	ncentrator syste	em	over	flat plate type	collector	
	(1)	J		quire less mate					
	(2)	· ·		- n attain higher					
	(3)	Uniform flux	as the a	bsorber.		-			
	(4)	Both (1) and	(2).						
161.		en leaching is r	equired	to remove salts	s fi	rom th	ne soil profile t	he	irrigation
	(1)	Border	(2)	Check basin		(3)	Furrow	(4)	Sprinkler .
 162.	The	wall that can s	upport t	he ceiling as w	ell	as its	own load hav	e thickne	ess of :
	(1)	22.5 cm	(2)	37.5 cm		(3)	32.5 cm	(4)	22.00 cm
163.	Woı	rking width of	5 row 20	cm. spacing p	ad	dy tra	nsplanter is :		
	(1)	0.4 m	(2)	0.6 m		(3)	0.8 m	(4)	1.0 m

	_	ending upon to following?	he seed 1	metering dev	ice, s	eed d	rills may be cla	assified	as except one of
	(1)	Manually me	tered dr	ills					
	(2)	Mechanically							
	(3)	Pneumaticall							
	(4)	Electronically	metered	d drills					
165.	The	tilt angle of th	e disc pl	ough is		 ·			_
	(1)	5° to 10°	(2)	15° to 25°		(3)	30° to 40°	(4)	40° to 45°
166.	Тос	control the flyi	ng insect	s droplet siz	e req	uired	is	micron i	metre.
	(1)	50 to 100	(2)	125 to 150		(3)	10 to 50	(4)	150 to 200
167.		ile calculating the for estimation						watershe	ed, the allowable
	(1)	8%	(2)	10%		(3)	4 %	(4)	20%
 168.	The	coding of water	ershed sl	nould be star	ted f	rom :		-	
			tershed	towards low	er en	ıd			
	(1)	middle of wa	ittiblica						
	(1) (2)	downstream		proceeded t	o up	strear	n end		
	• •		end and	-	-				
	(2)	downstream	end and d and pr	-	-				
 169.	(2) (3) (4) Wha	downstream upstream end none of the a	end and d and pr bove	oceeded to d	lown	strear	n end	m ² of are	ea perpendicular
 169.	(2) (3) (4) Whato w	downstream upstream end none of the a	end and d and pr bove	oceeded to d	lown	strear	n end	m ² of are	ea perpendicular Iso octane
	(2) (3) (4) What to w (1)	downstream upstream end none of the a at is the name for	end and probove or the cor	ntours of cons	lown	wind (3)	power (Watts/		
	(2) (3) (4) What to w (1)	downstream upstream end none of the a at is the name for vind flow) ? Isohytes	end and probove or the cor	ntours of cons	lown	wind (3)	power (Watts/		
	(2) (3) (4) Whato w (1)	downstream upstream end none of the a ent is the name for vind flow) ? Isohytes the reclamation	end and probove or the cor	ntours of cons	stant	wind (3) e salt i	power (Watts/: Isodynes s soluble :		
170.	(2) (3) (4) Whato w (1) For (1) (3)	downstream upstream end none of the a ent is the name for vind flow) ? Isohytes the reclamation Sodium	end and probove or the correction of Alkarbonate	ntours of cons Isobars	stant	wind (3) e salt i	power (Watts/ Isodynes s soluble :		• •

(1) one (2) three (3) two (4) four 173. Percolation tanks, constructed and maintained under minor irrigation projects, act functionally similar to: (1) cement concrete gully control check dam (2) water harvesting concrete weirs (3) gabion type gully control check dams (4) Nala bunds 174. Movement of soil particles move by bouncing along the bed is termed as: (1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess (3) rainfall depth (4) rainfall intensity	172.	In th	ree point hitch s	ystem	·	links	are i	n tensic	n.		
functionally similar to: (1) cement concrete gully control check dam (2) water harvesting concrete weirs (3) gabion type gully control check dams (4) Nala bunds 174. Movement of soil particles move by bouncing along the bed is termed as: (1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(1)	one	(2)	three		(3)	two		(4)	four
(2) water harvesting concrete weirs (3) gabion type gully control check dams (4) Nala bunds 174. Movement of soil particles move by bouncing along the bed is termed as: (1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess	173.				icted and n	nainta	ained	under	minor i	rrigatio	on projects, act
(3) gabion type gully control check dams (4) Nala bunds 174. Movement of soil particles move by bouncing along the bed is termed as: (1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(1)	cement concrete	e gully	control che	eck da	am				
(4) Nala bunds 174. Movement of soil particles move by bouncing along the bed is termed as: (1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(2)	water harvestir	ıg con	crete weirs						
174. Movement of soil particles move by bouncing along the bed is termed as: (1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(3)	gabion type gul	lly cor	ntrol check d	lams					
(1) Saltation (2) Suspension (3) Surface creep (4) Bed load 175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(4)	Nala bunds								
175. Gully cuts the 'C' horizon in development stage number: (1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess	 174.	Mov	ement of soil par	ticles	move by bo	uncin	g alor	ig the b	ed is terr	ned as	:
(1) 1 (2) 2 (3) 3 (4) 4 176. The priority of subwatershed for treatment is decided on the basis of: (1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(1)	Saltation	(2)	Suspension	n	(3)	Surfac	e creep	(4)	Bed load
 176. The priority of subwatershed for treatment is decided on the basis of: productivity sediment yield vegetation area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: door open wall window none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? 0.01 cu.m 0.01 cu.m 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: 1 to 3% 3 to 7% 7 to 12% 12% 180. In system terminology the input of unit hydrograph is: rainfall excess 	<u> </u>	Gull	y cuts the 'C' hor	rizon i	n developm	ent st	age n	umber :			
(1) productivity (2) sediment yield (3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(1)	1	(2)	2		(3)	3		(4)	4
(3) vegetation (4) area of subwatershed 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess	 176.	The	priority of subwa	atersh	ed for treatn	nent i	s deci	ded on	the basis	of:	
 177. An opening made in a wall for the purpose of providing day light, vision and ventilation is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess 		(1)	productivity			(2)	sedi	ment yi	eld		
is known as: (1) door (2) open wall (3) window (4) none of these 178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(3)	vegetation			(4)	area	of sub	watershe	ed	
178. How much quantity of biogas is roughly required to run a one horse power engine for 2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess	177.		- 0	a wall	for the pur	pose (of pro	viding	day light	, vision	and ventilation
2 hours? (1) 0.01 cu.m (2) 0.10 cu.m (3) 1 cu.m (4) 10 cu.m 179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess	•	(1)	door	(2)	open wall		(3)	windo	ow	(4)	none of these
179. Contour farming is most effective to control erosion on land slopes of: (1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess	178.			of bio	gas is rough	nly re	quire	d to rur	n a one l	norse p	ower engine for
(1) 1 to 3% (2) 3 to 7% (3) 7 to 12% (4) > 12% 180. In system terminology the input of unit hydrograph is: (1) base flow (2) rainfall excess		(1)	0.01 cu.m	(2)	0.10 cu.m		(3)	1 cu.n	n	(4)	10 cu.m
180. In system terminology the input of unit hydrograph is : (1) base flow (2) rainfall excess	179.	Con	tour farming is m	nost ef	fective to co	ntrol	erosio	on on la	nd slope	s of :	
(1) base flow (2) rainfall excess		(1)	1 to 3%	(2)	3 to 7%		(3)	7 to 1	2%	(4)	> 12%
	180.	In sy	ystem terminolog	y the	input of uni	t hyd	rograj	oh is :		-	
		(1)	base flow			(2)	rain	fall exce	ess		
		(3)	rainfall depth	,		(4)	rain	fall inte	ensity		

181.	Whi	ich one of the following does no	t affect t	he draft of plough ?
	(1)	Tillage treatments	(2)	Manures applied
	(3)	Crop residue left in the soil	(4)	Spraying to previous crop
182.		eze dried operations are performerons between temperature of :	ed unde	r a predetermined pressure of a few hundred
	(1)	−5° to 30°C	(2)	-10° to 40°C
	(3)	-15° to 45°C	(4)	None of these
183.	In v	ariable grade given to a graded	bund, th	ne maximum grade is kept at :
	(1)	upper end of the bund	(2)	middle portion of the bund
	(3)	out let end of the bund	(4)	whole length of the bund
184.	Run	off samples are collected by :		
	(1)	stage level recorder	(2)	H - flume
	(3)	V - notch	(4)	multislot diviser
185.	No l	load test on transformer is carrie	d out to	determine :
	(1)	Copper loss		
	(2)	Magnetizing current		
	(3)	Magnetizing current and no lo	ad loss	
	(4)	Efficiency of transformer		•
 186.	All v	watershed development works s	hould st	eart from :
 186.	All (1)	watershed development works s upper reaches of the watershe		eart from :
 186.		-	d	eart from :
186.	(1)	upper reaches of the watershe	d ed	art from :

187.	Small watersheds are characterized by : (1) overland flow dominating channel flow					
	(2)	· · · · · · · · · · · · · · · · · · ·				
	(3)					
	(4)	1) base flow dominating channel flow				
188.	A property of agricultural product which is necessary to design air separating system is:					
	(1)	Hydrodynamic properties	(2)	Aerodynamic proper	ties	
	(3)	Physical properties	(4)	Thermal properties	•	
189.	Safe level of moisture in grains is required for preservation of :					
	(a)	quantity				
	(b)	quality				
	(c)	nutritive value				
	(d)	viability				
	(1)	(a) and (b) are correct (2) (a), (b) and (c) are correct		orrect		
	(3)	(c) and (d) are correct	(4)	(a), (b), (c) and (d) as	re correct	
190.	Pick up the <i>wrong</i> statement from the following:					
	(1)	1) Transport of sediment particles by rolling along the bed is known as saltation				
	(2)	2) Trap efficiency of the reservoir decreases with increase in capacity-inflow ratio				
	(3)	3) A bed load at one section may move as suspended load at another section				
	(4)	(4) Deposition of coarse sediments takes place at the entrance to the reservoir.				
191.	Pusa bin is a moisture free bin made of					
	(1)	Burnt bricks (2) Unbur	nt bricks	(3) Stone blocks	(4) Cement blocks	
192.	Roller milling system of wheat is divided into break roll system and					
	(1)	Reduction roll system	(2)	Single roll system		
	(3)	Double roll system	(4)	Rubber roll system		

-00o-

air

(2)

(4)

mixture of air and petrol

(1)

(3)

petrol

diesel

कच्चा कामासाठी जागा / SPACE FOR ROUGH WORK